1
|
Hosseinzadeh N, Asqardokht-Aliabadi A, Sarabi-Aghdam V, Hashemi N, Dogahi PR, Sarraf-Ov N, Homayouni-Rad A. Antioxidant Properties of Postbiotics: An Overview on the Analysis and Evaluation Methods. Probiotics Antimicrob Proteins 2025; 17:606-624. [PMID: 39395091 DOI: 10.1007/s12602-024-10372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Antioxidants found naturally in foods have a significant effect on preventing several human diseases. However, the use of synthetic antioxidants in studies has raised concerns about their potential link to liver disease and cancer. The findings show that postbiotics have the potential to act as a suitable alternative to chemical antioxidants in the food and pharmaceutical sectors. Postbiotics are bioactive compounds generated by probiotic bacteria as they ferment prebiotic fibers in the gut. These compounds can also be produced from a variety of substrates, including non-prebiotic carbohydrates such as starches and sugars, as well as proteins and organic acids, all of which probiotics utilize during the fermentation process. These are known for their antioxidant, antibacterial, anti-inflammatory, and anti-cancer properties that help improve human health. Various methodologies have been suggested to assess the antioxidant characteristics of postbiotics. While there are several techniques to evaluate the antioxidant properties of foods and their bioactive compounds, the absence of a convenient and uncomplicated method is remarkable. However, cell-based assays have become increasingly important as an intermediate method that bridges the gap between chemical experiments and in vivo research due to the limitations of in vitro and in vivo assays. This review highlights the necessity of transitioning towards more biologically relevant cell-based assays to effectively evaluate the antioxidant activity of postbiotics. These experiments are crucial for assessing the biological efficacy of dietary antioxidants. This review focuses on the latest applications of the Caco-2 cell line in the assessment of cellular antioxidant activity (CAA) and bioavailability. Understanding the impact of processing processes on the biological properties of postbiotic antioxidants can facilitate the development of new food and pharmaceutical products.
Collapse
Affiliation(s)
- Negin Hosseinzadeh
- Student Research Committee, Department of Food Science and Technology, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Hashemi
- University of Applied Science & Technology, Center of Pardisan Hospitality & Tourism Management, Mashhad, Iran
| | - Parisa Rahimi Dogahi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Narges Sarraf-Ov
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Danielski R, Shahidi F. Effect of simulated gastrointestinal digestion on the phenolic composition and biological activities of guava pulp and processing by-products. Food Chem 2025; 465:142080. [PMID: 39581085 DOI: 10.1016/j.foodchem.2024.142080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Powdered samples of guava pulp and processing by-products (single fraction containing crushed seeds, peels, and residual pulp) are rich sources of polyphenols with antidiabetic, anti-obesity, cardioprotective, and anticancer potential. However, post-digestion retention of these bioactivities remains unclear. Therefore, these samples were subjected to in vitro digestion simulating oral, gastric, small intestine, and large intestine phases. Phenolic bioaccessibility was highest upon large intestinal digestion for pulp (62.04 %) and waste (22.49 %), while the lowest occurred in the oral and small intestinal phases. Digestion reduced their antiradical activity and ability to inhibit α-glucosidase (42.42-55.84 %) but enhanced pancreatic lipase inhibition (up to 82.82 %). Digested samples could better suppress oxidative damage to LDL-cholesterol and supercoiled DNA. Phenolic acids and ellagitannins were released after gastric digestion, while proanthocyanidins predominated in intestinal phases. Digestion altered the phenolic composition of samples, positively affecting several bioactivities. Further research should investigate metabolization of polyphenols across intestinal cells to establish bioavailability.
