1
|
Kondrashina A, Arranz E, Cilla A, Faria MA, Santos-Hernández M, Miralles B, Hashemi N, Rasmussen MK, Young JF, Barberá R, Mamone G, Tomás-Cobos L, Bastiaan-Net S, Corredig M, Giblin L. Coupling in vitro food digestion with in vitro epithelial absorption; recommendations for biocompatibility. Crit Rev Food Sci Nutr 2024; 64:9618-9636. [PMID: 37233192 DOI: 10.1080/10408398.2023.2214628] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As food transits the gastrointestinal tract, food structures are disrupted and nutrients are absorbed across the gut barrier. In the past decade, great efforts have focused on the creation of a consensus gastrointestinal digestion protocol (i.e., INFOGEST method) to mimic digestion in the upper gut. However, to better determine the fate of food components, it is also critical to mimic food absorption in vitro. This is usually performed by treating polarized epithelial cells (i.e., differentiated Caco-2 monolayers) with food digesta. This food digesta contains digestive enzymes and bile salts, and if following the INFOGEST protocol, at concentrations that although physiologically relevant are harmful to cells. The lack of a harmonized protocol on how to prepare the food digesta samples for downstream Caco-2 studies creates challenges in comparing inter laboratory results. This article aims to critically review the current detoxification practices, highlight potential routes and their limitations, and recommend common approaches to ensure food digesta is biocompatible with Caco-2 monolayers. Our ultimate aim is to agree a harmonized consensus protocol or framework for in vitro studies focused on the absorption of food components across the intestinal barrier.
Collapse
Affiliation(s)
- Alina Kondrashina
- Global Research and Technology Centre, H&H Group, H&H Research, Fermoy, Ireland
| | - Elena Arranz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Madrid, Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Miguel A Faria
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto, Portugal
| | - Marta Santos-Hernández
- Wellcome Trust - MRC Institute of Metabolic Science, Metabolic Research laboratories, Addenbrooke's Hospital, Cambridge, UK
| | - Beatriz Miralles
- Institute of Food Science Research CIAL (CSIC-UAM), Madrid, Spain
| | - Negin Hashemi
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, Denmark
| | | | - Jette F Young
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, Denmark
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Gianfranco Mamone
- Institute of Food Sciences - National Research Council, Avellino, Italy
| | - Lidia Tomás-Cobos
- In vitro preclinical studies department, AINIA, Avenida Benjamín Franklin 5-11, Parque Tecnológico de Valencia, Paterna, Spain
| | - Shanna Bastiaan-Net
- Wageningen Food & Biobased Research, Wageningen University & Research, WG Wageningen, The Netherlands
| | - Milena Corredig
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, Denmark
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork, Ireland
| |
Collapse
|
2
|
Rathi A, Potale S, Vaze R, Muley AB, Jadhav S. In vitro simulated study of macronutrient digestion in complex food using digestive enzyme supplement. Heliyon 2024; 10:e30250. [PMID: 38707299 PMCID: PMC11066670 DOI: 10.1016/j.heliyon.2024.e30250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Digestive enzymes secreted by the body are vital for digestion and nutrient absorption. Enzyme supplements are commonly used to support them in achieving optimal digestion. Herein, the efficacy of digestive enzyme supplement (DigeSEB Super) in digestion of complex food was assessed using INFOGEST simulated static and modified semi-dynamic in vitro digestion models. Digestive enzyme supplement was found to assist the endogenous digestive enzymes to disintegrate the food matrix. Hence, it reduced the viscosity of the gastric digesta by 2.75 fold (p = 0.04) compared to the control digestion (only endogenous digestive enzymes) during the first hour of digestion. Similarly, enzyme supplement showed statistically higher release of reducing sugars in the gastric digestion (p ≤ 0.05) indicating improved digestion of carbohydrates. Further, digestion of proteins and fats was also improved in the presence of enzyme supplement. The kinetic aspects of the semi-dynamic model (transient nature of gastric secretions and gradual acidification) was found to alter the macronutrient digestion compared to the static digestion. Thus, semi-dynamic model should be preferred for the in vitro studies. Overall, current study demonstrated the potential of a digestive enzyme supplement to improve digestion by aiding digestive action of the endogenous enzymes.
