1
|
Sharma R, Nath PC, Rustagi S, Sharma M, Inbaraj BS, Dikkala PK, Nayak PK, Sridhar K. Cold Plasma-A Sustainable Energy-Efficient Low-Carbon Food Processing Technology: Physicochemical Characteristics, Microbial Inactivation, and Industrial Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:4166141. [PMID: 40124845 PMCID: PMC11930388 DOI: 10.1155/ijfo/4166141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
Nonthermal technologies, mostly utilized for microbial inactivation and quality preservation in food, are attracting increased interest, particularly in nonthermal plasma. Cold plasma (CP) demonstrates favorable results, such as increased germination, enhanced functional and rheological characteristics, and the eradication of microorganisms. Consequently, CP is a novel technology in food processing that has significantly contributed to the prevention of food spoilage. This study highlights contemporary research on CP technology in food processing. This includes its use in microbial decontamination, shelf life extension, mycotoxin degradation, enzyme inactivation, and surface modification of food products. The CP generation techniques under low pressure, including glow discharge, radio frequency and microwave techniques, and atmospheric pressure, including dielectric barrier discharge (DBD), plasma jet, and corona discharge, are discussed. Additionally, the source for the generation of plasma-activated water (PAW) with its significant role in food processing is critically discussed. The CP is an effective method for the decontamination of several food materials like fruits, vegetables, meat, and low-moisture food products. Also, the review addressed the effects of CP on the physicochemical properties of foods and CP for pretreatment in various aspects of food processing, including drying of food, extraction of bioactive compounds, and oil hydrogenation. CP improved the drying kinetics of food, resulting in reduced processing time and improved product quality. Similarly, CP is effective in maintaining food safety and quality, removing the formation of biofilm, and also in reducing protein allergenicity. The review also underscored the importance of CP as a sterilizing agent for food packaging materials, emphasizing its role in enhancing the barrier characteristics of biopolymer-based food packaging materials. Therefore, it is concluded that CP is effective in the reduction of pathogenic microorganisms from food products. Moreover, it is effective in maintaining the nutritional and sensory properties of food products. Overall, it is effective for application in all aspects of food processing. There is a critical need for ongoing research on upscaling for commercial purposes.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, India
| | - Pinku Chandra Nath
- Research and Development Cell, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad, Haryana, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | | | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, India
| |
Collapse
|
2
|
Bai JW, Li DD, Abulaiti R, Wang M, Wu X, Feng Z, Zhu Y, Cai J. Cold Plasma as a Novel Pretreatment to Improve the Drying Kinetics and Quality of Green Peas. Foods 2025; 14:84. [PMID: 39796374 PMCID: PMC11719577 DOI: 10.3390/foods14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/22/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Green peas, with their high moisture content, require effective drying techniques to extend shelf life while preserving quality. Traditional drying methods face challenges due to the dense structure of the seed coat and wax layer, which limits moisture migration. This study investigates cold plasma (CP) pretreatment as a novel approach to enhance drying kinetics and maintain the quality attributes of green peas. The results showed that CP treatment significantly improves drying efficiency by modifying the pea epidermis microstructure, reducing drying time by up to 18.18%. The moisture effective diffusivity coefficients (Deff) for untreated and CP-pretreated green peas were calculated to range from 5.9629 to 9.9172 × 10-10 m2·s-1, with CP pretreatment increasing Deff by up to 66.31% compared to the untreated group. Optimal CP parameters (90 s, 750 Hz frequency, 70% duty cycle) were found to improve the rehydration ratio, preserve color, and increase total phenolic content (TPC) by 24.06%, while enhancing antioxidant activity by 29.64%. Microstructural changes, including pore formation and increased surface roughness, as observed through scanning electron microscopy (SEM), partially explain the enhanced moisture diffusion, improved rehydration, and alterations in nutrient content. These findings underscore the potential of CP technology as a non-thermal, eco-friendly pretreatment for drying agricultural products, with broad applications in food preservation and quality enhancement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.-W.B.); (D.-D.L.); (R.A.); (M.W.); (X.W.); (Z.F.); (Y.Z.)