Collapse
Affiliation(s)
- Renan Danielski
- Department of Biochemistry, Memorial University of Newfoundland, St. John 's, NL, A1C 5S7, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John 's, NL, A1C 5S7, Canada.
| |
Collapse
|
3
|
Narra F, Piragine E, Benedetti G, Ceccanti C, Florio M, Spezzini J, Troisi F, Giovannoni R, Martelli A, Guidi L. Impact of thermal processing on polyphenols, carotenoids, glucosinolates, and ascorbic acid in fruit and vegetables and their cardiovascular benefits. Compr Rev Food Sci Food Saf 2024; 23:e13426. [PMID: 39169551 PMCID: PMC11605278 DOI: 10.1111/1541-4337.13426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Bioactive compounds in fruit and vegetables have a positive impact on human health by reducing oxidative stress, inflammation, and the risk of chronic diseases such as cancer, cardiovascular (CV) diseases, and metabolic disorders. However, some fruit and vegetables must be heated before consumption and thermal processes can modify the amount of nutraceuticals, that is, polyphenols, carotenoids, glucosinolates, and ascorbic acid, that can increase or decrease in relation to different factors such as type of processing, temperature, and time but also the plant part (e.g., flower, leaf, tuber, and root) utilized as food. Another important aspect is related to the bioaccessibility and bioavailability of nutraceuticals. Indeed, the key stage of nutraceutical bioefficiency is oral bioavailability, which involves the release of nutraceuticals from fruit and vegetables in gastrointestinal fluids, the solubilization of nutraceuticals and their interaction with other components of gastrointestinal fluids, the absorption of nutraceuticals by the epithelial layer, and the chemical and biochemical transformations into epithelial cells. Several studies have shown that thermal processing can enhance the absorption of nutraceuticals from fruit and vegetable. Once absorbed, they reach the blood vessels and promote multiple biological effects (e.g., antioxidant, anti-inflammatory, antihypertensive, vasoprotective, and cardioprotective). In this review, we described the impact of different thermal processes (such as boiling, steaming and superheated steaming, blanching, and microwaving) on the retention/degradation of bioactive compounds and their health-promoting effects after the intake. We then summarized the impact of heating on the absorption of nutraceuticals and the biological effects promoted by natural compounds in the CV system to provide a comprehensive overview of the potential impact of thermal processing on the CV benefits of fruit and vegetables.
Collapse
Affiliation(s)
- Federica Narra
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Eugenia Piragine
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
- Department of PharmacyUniversity of PisaPisaItaly
| | | | - Costanza Ceccanti
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
| | - Marta Florio
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | | | | | - Roberto Giovannoni
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
- Department of BiologyUniversity of PisaPisaItaly
| | - Alma Martelli
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
- Department of PharmacyUniversity of PisaPisaItaly
| | - Lucia Guidi
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”University of PisaPisaItaly
| |
Collapse
|
4
|
Maleke MS, Adebo OA, Wilkin J, Ledbetter M, Feng X, Gieng J, Molelekoa TBJ. Effect of fermentation, malting and ultrasonication on sorghum, mopane worm and Moringa oleifera: improvement in their nutritional, techno-functional and health promoting properties. Front Nutr 2024; 11:1469960. [PMID: 39416648 PMCID: PMC11480039 DOI: 10.3389/fnut.2024.1469960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background Food processing offers various benefits that contribute to food nutrition, food security and convenience. This study investigated the effect of three different processes (fermentation, malting and ultrasonication) on the nutritional, techno-functional and health-promoting properties of sorghum, mopane worm and Moringa oleifera. Methods The fermented and malted flours were prepared at 35°C for 48 h, and for ultrasonication, samples were subjected to 10 min at 4°C with amplitudes of 40-70 Hz. The biochemical, nutritional quality and techno-functional properties of the obtained flours were analysed using standard procedures. Results Fermentation resulted in significantly lower pH and higher titratable acidity in sorghum and mopane worm (4.32 and 4.76; 0.24 and 0.69% lactic acid, respectively), and malting resulted in higher total phenolic content and total flavonoid content in sorghum (3.23 mg GAE/g and 3.05 mg QE/g). Ultrasonication resulted in higher protein and fibre in raw sorghum flour (13.38 and 4.53%) and mopane worm (56.24 and 11.74%) while raw moringa had the highest protein (30.68%). Biomodification by fermentation in sorghum led to higher water and oil holding capacity and increased dispersibility in the ultrasonicated samples. Ultrasonication of mopane worms led to higher water holding capacity, oil holding capacity and dispersibility. Lightness was found to be significantly higher in the fermented samples in sorghum and mopane worm. Raw moringa had the greatest lightness compared to the ultrasonicated moringa. Moringa had the most redness and browning index among all samples. Conclusion In this study, all the investigated processes were found to have caused variations in flours' biochemical, nutritional and techno-functional properties. Ultrasonication process was noteworthy to be the most efficient to preserve the nutritional value in sorghum, mopane worm and M. oleifera flours.