Collapse
Affiliation(s)
- Abhijit Rathi
- Human Nutrition Department, Advanced Enzymes Technologies Ltd., Louiswadi, Thane (W), 400604, India
| | - Sneha Potale
- Human Nutrition Department, Advanced Enzymes Technologies Ltd., Louiswadi, Thane (W), 400604, India
| | - Rutuja Vaze
- Human Nutrition Department, Advanced Enzymes Technologies Ltd., Louiswadi, Thane (W), 400604, India
| | - Abhijeet B. Muley
- Human Nutrition Department, Advanced Enzymes Technologies Ltd., Louiswadi, Thane (W), 400604, India
| | - Swati Jadhav
- Human Nutrition Department, Advanced Enzymes Technologies Ltd., Louiswadi, Thane (W), 400604, India
| |
Collapse
|
3
|
Sanches FL, Weis CMSC, Gonçalves GCV, Andrade GS, Diniz LGT, Camargo AF, Kubeneck S, Klein GH, Romani LC, Longo VD, Bürck M, Tormen L, Braga ARC, Francisco CTDP, Treichel H, Bertan LC. Study and characterization of a product based on a vegetable extract of quinoa fermented with water kefir grains. World J Microbiol Biotechnol 2024; 40:118. [PMID: 38429465 DOI: 10.1007/s11274-024-03943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
This work aimed to study and characterize a product based on vegetable extract of quinoa (WVEQ) fermented with water kefir grains. The effect of sucrose concentration (SC), inulin concentration (IC), and xanthan gum (XG) concentration were evaluated using a central composite design (CCD) 23. They were subsequently characterized regarding cellular growth of the grains, beverage yield, pH, soluble solids, carbon dioxide (CO2) production, lactic acid, and ethanol production. Therefore, for the final stage, two formulations (F1 and F8) of the CCD were chosen to be characterized in terms of proximate composition, microbiological composition of the kefir culture, analysis of organic compounds, sensory analysis, and enzymatic and microbiological characterization before and after simulation of in vitro gastrointestinal digestion. In the two chosen products, one can see that fermentation optimized the bioavailability of proteins due to the high proteolytic activity of the microorganisms in kefir and the increase in lipid content. In identifying microorganisms, there was a prevalence of Saccharomyces sp. yeasts. In the sensory analysis, the F8 formulation showed better results than the F1 formulation. In vitro, gastrointestinal digestion showed reduced lactic acid bacteria and yeast and increased acetic acid bacteria in the liquid phase for both formulations. In the enzymatic profile, there was a reduction in all enzymes analyzed for both formulations, except for amylase in F1, which went from 14.05 U/mL to 39.41 U/mL. Therefore, it is concluded that using WVEQ as a substrate for the product appears to be a viable alternative with nutritional and technological advantages for serving a specific market niche.
Collapse
Affiliation(s)
- Flavia Leticia Sanches
- Federal University of Fronteira Sul - Campus Laranjeiras do Sul, Food Science and Technology, BR 158, km 405, Laranjeiras do Sul, PR, Brazil
| | | | - Giovanna Camile Vaz Gonçalves
- Federal University of Fronteira Sul - Campus Laranjeiras do Sul, Food Science and Technology, BR 158, km 405, Laranjeiras do Sul, PR, Brazil
| | - Gessica Suiany Andrade
- Federal University of Fronteira Sul - Campus Laranjeiras do Sul, Food Science and Technology, BR 158, km 405, Laranjeiras do Sul, PR, Brazil
| | - Luan Gabriel Techi Diniz
- Federal University of Fronteira Sul - Campus Laranjeiras do Sul, Food Science and Technology, BR 158, km 405, Laranjeiras do Sul, PR, Brazil
| | - Aline Frumi Camargo
- Laboratory of Microbiology and Bioprocesses, Environmental Science and Technology, Federal University of Fronteira Sul, RS 135, km 72, Erechim, RS, 99700-000, Brazil
| | - Simone Kubeneck
- Laboratory of Microbiology and Bioprocesses, Environmental Science and Technology, Federal University of Fronteira Sul, RS 135, km 72, Erechim, RS, 99700-000, Brazil
| | - Gabriel Henrique Klein
- Laboratory of Microbiology and Bioprocesses, Environmental Science and Technology, Federal University of Fronteira Sul, RS 135, km 72, Erechim, RS, 99700-000, Brazil
| | - Larissa Capeletti Romani
- Laboratory of Microbiology and Bioprocesses, Environmental Science and Technology, Federal University of Fronteira Sul, RS 135, km 72, Erechim, RS, 99700-000, Brazil
| | - Vitoria Dassoler Longo
- Laboratory of Microbiology and Bioprocesses, Environmental Science and Technology, Federal University of Fronteira Sul, RS 135, km 72, Erechim, RS, 99700-000, Brazil
| | - Monize Bürck
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP, 11015-020, Brazil
- Nutrition and Food Service Research Center, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, São Paulo, SP, 11015-020, Brazil
| | - Luciano Tormen
- Federal University of Fronteira Sul - Campus Laranjeiras do Sul, Food Science and Technology, BR 158, km 405, Laranjeiras do Sul, PR, Brazil
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, SP, 11015-020, Brazil
- Nutrition and Food Service Research Center, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos, São Paulo, SP, 11015-020, Brazil
- Department of Chemical Engineering, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, São Paulo, 09972-270, Brazil
| | - Catia Tavares Dos Passos Francisco
- Federal University of Fronteira Sul - Campus Laranjeiras do Sul, Food Science and Technology, BR 158, km 405, Laranjeiras do Sul, PR, Brazil
| | - Helen Treichel
- Federal University of Fronteira Sul - Campus Laranjeiras do Sul, Food Science and Technology, BR 158, km 405, Laranjeiras do Sul, PR, Brazil.