| |
Collapse
|
3
|
Zarkar S, Kalaivendan RGT, Eazhumalai G, Annapure US. Atmospheric pin-to-plate cold plasma modification of amaranth starch & its application as a stabilizer in low-fat mayonnaise. Int J Biol Macromol 2024; 283:137803. [PMID: 39566773 DOI: 10.1016/j.ijbiomac.2024.137803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
This study investigates the changes in physicochemical, functional, rheological, and structural characteristics of the amaranth seed starch upon atmospheric cold plasma exposure with the generation/input voltages of 170, 200, and 230 V for 5-15 min and its potential as a fat replacer in a model emulsion system (mayonnaise). The surface modification by cold plasma is expected to enhance the native amaranth starch characteristics. Plasma treatment reduced the amylose content to a minimum of 9.00 % (230 V-15 min) resulting in a rise in relative crystallinity (74 %) and % syneresis (48.42 %). The hydratability remarkably elevated to a maximum rise of ~158 %, ~37 %, and ~41 % in solubility, absorption index, and swelling power respectively. Increased hydration, reduced the turbidity from 5.10 % (untreated) to a minimum of 3.42 % (230 V-15 min) of the pastes due to the cracked granular surface seen in electron micrographs. The rheological attributes improved up to 200 V-15 min with the peak viscosity of 5690 cP as the starch molecules tend to crosslink/aggregate which was confirmed by the increase in the COC stretching band area in FTIR spectra. On 30 % fat substitution with the plasma-treated amaranth starch (200 V-15 min), the mayonnaise viscosity increased significantly (p < 0.05) from ~7.60 Pa·s (control) to ~15.82 Pa·s (200 V-15 min) resulting in better emulsion stability (~82 %) and lightness. This proves the potential of cold plasma technology to modify under-utilized starches for sustainable food applications.
Collapse
Affiliation(s)
- Swapnil Zarkar
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | | | - Gunaseelan Eazhumalai
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Uday S Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India; Institute of Chemical Technology, Jalna, India.
| |
Collapse
|
4
|
Namjoo M, Dibagar N, Golbakhshi H, Figiel A, Masztalerz K. RSM-Based Optimization Analysis for Cold Plasma and Ultrasound-Assisted Drying of Caraway Seed. Foods 2024; 13:3084. [PMID: 39410119 PMCID: PMC11475901 DOI: 10.3390/foods13193084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
In this study, the hot-air drying of caraway seeds was enhanced using two nonthermal physical field technologies: cold plasma (CP) and ultrasonic waves (US). Air drying temperatures of 35, 45, and 55 °C with CP pretreatment exposure times (CPt) of 25 and 50 s were used. When convective drying was accompanied by US, power levels (USp) of 60, 120, and 180 W were applied. Experimentally, the most effective contribution was found by using both CP pretreatment (25 s) and US (180 W), in which the maximum decreases of 31% and 39% were estimated for the drying period and specific energy consumption, respectively. The total color change, the rupture force, TPC, TFC, and antioxidant capacity were also estimated for evaluating the quality of dried products. In a CP-US-assisted drying program (25 s, 180 W), the minimum change in color and the rupture force were found to be 6.40 N and 20.21 N, respectively. Compared to the pure air drying, the combined application of CP and US resulted in a mean increase of 53.2, 43.6, and 24.01% in TPC, TFC, and antioxidant capacity of extracts at the temperature of 35 °C. Based on the response surface methodology (RSM) approach and obtained experimental data, accurate mathematical predictive models were developed for finding the optimal drying condition. The optimization process revealed that 39 °C, 180 W, and 23 s resulted in a desirability of 0.78 for drying caraway seeds.
Collapse
Affiliation(s)
- Moslem Namjoo
- Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, University of Jiroft, Jiroft 7867155311, Iran;
| | - Nesa Dibagar
- Institute of Agricultural Engineering, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (N.D.); (K.M.)
| | - Hossein Golbakhshi
- Department of Mechanical Engineering, University of Jiroft, Jiroft 7867155311, Iran
| | - Adam Figiel
- Institute of Agricultural Engineering, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (N.D.); (K.M.)
| | - Klaudia Masztalerz
- Institute of Agricultural Engineering, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (N.D.); (K.M.)