Collapse
Affiliation(s)
- Mpho Sebabiki Maleke
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Oluwafemi Ayodeji Adebo
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Jonathan Wilkin
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Moira Ledbetter
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Xi Feng
- Department of Nutrition, Food Science, and Packaging, San Jose State University, San Jose, CA, United States
| | - John Gieng
- Department of Nutrition, Food Science, and Packaging, San Jose State University, San Jose, CA, United States
| | - Tumisi Beiri Jeremiah Molelekoa
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| |
Collapse
|
5
|
Kewuyemi YO, Adebo OA. Complementary nutritional and health promoting constituents in germinated and probiotic fermented flours from cowpea, sorghum and orange fleshed sweet potato. Sci Rep 2024; 14:1987. [PMID: 38263382 PMCID: PMC10806186 DOI: 10.1038/s41598-024-52149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024] Open
Abstract
Germination and fermentation are age-long food processes that beneficially improve food composition. Biological modulation by germination and probiotic fermentation of cowpea, sorghum, and orange-fleshed sweet potato (OFSP) and subsequent effects on the physicochemical (pH and total titratable acidity), nutritional, antinutritional factors and health-promoting constituents/properties (insoluble dietary fibres, total flavonoid and phenolic contents (TFC and TPC) and antioxidant capacity) of the derived flours were investigated in this study. The quantification of targeted compounds (organic acids and phenolic compounds) on an ultra-high performance liquid chromatography (UHPLC) system was also done. The whole cowpea and sorghum were germinated at 35 °C for 48 h. On the other hand, the milled whole grains and beans and OFSP were fermented using probiotic mesophilic culture at 35 °C for 48 h. Among the resultant bioprocessed flours, fermented sorghum and sweet potato (FSF and FSP) showed mild acidity, increased TPC, and improved ferric ion-reducing antioxidant power. While FSF had better slowly digestible and resistant starches and the lowest oxalate content, FSP indicated better hemicellulose, lowest fat, highest luteolin, caffeic and vanillic acids. Germinated cowpea flour exhibited reduced tannin, better lactic acid, the highest crude fibre, cellulose, lignin, protein, fumaric, L-ascorbic, trans-ferulic and sinapic acids. The comparable and complementary variations suggest the considerable influence of the substrate types, followed by the specific processing-based hydrolysis and biochemical transitions. Thus, compositing the bioprocessed flours based on the unique constituent features for developing functional products from climate-smart edibles may partly be the driver to ameliorating linked risk factors of cardiometabolic diseases.
Collapse
Affiliation(s)
- Yusuf Olamide Kewuyemi
- Food Innovation Research Group, Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg, 2028, Gauteng, South Africa
| | - Oluwafemi Ayodeji Adebo
- Food Innovation Research Group, Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg, 2028, Gauteng, South Africa.