- Laboratory of Microbiology and Bioprocesses, Environmental Science and Technology, Federal University of Fronteira Sul, RS 135, km 72, Erechim, RS, 99700-000, Brazil.
| | - Larissa Canhadas Bertan
- Federal University of Fronteira Sul - Campus Laranjeiras do Sul, Food Science and Technology, BR 158, km 405, Laranjeiras do Sul, PR, Brazil
| |
Collapse
|
4
|
Borel P, Dangles O, Kopec RE. Fat-soluble vitamin and phytochemical metabolites: Production, gastrointestinal absorption, and health effects. Prog Lipid Res 2023; 90:101220. [PMID: 36657621 DOI: 10.1016/j.plipres.2023.101220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Consumption of diets rich in fruits and vegetables, which provide some fat-soluble vitamins and many phytochemicals, is associated with a lower risk of developing certain degenerative diseases. It is well accepted that not only the parent compounds, but also their derivatives formed upon enzymatic or nonenzymatic transformations, can produce protective biological effects. These derivatives can be formed during food storage, processing, or cooking. They can also be formed in the lumen of the upper digestive tract during digestion, or via metabolism by microbiota in the colon. This review compiles the known metabolites of fat-soluble vitamins and fat-soluble phytochemicals (FSV and FSP) that have been identified in food and in the human digestive tract, or could potentially be present based on the known reactivity of the parent compounds in normal or pathological conditions, or following surgical interventions of the digestive tract or consumption of xenobiotics known to impair lipid absorption. It also covers the very limited data available on the bioavailability (absorption, intestinal mucosa metabolism) and summarizes their effects on health. Notably, despite great interest in identifying bioactive derivatives of FSV and FSP, studying their absorption, and probing their putative health effects, much research remains to be conducted to understand and capitalize on the potential of these molecules to preserve health.
Collapse
Affiliation(s)
- Patrick Borel
- C2VN, INRAE, INSERM, Aix-Marseille Univ, Marseille, France.
| | | | - Rachel E Kopec
- Human Nutrition Program, Department of Human Sciences, Foods for Health Discovery Theme, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
5
|
Reboul E. Proteins involved in fat-soluble vitamin and carotenoid transport across the intestinal cells: New insights from the past decade. Prog Lipid Res 2023; 89:101208. [PMID: 36493998 DOI: 10.1016/j.plipres.2022.101208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
It is now well established that vitamins D, E, and K and carotenoids are not absorbed solely through passive diffusion. Broad-specificity membrane transporters such as SR-BI (scavenger receptor class B type I), CD36 (CD36 molecule), NPC1L1 (Niemann Pick C1-like 1) or ABCA1 (ATP-binding cassette A1) are involved in the uptake of these micronutrients from the lumen to the enterocyte cytosol and in their secretion into the bloodstream. Recently, the existence of efflux pathways from the enterocyte back to the lumen or from the bloodstream to the lumen, involving ABCB1 (P-glycoprotein/MDR1) or the ABCG5/ABCG8 complex, has also been evidenced for vitamins D and K. Surprisingly, no membrane proteins have been involved in dietary vitamin A uptake so far. After an overview of the metabolism of fat-soluble vitamins and carotenoids along the gastrointestinal tract (from the mouth to the colon where interactions with microbiota may occur), a focus is placed on the identified and candidate proteins participating in the apical uptake, intracellular transport, basolateral secretion and efflux back to the lumen of fat-soluble vitamins and carotenoids in enterocytes. This review also highlights the mechanisms that remain to be identified to fully unravel the pathways involved in fat-soluble vitamin and carotenoid intestinal absorption.