| |
Collapse
|
5
|
Llavata B, Mello RE, Quiles A, Correa JLG, Cárcel JA. Effect of freeze-thaw and PEF pretreatments on the kinetics and microstructure of convective and ultrasound-assisted drying of orange peel. NPJ Sci Food 2024; 8:56. [PMID: 39181898 PMCID: PMC11344832 DOI: 10.1038/s41538-024-00301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
The main waste generated by juice industry comprises orange peels, which have a great upcycling potential once stabilized. Drying is the most used method for this purpose, but the high energy consumption prompts interest in its intensification. This study assessed the influence of freeze-thaw and pulsed electric field (PEF) pretreatments in conventional and airborne ultrasound-assisted drying (50 °C) of orange peels. None of these pretreatments alone got to reduce processing times significantly, but combined with ultrasound-assisted drying produced a significant shortening of the process. This was particularly important in the lower intensity PEF pretreatment tested (0.33 kJ/kg), indicating the existence of optimum conditions to carry out the pretreatments. Microstructure analysis revealed that the application of ultrasound during drying led to better preservation of the sample structure. Thus, the integration of pretreatment techniques to ultrasound-assisted drying may not only shorten the process but also help to preserve the original structure.
Collapse
Affiliation(s)
- Beatriz Llavata
- Research Group of Analysis and Simulation of Agro-Food Processes (ASPA), Food Engineering Research Institute-FoodUPV, Universitat Politècnica de València, Valencia, Spain
| | - Ronaldo E Mello
- Food Science Department, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Amparo Quiles
- Research Group of Food Microstructure and Chemistry (MIQUALI), Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, Valencia, Spain
| | - Jefferson L G Correa
- Food Science Department, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | - Juan A Cárcel
- Research Group of Analysis and Simulation of Agro-Food Processes (ASPA), Food Engineering Research Institute-FoodUPV, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
6
|
Seelarat W, Sangwanna S, Chaiwon T, Panklai T, Chaosuan N, Bootchanont A, Wattanawikkam C, Porjai P, Khuangsatung W, Boonyawan D. Impact of pretreatment with dielectric barrier discharge plasma on the drying characteristics and bioactive compounds of jackfruit slices. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3654-3664. [PMID: 38158730 DOI: 10.1002/jsfa.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Hot-air drying is a popular method for preserving the production of jackfruit, but heat treatment damages its nutritional qualities. Cold plasma is one of the pretreatment methods used to preserve quality attributes of fruits before drying. In the present work, we studied the effect of dielectric barrier discharge (DBD) plasma on the drying characteristics, microstructure, and bioactive compounds of jackfruit slices with different pretreatment times (15, 30, 45, and 60 s), followed by hot-air drying at 50, 60, and 70 °C. A homemade DBD device was operated via three neon transformers. RESULTS Optical emission spectrophotometry revealed the emitted spectra of the reactive species in DBD plasma, including the N2 second positive system, N2 first negative system, nitrogen ion, and hydroxyl radical. The results showed that the DBD plasma promoted moisture transfer and enhanced the drying rate, related to the changes in the surface microstructure of samples damaged by DBD plasma. The modified Overhults model was recommended for describing the drying characteristics of jackfruit slices. The contents of ascorbic acid, total phenolics, total flavonoids, total polysaccharides, and antioxidant activity in pretreated jackfruit slices were improved by 9.64%, 42.59%, 25.77%, 27.00%, and 23.13%, respectively. However, the levels of color and carotenoids were reduced. CONCLUSION Thus, the bioactive compounds in dried jackfruit slices can be improved using the DBD plasma technique as a potential pretreatment method for the drying process. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weerasak Seelarat
- Food and Beverage Innovation for Health, Faculty of Science and Technology, Valaya Alongkorn Rajabhat University under the Royal Patronage Pathum Thani Province, Pathum Thani, Thailand
| | - Sujarinee Sangwanna
- Nutrition and Dietetics, Faculty of Science and Technology, Valaya Alongkorn Rajabhat University under the Royal Patronage Pathum Thani Province, Pathum Thani, Thailand
| | - Tawan Chaiwon
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Teerapap Panklai
- Food and nutrition, Faculty of Home Economics Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Natthaphon Chaosuan
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Atipong Bootchanont
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
- Smart Materials Research Unit, Rajamagala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Chakkaphan Wattanawikkam
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
- Smart Materials Research Unit, Rajamagala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Porramain Porjai
- Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
- Smart Materials Research Unit, Rajamagala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Wongvisarut Khuangsatung
- Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Dheerawan Boonyawan
- Plasma and Beam Physics Research Facility, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
7
|
Amorim IS, Amorim DS, Godoy HT, Mariutti LRB, Chisté RC, da Silva Pena R, Bogusz Junior S, Chim JF. Amazonian palm tree fruits: From nutritional value to diversity of new food products. Heliyon 2024; 10:e24054. [PMID: 38288015 PMCID: PMC10823109 DOI: 10.1016/j.heliyon.2024.e24054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
The rapid growth of the world population has increased the demand for new food sources, constituting a major challenge concerning the maximum use of existing food resources. The fruits of Amazonian palm trees have excellent nutritional composition and bioactive compounds. This review highlights four fruits of Amazonian palm trees that are still little explored by the food industry: açai (Euterpe oleracea), pupunha (Bactris gasipaes), buriti (Mauritia flexuosa), and tucumã (Astrocaryum aculeatum). This paper aims to inspire new ideas for researching and developing products for the food industry. It also explores the impacts of Amazonian palm fruits on health, highlighting their role in disease prevention through their nutritional effects.