| |
Collapse
|
6
|
Yu J, Renard CMGC, Zhang L, Gleize B. Fate of Amadori compounds in processing and digestion of multi-ingredients tomato based sauces and their effect on other microconstituents. Food Res Int 2023; 173:113381. [PMID: 37803719 DOI: 10.1016/j.foodres.2023.113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 10/08/2023]
Abstract
Amadori compounds (ACs), the first stable products of Maillard reaction, are detected in various products of fruits and vegetables, and show an antioxidant activity which can be related to beneficial effects in human health. In order to optimize the nutritional quality of a multi-ingredient tomato sauce (tomato puree - onion - olive oil - dried pepper), the fate of ACs during processing (drying, heating) and gastrointestinal digestion of a model meal was assessed as well as that of other microconstituents, i.e. carotenoids, phenolic compounds and capsaicinoids. The drying at 50 °C of fresh pepper induced the formation and accumulation of ACs after 6 days. During the heat treatment by microwave of multi-ingredient tomato sauce, Maillard reaction occurs in presence of dried pepper and the content in ACs in the tomato-based sauces increased (+33% to + 53%) depending of quantities of dried pepper added. The bioaccessibility of total ACs was 24-31% in duodenal phase and 18-22% in jejunal phase. Individual ACs have shown variable bioaccessibility, e.g. very high for Fru-Arg (50.8% to 71.3%), and very low for Fru-Met (1.8% to 2.2%). The kinetic monitoring of ACs in digestion medium showed that ACs are not stable (-46% in gastric phase, -49 % in intestinal phase) which indicated their potential degradation in the digestive tract. The presence of ACs in the multi-ingredients tomato sauces had no effect on the content of the other bioactive compounds monitored in the study and even promoted the bioaccessibility of total lycopene (+30%) but decreased the bioaccessibility of total phenolic compounds.
Collapse
Affiliation(s)
- Jiahao Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China; INRAE, Avignon Université, UMR SQPOV, F-84000 Avignon, France
| | | | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China.
| | - Béatrice Gleize
- INRAE, Avignon Université, UMR SQPOV, F-84000 Avignon, France.
| |
Collapse
|
7
|
Cavia MM, Arlanzón N, Busto N, Carrillo C, Alonso-Torre SR. The Impact of In Vitro Digestion on the Polyphenol Content and Antioxidant Activity of Spanish Ciders. Foods 2023; 12:foods12091861. [PMID: 37174399 PMCID: PMC10178113 DOI: 10.3390/foods12091861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Various factors can influence the polyphenol content and the antioxidant capacity of ciders, such as the apple variety, its degree of maturity, apple farming and storage conditions, and the cider-fermentation method, all of which explains why ciders of different origin present different values. In addition, digestive processes could have some effects on the properties of cider. Hence, the objective of this study is to characterize Spanish ciders in terms of their polyphenol content and antioxidant capacity and to ascertain whether those same properties differ in digested ciders. In total, 19 ciders were studied from three different zones within Spain: Asturias (A) (10), the Basque Country (BC) (6), and Castile-and-Leon (CL) (3). A range of assays was used to determine the total polyphenol content and the antioxidant capacity of the ciders. In addition, a digestive process was simulated in vitro, assessing whether the use of amylase might influence the recovery of bioactive compounds after digestion. The Basque Country ciders presented higher total polyphenol contents (830 ± 179 GAE/L) and higher antioxidant capacities (DPPH: 5.4 ± 1.6 mmol TE/L; ABTS: 6.5 ± 2.0 mmol TE/L; FRAP: 6.9 ± 1.6 mmol TE/L) than the other ciders that were studied. The in vitro digestion process, regardless of the use of amylase, implied a loss of phenolic compounds (598 ± 239 mg GAE/L undigested samples; 466 ± 146 mg GAE/L digested without amylase samples; 420 ± 115 mg GAE/L digested with amylase samples), although the variation in antioxidant activity depended on the assay chosen for its determination.