Collapse
|
6
|
Guan S, Hua X, Wang Z, Yuan Y, Yang R. Performance of ultrahigh methoxylated pectin as the delivery material in the simulated in vitro digestion. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Faubel N, Cilla A, Alegriía A, Barberá R, Garcia-Llatas G. Overview of in vitro digestion methods to evaluate bioaccessibility of lipophilic compounds in foods. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2143520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nerea Faubel
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Amparo Alegriía
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Guadalupe Garcia-Llatas
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| |
Collapse
|
8
|
Mantovani RA, Xavier AAO, Tavares GM, Mercadante AZ. Lutein bioaccessibility in casein-stabilized emulsions is influenced by the free to acylated carotenoid ratio, but not by the casein aggregation state. Food Res Int 2022; 161:111778. [DOI: 10.1016/j.foodres.2022.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
|
9
|
Li X, Huang Q, Wang X, Zhang M, Quan S, Geng F, Chen H, Deng Q. Exploration of suitable in vitro simulated digestion model for lipid oxidation of flaxseed oil emulsion during digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5495-5501. [PMID: 35355275 DOI: 10.1002/jsfa.11904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/06/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The INFOGEST model is a standardized general in vitro digestion study, but it cannot accurately simulate the fatty acid release process of lipids in the stomach and small intestine. In this study, the internationally universal INFOGEST 2019 was used as the basic model and flaxseed oil emulsion was used as the research object. In various improvement models, the effect of fatty acid release rate on the oxidation stability of flaxseed oil was assessed by adding rabbit stomach extract and changing the order of bile salts addition. RESULTS With the presence of rabbit gastric extract, flaxseed oil emulsion flocculation and coalescence in stomach were reduced, and the absolute value of ζ-potential increased. Moreover, the release rate of fatty acids in the small intestine increased by 12.14%. The amount of lipid oxidation product (i.e. hexanal) in the gastric and intestinal phases increased by 0.08 ppb. In addition, the fatty acid release rate in the small intestine phase increased by 5.85% and the hexanal content increased by 0.011 ppb in the digestion model of adding bile salts before adjusting the pH in the small intestine phase compared with the model of adjusting the pH first and then adding bile salts. CONCLUSION The results obtained from this study will contribute to finding the most suitable static digestion model for simulating digestion and oxidation of lipid during lipid gastrointestinal digestion. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaowen Li
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Science, Wuhan, China
| | - Qingde Huang
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Science, Wuhan, China
| | - Xintian Wang
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Science, Wuhan, China
| | | | - Shuang Quan
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Science, Wuhan, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hongjian Chen
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Science, Wuhan, China
| | - Qianchun Deng
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Science, Wuhan, China
| |
Collapse
|
10
|
Garvey SM, Guice JL, Hollins MD, Best CH, Tinker KM. Fungal digestive enzymes promote macronutrient hydrolysis in the INFOGEST static in vitro simulation of digestion. Food Chem 2022; 386:132777. [PMID: 35364497 DOI: 10.1016/j.foodchem.2022.132777] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
The objective of this study was to test the hydrolytic efficacy of 6 fungal enzymes in the INFOGEST static in vitro simulation of gastrointestinal (GI) digestion. First, the INFOGEST protocol was adapted for testing of exogenous enzymes. Second, a dose-response study of 3 individual fungal proteases, a lipase, and an amylase with glucoamylase demonstrated improved dietary protein, lipid, and carbohydrate hydrolysis, respectively, from an oral nutritional supplement (ONS) under simulated gastric or GI conditions, compared to pepsin and pancreatin-based control conditions. Third, a combination of the 6 enzymes (BC-006) improved macronutrient digestion, including enhanced release of individual amino acids from ONS and mixed meal substrates. Finally, we validated digestive models of aging and proton pump inhibitor (PPI) use, and showed that BC-006 improved gastric digestion under these compromised digestive conditions. The INFOGEST static simulation is a feasible tool to rapidly screen and profile exogenous enzymes for digestive efficacy in vitro.