Collapse
Affiliation(s)
- Isabelly Silva Amorim
- Center for Chemical, Pharmaceutical and Food Sciences – Federal University of Pelotas, 96010-900, Pelotas, Rio Grande do Sul, Brazil
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Danyelly Silva Amorim
- Center for Chemical, Pharmaceutical and Food Sciences – Federal University of Pelotas, 96010-900, Pelotas, Rio Grande do Sul, Brazil
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Helena Teixeira Godoy
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Lilian Regina Barros Mariutti
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), 13083-862, Campinas, São Paulo, Brazil
| | - Renan Campos Chisté
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), 66075-110, Belém, Pará, Brazil
| | - Rosinelson da Silva Pena
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), 66075-110, Belém, Pará, Brazil
| | - Stanislau Bogusz Junior
- University of Sao Paulo (USP), Sao Carlos Institute of Chemistry (IQSC), 13566-590, Sao Carlos, Sao Paulo, Brazil
| | - Josiane Freitas Chim
- Center for Chemical, Pharmaceutical and Food Sciences – Federal University of Pelotas, 96010-900, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Khumsupan D, Lin SP, Hsieh CW, Santoso SP, Chou YJ, Hsieh KC, Lin HW, Ting Y, Cheng KC. Current and Potential Applications of Atmospheric Cold Plasma in the Food Industry. Molecules 2023; 28:4903. [PMID: 37446565 DOI: 10.3390/molecules28134903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The cost-effectiveness and high efficiency of atmospheric cold plasma (ACP) incentivise researchers to explore its potentials within the food industry. Presently, the destructive nature of this nonthermal technology can be utilised to inactivate foodborne pathogens, enzymatic ripening, food allergens, and pesticides. However, by adjusting its parameters, ACP can also be employed in other novel applications including food modification, drying pre-treatment, nutrient extraction, active packaging, and food waste processing. Relevant studies were conducted to investigate the impacts of ACP and posit that reactive oxygen and nitrogen species (RONS) play the principal roles in achieving the set objectives. In this review article, operations of ACP to achieve desired results are discussed. Moreover, the recent progress of ACP in food processing and safety within the past decade is summarised while current challenges as well as its future outlook are proposed.
Collapse
Affiliation(s)
- Darin Khumsupan
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Shin-Ping Lin
- School of Food Safety, Taipei Medical University, Taipei City 110, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402, Taiwan
| | | | - Yu-Jou Chou
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Kuan-Chen Hsieh
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Hui-Wen Lin
- Department of Optometry, Asia University, Taichung City 41354, Taiwan
| | - Yuwen Ting
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 106319, Taiwan
- Department of Optometry, Asia University, Taichung City 41354, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung City 404327, Taiwan
| |
Collapse
|
9
|
Bai JW, Wang YC, Cai JR, Zhang L, Dai Y, Tian XY, Xiao HW. Three-Dimensional Appearance and Physicochemical Properties of Pleurotus eryngii under Different Drying Methods. Foods 2023; 12:foods12101999. [PMID: 37238817 DOI: 10.3390/foods12101999] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
This study investigated the effects of different drying methods on the drying characteristics, three-dimensional (3D) appearance, color, total polysaccharide content (TPC), antioxidant activity, and microstructure of Pleurotus eryngii slices. The drying methods included hot air drying (HAD), infrared drying (ID), and microwave drying (MD). The results showed that the drying method and conditions significantly influenced the drying time, with MD having a significant advantage in reducing the drying time. The 3D appearance of P. eryngii slices was evaluated based on shrinkage and roughness as quantitative indexes, and the best appearance was obtained by hot air drying at 55 and 65 °C. HAD and ID at lower drying temperatures obtained better color, TPC, and antioxidant activity, but MD significantly damaged the color and nutritional quality of P. eryngii. The microstructure of dried P. eryngii slices was observed using scanning electron microscopy, and the results showed that drying methods and conditions had an obvious effect on the microstructure of P. eryngii slices. Scattered mycelia were clearly observed in P. eryngii samples dried by HAD and ID at lower drying temperatures, while high drying temperatures led to the cross-linking and aggregation of mycelia. This study offers scientific and technical support for choosing appropriate drying methods to achieve a desirable appearance and quality of dried P. eryngii.