Collapse
Affiliation(s)
- Mari Mar Cavia
- Área de Nutrición y Bromatología, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Nerea Arlanzón
- Área de Nutrición y Bromatología, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Natalia Busto
- Área de Nutrición y Bromatología, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Celia Carrillo
- Área de Nutrición y Bromatología, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Sara R Alonso-Torre
- Área de Nutrición y Bromatología, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
8
|
Ntuli S, Leuschner M, Bester MJ, Serem JC. Stability, Morphology, and Effects of In Vitro Digestion on the Antioxidant Properties of Polyphenol Inclusion Complexes with β-Cyclodextrin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123808. [PMID: 35744933 PMCID: PMC9228204 DOI: 10.3390/molecules27123808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Polyphenols are inversely associated with the incidence of chronic diseases, but therapeutic use is limited by poor stability and bioaccessibility. Encapsulation has been shown to overcome some of these limitations. A selection of polyphenols (catechin, gallic acid, and epigallocatechin gallate) and their combinations were encapsulated in beta-cyclodextrin (βCD). Encapsulation was characterized and the thermal and storage stability was evaluated using the 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. The samples were then subjected to in vitro digestion using a simple digestion (SD) model (gastric and duodenal phases) and a more complex digestion (CD) model (oral, gastric, and duodenal phases). Thereafter, the chemical (oxygen radical absorbance capacity assay) and cellular (dichlorofluorescein diacetate assay in Caco-2 cells) antioxidant and antiglycation (advanced glycation end-products assay) activities were determined. Inclusion complexes formed at a 1:1 molar ratio with a high encapsulation yield and efficiency. Encapsulation altered the morphology of the samples, increased the thermal stability of some and the storage stability of all samples. Encapsulation maintained the antioxidant activity of all samples and significantly improved the antiglycation and cellular antioxidant activities of some polyphenols following SD. In conclusion, the formed inclusion complexes of βCD with polyphenols had greater storage stability, without altering the beneficial cellular effects of the polyphenols.
Collapse
Affiliation(s)
- Sunday Ntuli
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa; (S.N.); (M.J.B.)
| | - Machel Leuschner
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa;
| | - Megan J. Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa; (S.N.); (M.J.B.)
| | - June C. Serem
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa; (S.N.); (M.J.B.)
- Correspondence: ; Tel.: +27-12-356-3091
| |
Collapse
|
9
|
Huang H, Zhu Y, Fu X, Zou Y, Li Q, Luo Z. Integrated natural deep eutectic solvent and pulse-ultrasonication for efficient extraction of crocins from gardenia fruits (Gardenia jasminoides Ellis) and its bioactivities. Food Chem 2022; 380:132216. [DOI: 10.1016/j.foodchem.2022.132216] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
|
10
|
Kewuyemi YO, Kesa H, Adebo OA. Biochemical properties, nutritional quality, colour profile and techno‐functional properties of whole grain sourdough and malted cowpea and quinoa flours. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yusuf Olamide Kewuyemi
- School of Tourism and Hospitality College of Business and Economics University of Johannesburg P.O. Box 524, Bunting Road Campus Gauteng South Africa
| | - Hema Kesa
- School of Tourism and Hospitality College of Business and Economics University of Johannesburg P.O. Box 524, Bunting Road Campus Gauteng South Africa
| | - Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology Faculty of Science University of Johannesburg P.O. Box 17011, Doornfontein Campus Gauteng South Africa
| |
Collapse
|
11
|
Elizalde-Romero CA, Montoya-Inzunza LA, Contreras-Angulo LA, Heredia JB, Gutiérrez-Grijalva EP. Solanum Fruits: Phytochemicals, Bioaccessibility and Bioavailability, and Their Relationship With Their Health-Promoting Effects. Front Nutr 2021; 8:790582. [PMID: 34938764 PMCID: PMC8687741 DOI: 10.3389/fnut.2021.790582] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/31/2021] [Indexed: 01/05/2023] Open
Abstract
The Solanum genus is the largest in the Solanaceae family containing around 2,000 species. There is a great number of edibles obtained from this genus, and globally, the most common are tomato (S. lycopersicum), potato (S. tuberosum), and eggplant (S. melongena). Other fruits are common in specific regions and countries, for instance, S. nigrum, S. torvum, S. betaceum, and S. stramonifolium. Various reports have shown that flavonoids, phenolic acids, alkaloids, saponins, and other molecules can be found in these plants. These molecules are associated with various health-promoting properties against many non-communicable diseases, the main causes of death globally. Nonetheless, the transformations of the structure of antioxidants caused by cooking methods and gastrointestinal digestion impact their potential benefits and must be considered. This review provides information about antioxidant compounds, their bioaccessibility and bioavailability, and their health-promoting effects. Bioaccessibility and bioavailability studies must be considered when evaluating the bioactive properties of health-promoting molecules like those from the Solanum genus.
