1
|
Lukić M, Ćirić A, Božić DD, Stanković JA, Medarević Đ, Maksimović Z. Extracts from Wheat, Maize, and Sunflower Waste as Natural Raw Materials for Cosmetics: Value-Added Products Reaching Sustainability Goals. Pharmaceutics 2024; 16:1182. [PMID: 39339218 PMCID: PMC11435005 DOI: 10.3390/pharmaceutics16091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Agricultural waste is underutilized, and sometimes burning them has a negative impact on the environment and human health. This research investigates the untapped potential of extracts from maize, wheat and sunflower waste as natural materials for cutaneous, specifically, cosmetic application. The possibility of incorporating lipid and ethanol extracts from wheat, maize, and sunflower into creams was investigated together with their potential contribution to the structural and functional properties of the topical formulations. Results of the physicochemical characterization show that investigated extracts can be successfully incorporated into creams with satisfactory stability. All extracts showed a desirable safety profile and good antimicrobial activity against various microorganisms. Lipid extracts have proven to be promising structural ingredients of the oil phase, contributing to the spreadability, occlusivity, and emollient effect. Ethanol extracts influenced washability and stickiness of the formulation and could be considered as prospective ingredients in self-preserving formulations. The extracts affected the sensory properties of the creams, mainly the smell and color. These results suggest that the extracts from wheat, maize, and sunflower waste could be used as multifunctional natural ingredients for cosmetic formulations which can replace less sustainable raw materials. This also represents a valorization of waste and is in line with broader sustainability goals.
Collapse
Affiliation(s)
- Milica Lukić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Ana Ćirić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Dragana D Božić
- Department of Immunology and Microbiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Jelena Antić Stanković
- Department of Immunology and Microbiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Đorđe Medarević
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Zoran Maksimović
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
2
|
Herrera AW, Bellesi FA, Pilosof AMR. In situ interaction of pea peptides and bile salts under in vitro digestion: Potential impact on lipolysis. Food Res Int 2024; 190:114624. [PMID: 38945578 DOI: 10.1016/j.foodres.2024.114624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
The present work evaluated how a native pea protein isolate (PPI) affects the key roles carried out by bile salts (BS) in lipid digestion by means of the in vitro static INFOGEST protocol. Two gastric residence times were evaluated (10 and 60 min), and then the peptides obtained (GPPP) were mixed with BS at physiological concentration in simulated intestinal fluid to understand how they interact with BS both at the bulk and at the interface. Both GPPP give rise to a film with a predominant viscous character that does not constitute a barrier to the penetration of BS, but interact with BS in the bulk duodenal fluid. When the peptides flushing from the stomach after the different gastric residence times undergo duodenal digestion, it was found that for the longer gastric residence time the percentage of soluble fraction in the duodenal phase, that perform synergistically with BS micelles, was twice that of the lower residence time, leading to an increase in the solubilization of oleic acid. These results finally lead to a greater extent of lipolysis of olive oil emulsions. This work demonstrates the usefulness of in vitro models as a starting point to study the influence of gastric residence time of pea protein on its interaction with BS, affecting lipolysis. Pea proteins were shown to be effective emulsifiers that synergistically perform with BS improving the release and bioaccessibility of bioactive lipids as olive oil.
Collapse
Affiliation(s)
- Anashareth W Herrera
- ITAPROQ- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Fernando A Bellesi
- ITAPROQ- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Ana M R Pilosof
- ITAPROQ- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
3
|
Zelencova-Gopejenko D, Videja M, Grandane A, Pudnika-Okinčica L, Sipola A, Vilks K, Dambrova M, Jaudzems K, Liepinsh E. Heart-Type Fatty Acid Binding Protein Binds Long-Chain Acylcarnitines and Protects against Lipotoxicity. Int J Mol Sci 2023; 24:ijms24065528. [PMID: 36982599 PMCID: PMC10058761 DOI: 10.3390/ijms24065528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Heart-type fatty-acid binding protein (FABP3) is an essential cytosolic lipid transport protein found in cardiomyocytes. FABP3 binds fatty acids (FAs) reversibly and with high affinity. Acylcarnitines (ACs) are an esterified form of FAs that play an important role in cellular energy metabolism. However, an increased concentration of ACs can exert detrimental effects on cardiac mitochondria and lead to severe cardiac damage. In the present study, we evaluated the ability of FABP3 to bind long-chain ACs (LCACs) and protect cells from their harmful effects. We characterized the novel binding mechanism between FABP3 and LCACs by a cytotoxicity assay, nuclear magnetic resonance, and isothermal titration calorimetry. Our data demonstrate that FABP3 is capable of binding both FAs and LCACs as well as decreasing the cytotoxicity of LCACs. Our findings reveal that LCACs and FAs compete for the binding site of FABP3. Thus, the protective mechanism of FABP3 is found to be concentration dependent.
Collapse
Affiliation(s)
- Diana Zelencova-Gopejenko
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, LV-1048 Riga, Latvia
- Correspondence:
| | - Melita Videja
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
- Faculty of Pharmacy, Rīga Stradinš University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Aiga Grandane
- Organic Synthesis Group, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Linda Pudnika-Okinčica
- Organic Synthesis Group, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Anda Sipola
- Laboratory of Membrane Active Compounds and β-Diketones, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Karlis Vilks
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
- Faculty of Pharmacy, Rīga Stradinš University, Dzirciema 16, LV-1007 Riga, Latvia
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| |
Collapse
|
4
|
Naso JN, Bellesi FA, Pizones Ruiz-Henestrosa VM, M. R. Pilosof A. Solubilization of lipolysis products in mixed micelles is enhanced in presence of bile salts and Tween 80 as revealed by a model study (oleic acid) and emulsified chia-oil. Food Res Int 2022; 161:111804. [DOI: 10.1016/j.foodres.2022.111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022]
|