Collapse
Affiliation(s)
- Jun-Wen Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yu-Chi Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian-Rong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Yu Tian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
10
|
Cold plasma as a pre-treatment for processing improvement in food: A review. Food Res Int 2023; 167:112663. [PMID: 37087253 DOI: 10.1016/j.foodres.2023.112663] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/13/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Thermal processes can be very damaging to the nutritional and sensory quality of foods. Non-thermal technologies have been applied to reduce the impact of heat on food, reducing processing time and increasing its efficiency. Among many non-thermal technologies, cold plasma is an emerging technology with several potential applications in food processing. This technique can be used to preserve and sanitize food products, and act as a pre-treatment for drying, extraction, cooking, curing, and hydrogenation of foods. Furthermore, the reacting plasma species formed during the plasma application can change positively the sensory and nutritional aspects of foods. The aim of this review is to analyze the main findings on the application of cold plasma as a pre-treatment technology to improve food processing. In its current maturity stage, the cold plasma technology is suitable for reducing drying time, increasing extraction efficiency, as well as curing meats. This technology can convert unsaturated into saturated fats, without forming trans isomers, which can be an alternative to healthier foods. Although many advantages come from cold plasma applications, this technology still has several challenges, such as the scaling up, especially in increasing productivity and treating foods with large formats. Optimization and control of the effects of plasma on nutritional and sensory quality are still under investigation. Further improvement of the technology will come with a higher knowledge of the effects of plasma on the different chemical groups present in foods, and with the development of bigger or more powerful plasma systems.
Collapse
|
11
|
Effects of pretreatments using plasma functionalized water, osmodehydration and their combination on hot air drying efficiency and quality of tomato (Solanum lycopersicum L.) slices. Food Chem 2023; 406:134995. [PMID: 36521321 DOI: 10.1016/j.foodchem.2022.134995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
The effects of pretreatments using plasma functionalized water (PW), osmodehydration (OD), and combined plasma functionalized water and osmodehydration (PO) on the drying characteristics, physicochemical and bioactive components of tomato slices during hot air drying at an air temperature of 55 °C and velocity of 1.5 m/s were evaluated. Results revealed that PW pretreatment led to an increase in lycopene compared to fresh samples, and shortened drying time, improved ascorbic acids, TPC, TFC, acidity, rehydration, porosity and hue, but reduced TSS, compared to dried control samples, while OD resulted in lycopene degradation during pretreatment, and prolonged drying time, increased TSS, but lowered acidity, rehydration, porosity and hue, compared to dried control samples. On the other hand, PO was found to overcome the shortcomings of OD with enhancement in the lycopene during pretreatment, and showed accelerated moisture transfer, improved bioactive, acidity, porosity, rehydration, hue and texture, but decreased TSS, when compared to dried control samples. Overall, the results showed the promising potential of PW and PO pretreatments for enhancing drying efficiency and product quality for the food industry.