Collapse
Affiliation(s)
- Sean M Garvey
- Department of Research and Development, BIO-CAT, Inc., 9117 Three Notch Rd, Troy, VA 22974, USA.
| | - Justin L Guice
- Department of Research and Development, BIO-CAT, Inc., 9117 Three Notch Rd, Troy, VA 22974, USA
| | - Morgan D Hollins
- Department of Research and Development, BIO-CAT, Inc., 9117 Three Notch Rd, Troy, VA 22974, USA
| | - Caroline H Best
- Department of Research and Development, BIO-CAT, Inc., 9117 Three Notch Rd, Troy, VA 22974, USA
| | - Kelly M Tinker
- Department of Research and Development, BIO-CAT, Inc., 9117 Three Notch Rd, Troy, VA 22974, USA.
| |
Collapse
|
11
|
Sterol bioaccessibility in a plant sterol-enriched beverage using the INFOGEST digestion method: Influence of gastric lipase, bile salts and cholesterol esterase. Food Chem 2022; 382:132305. [PMID: 35134721 DOI: 10.1016/j.foodchem.2022.132305] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 11/24/2022]
Abstract
This study evaluates the influence of increasing bile salts and the addition of key enzymes of the lipidic metabolism in the INFOGEST digestion method on sterol bioaccessibility from a plant sterol (PS)-enriched beverage. The assayed modifications were increasing concentration of bovine bile salts (10 vs. 17.5 mM), and addition of gastric lipase (GL) (60U/mL), cholesterol esterase (CE) (0.075 or 2U/mL) or both. Compared to the original method (10 mM bile salts without enzymes), the assayed conditions significantly reduced bioaccessibility of individual (from 11.3 to 19.7 to 5.1-16.6%) and total PS (13.7 to 6.9-8.0%), and cholesterol (52.8 to 20.9-26.1%), except only when CE is added not allowing cholesterol quantification. The bioaccessibility achieved when lipolytic enzymes were tested was similar for all sterols. For a more physiological approach to in vivo conditions, incorporation of bile salts (10 mM), GL (60U/mL) and CE (0.075U/mL) to the INFOGEST method is proposed, although it increases the cost compared to the established method.
Collapse
|
12
|
Xavier AAO, Mercadante AZ. A guide for the evaluation of in vitro bioaccessibility of carotenoids. Methods Enzymol 2022; 674:297-327. [DOI: 10.1016/bs.mie.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Iddir M, Porras Yaruro JF, Larondelle Y, Bohn T. Gastric lipase can significantly increase lipolysis and carotenoid bioaccessibility from plant food matrices in the harmonized INFOGEST static in vitro digestion model. Food Funct 2021; 12:9043-9053. [PMID: 34608921 DOI: 10.1039/d1fo00786f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Gastrointestinal digestion of carotenoids has received much attention, as these lipophilic compounds have been related to several health benefits. Most commonly, static digestion models such as the consensus INFOGEST model are employed to study their bioaccessibility from test matrices. However, an aspect that has been much neglected is the use of gastric lipase. Its inclusion to gastro-intestinal (GI) digestion is expected to foster emulsification of lipophilic constituents prior to their incorporation into mixed micelles. In this study, we compared the effect of various lipases from R. niveus, R. oryzae, and rabbit gastric extracts (RGE), at different concentrations (0, 30, and 60 U mL-1), on carotenoid bioaccessibility from several food matrices (tomato juice, spinach, and carrot juice). We also investigated whether co-digestion of pure proteins (whey and soy protein isolates) at 0, 25, and 50% of the equivalent recommended dietary allowance, would interact with carotenoid bioaccessibility in presence or absence of RGE. Lipolysis was also studied. Considering all matrices combined, lipases significantly improved the bioaccessibility of carotenoids (p < 0.001). Compared to other lipases, RGE consistently increased carotenoid bioaccessibility in all tested matrices, by up to 182% (p < 0.001), this effect was partly maintained in the presence of co-digested proteins. Unexpectedly, all 3 lipases improved gastric lipolysis in all matrices, by an average of 10-fold (p < 0.001). In conclusion, only RGE contributed significantly to improving both lipolysis extent and carotenoid bioaccessibility in all tested matrices, while the presence of proteins mitigated the positive effect of lipases on carotenoid bioaccessibility.
Collapse
Affiliation(s)
- Mohammed Iddir
- Luxembourg Institute of Health, Department of Population Health, Nutrition and Health Research Group, Strassen, Luxembourg. .,Louvain Institute of Biomolecular Science and Technology, UC Louvain, Louvain-la-Neuve, Belgium
| | - Juan Felipe Porras Yaruro
- Luxembourg Institute of Health, Department of Population Health, Nutrition and Health Research Group, Strassen, Luxembourg. .,École Nationale Supérieure des Mines Saint-Étienne, France
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UC Louvain, Louvain-la-Neuve, Belgium
| | - Torsten Bohn
- Luxembourg Institute of Health, Department of Population Health, Nutrition and Health Research Group, Strassen, Luxembourg.
| |
Collapse
|