Collapse
Affiliation(s)
| | | | | | - J Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, Culiacán, Mexico
| | | |
Collapse
|
12
|
Assessment on in vitro medicinal properties and chemical composition analysis of Solanum virginianum dried fruits. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Current perspectives in cell-based approaches towards the definition of the antioxidant activity in food. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Changes in Physicochemical and Biological Properties of Polyphenolic-Protein-Polysaccharide Ternary Complexes from Hovenia dulcis after In Vitro Simulated Saliva-Gastrointestinal Digestion. Foods 2021; 10:foods10102322. [PMID: 34681371 PMCID: PMC8535220 DOI: 10.3390/foods10102322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to explore the impacts of in vitro simulated saliva-gastrointestinal digestion on physicochemical and biological properties of the polyphenolic-protein-polysaccharide ternary complex (PPP) extracted from Hovenia dulcis. The results revealed that the in vitro digestion did remarkably affect physicochemical properties of PPP, such as content of reducing sugar release, content of bound polyphenolics, and molecular weight distribution, as well as ratios of compositional monosaccharides and amino acids. In particular, the content of bound polyphenolics notably decreased from 281.93 ± 2.36 to 54.89 ± 0.42 mg GAE/g, which might be the major reason for the reduction of bioactivities of PPP after in vitro digestion. Molecular weight of PPP also remarkably reduced, which might be attributed to the destruction of glycosidic linkages and the disruption of aggregates. Moreover, although biological activities of PPP obviously decreased after in vitro digestion, the digested PPP (PPP-I) also exhibited remarkable in vitro antioxidant and antiglycation activities, as well as in vitro inhibitory effects against α-glucosidase. These findings can help to well understand the digestive behavior of PPP extracted from H. dulcis, and provide valuable and scientific supports for the development of PPP in the industrial fields of functional food and medicine.
Collapse
|
15
|
Moyo SM, Serem JC, Bester MJ, Mavumengwana V, Kayitesi E. Hydrothermal Processing and In Vitro Simulated Human Digestion Affects the Bioaccessibility and Bioactivity of Phenolic Compounds in African Pumpkin ( Momordica balsamina) Leaves. Molecules 2021; 26:molecules26175201. [PMID: 34500636 PMCID: PMC8434164 DOI: 10.3390/molecules26175201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
The African pumpkin (Momordica balsamina) contains bioactive phenolic compounds that may assist in reducing oxidative stress in the human body. The leaves are mainly consumed after boiling in water for a specific time; this hydrothermal process and conditions of the gastrointestinal tract may affect the presence and bioactivity of phenolics either positively or negatively. In this study, the effects of hydrothermal processing (boiling) and in vitro simulated human digestion on the phenolic composition, bioaccessibility and bioactivity in African pumpkin were investigated in comparison with those of spinach (Spinacia oleracea). A high-resolution ultra-performance liquid chromatography, coupled with diode array detection, quadrupole time-of-flight and mass spectrometer (UPLC-DAD-QTOF-MS) was used to profile phenolic metabolites. Metabolites such as 3-caffeoylquinic acid, 5-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid were highly concentrated in the boiled vegetable extracts compared to the raw undigested and all digested samples. The majority of African pumpkin and spinach extracts (non-digested and digested) protected Deoxyribonucleic acid (DNA), (mouse fibroblast) L929 and human epithelial colorectal adenocarcinoma (Caco-2) cells from 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative damage. From these results, the consumption of boiled African pumpkin leaves, as well as spinach, could be encouraged, as bioactive metabolites present may reduce oxidative stress in the body.
Collapse
Affiliation(s)
- Siphosanele Mafa Moyo
- Department of Biotechnology and Food Technology, Faculty of Science, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
- Correspondence: (S.M.M.); (E.K.)
| | - June C. Serem
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa; (J.C.S.); (M.J.B.)
| | - Megan J. Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria 0007, South Africa; (J.C.S.); (M.J.B.)
| | - Vuyo Mavumengwana
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 19063, Tygerberg, Cape Town 7505, South Africa;
| | - Eugenie Kayitesi
- Department of Biotechnology and Food Technology, Faculty of Science, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
- Correspondence: (S.M.M.); (E.K.)
| |
Collapse
|