Collapse
|
12
|
Air Atmospheric Pressure Plasma Jet to Improve Fruiting Body Production and Enhance Bioactive Phytochemicals from Mutant Cordyceps militaris (White Cordyceps militaris). FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Boateng ID. Thermal and Nonthermal Assisted Drying of Fruits and Vegetables. Underlying Principles and Role in Physicochemical Properties and Product Quality. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
da Costa Pinto C, Sanches EA, Clerici MTPS, Rodrigues S, Fernandes FAN, de Souza SM, Teixeira-Costa BE, de Araújo Bezerra J, Lamarão CV, Campelo PH. Modulation of the Physicochemical Properties of Aria (Goeppertia allouia) Starch by Cold Plasma: Effect of Excitation Frequency. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Boateng ID. Recent processing of fruits and vegetables using emerging thermal and non-thermal technologies. A critical review of their potentialities and limitations on bioactives, structure, and drying performance. Crit Rev Food Sci Nutr 2022; 64:4240-4274. [PMID: 36315036 DOI: 10.1080/10408398.2022.2140121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruits and vegetables have rich bioactive compounds and antioxidants that are vital for the human body and prevent the cell from disease-causing free radicals. Therefore, there is a growing demand for high-quality fruits and vegetables. Nevertheless, fruits and vegetables deteriorate due to their high moisture content, resulting in a 40-50% loss. Drying is a common food preservation technique in the food industry to increase fruits and vegetables' shelf-life. However, drying causes chemical modifications, changes in microstructure, and bioactives, thus, lowering the final product's quality as a considerable amount of bioactives compounds and antioxidants are lost. Conventional pretreatments such as hot water blanching, and osmotic pretreatment have improved fruit and vegetable drying performance. However, these conventional pretreatments affect fruits' bioactive compounds retention and microstructure. Hence, emerging thermal (infrared blanching, microwave blanching, and high-humidity hot-air impingement blanching) and non-thermal pretreatments (cold plasma, ultrasound, pulsed electric field, and edible films and coatings) have been researched. So the question is; (1) what are the mechanisms behind emerging non-thermal and thermal technologies' ability to improve fruits and vegetables' microstructure, texture, and drying performance? (2) how do emerging thermal and non-thermal technologies affect fruits and vegetables' bioactive compounds and antioxidant activity? and (3) what are preventing the large-scale commercialization of these emerging thermal and non-thermal technologies' for fruits and vegetables, and what are the future recommendations? Hence, this article reviewed emerging thermal blanching and non-thermal pretreatment technologies, emphasizing their efficacy in improving dried fruits and vegetables' bioactive compounds, structural properties, and drying performance. The fundamental mechanisms in emerging thermal and non-thermal blanching pretreatment methods on the fruits and vegetables' microstructure and drying performance were delved in, as well as what are preventing the large-scale commercialization of these emerging thermal and non-thermal blanching for fruits and vegetables, and the future recommendations. Emerging pretreatment approaches not only improve the drying performance but further significantly improve the retention of bioactive compounds and antioxidants and enhance the microstructure of the dried fruits and vegetables.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
16
|
Du Y, Yang F, Yu H, Xie Y, Yao W. Improving food drying performance by cold plasma pretreatment: A systematic review. Compr Rev Food Sci Food Saf 2022; 21:4402-4421. [PMID: 36037152 DOI: 10.1111/1541-4337.13027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
Drying is an important and influential process to prolong the shelf-life of food in the food industry. Recent studies have shown that cold plasma (CP) as an emerging drying pretreatment technology can improve drying performance, reduce drying energy consumption, and improve dried food quality. This paper comprehensively reviewed the mechanism of CP improving drying performance, related equipment, energy consumption, influencing factors, and impact on drying quality. This review also discusses the advantages and disadvantages and proposes possible challenges and suggestions for future research. Most studies indicated that CP pretreatment could improve the drying rate and quality and reduce the drying energy consumption. CP can promote moisture diffusion and improve drying efficiency by etching the surface and affecting the internal microstructure. In addition, CP can enhance the quality of dried products by reducing drying time and enzyme activity. Further research is needed to explore the drying mechanisms and equipment innovations to promote the application of CP in the food drying industry.
Collapse
Affiliation(s)
- Yuhang Du
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
17
|
Namjoo M, Moradi M, Dibagar N, Niakousari M. Cold Plasma Pretreatment Prior to Ultrasound-assisted Air Drying of Cumin Seeds. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Khudyakov D, Sosnin M, Shorstkii I, Okpala COR. Cold filamentary microplasma pretreatment combined with infrared dryer: Effects on drying efficiency and quality attributes of apple slices. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Wu W, Jin X, Liu Z, Xu Y, Zhu F, Zhang J. Effect of low temperature plasma pretreatment on drying process of vegetables with waxy layer. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenfu Wu
- School of Engineering and Technology Jilin Agricultural University Changchun China
- School of Biological and Agriculture Engineering Jilin University Changchun China
| | - Xing Jin
- School of Engineering and Technology Jilin Agricultural University Changchun China
| | - Zhe Liu
- School of Biological and Agriculture Engineering Jilin University Changchun China
| | - Yan Xu
- School of Biological and Agriculture Engineering Jilin University Changchun China
| | - Fengwu Zhu
- School of Engineering and Technology Jilin Agricultural University Changchun China
| | - Jinsong Zhang
- School of Biological and Agriculture Engineering Jilin University Changchun China
| |
Collapse
|