1
|
Souza PFN, Zelaya EAE, da Silva EL, Brasil-Oliveira LL, de Oliveira FL, de Moraes MEA, Montenegro RC, Mesquita FP. PepGAT, a chitinase-derived peptide, alters the proteomic profile of colorectal cancer cells and perturbs pathways involved in cancer survival. Int J Biol Macromol 2025; 299:140204. [PMID: 39848367 DOI: 10.1016/j.ijbiomac.2025.140204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Colorectal cancer (CRC) affects the population worldwide, occupying the first place in terms of death and incidence. Synthetic peptides (SPs) emerged as alternative molecules due to their activity and low toxicity. Proteomic analysis of PepGAT-treated HCT-116 cells revealed a decreased abundance of proteins involved in ROS metabolism and energetic metabolisms, cell cycle, DNA repair, migration, invasion, cancer aggressiveness, and proteins involved in resistance to 5-FU. PepGAT induced earlier ROS and apoptosis in HCT-116 cells, cell cycle arrest, and inhibited HCT-116 migration. PepGAT enhances the action of 5-FU against HCT-116 cells by dropping down 6-fold the 5-FU toward HCT-116 and reduces its toxicity for non-cancerous cells. These findings strongly suggest the multiple mechanisms of action displayed by PepGAT against CRC cells and its potential to either be studied alone or in combination with 5-FU to develop new studies against CRC and might develop new drugs against it.
Collapse
Affiliation(s)
- Pedro Filho Noronha Souza
- Laboratory of Bioinformatics Applied to Health, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil; Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil; Cearense Foundation to Support Scientific and Technological Development, Brazil.
| | - Elmer Adilson Espino Zelaya
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Emerson Lucena da Silva
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Laís Lacerda Brasil-Oliveira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Francisco Laio de Oliveira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Maria Elisabete Amaral de Moraes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Raquel Carvalho Montenegro
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Felipe Pantoja Mesquita
- Laboratory of Bioinformatics Applied to Health, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil; Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil.
| |
Collapse
|
2
|
Sun M, Fu L, Chen T, Dong N. Extracellular production of antifungal peptides from oxidative endotoxin-free E. coli and application. Appl Microbiol Biotechnol 2024; 108:56. [PMID: 38175241 DOI: 10.1007/s00253-023-12888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
Antifungal peptides (AFPs) can be used as novel preservatives, but achieving large-scale production and application remains a long-term challenge. In this study, we developed a hybrid peptide MD (metchnikowin-drosomycin fusion) secreted into Escherichia coli supernatant, demonstrating strong inhibitory activity against Aspergillus flavus and Botrytis cinerea. The fusion tag did not impact its activity. Moreover, an endotoxin-free and oxidative leaky strain was developed by knocking out the trxB, gor, and lpp genes of endotoxin-free E. coli ClearColi-BL21(DE3). This strain facilitates the proper folding of multi-disulfide bond proteins and promotes the extracellular production of recombinant bioactive AFP MD, achieving efficient production of endotoxin-free MD. In addition, temperature control replaces chemical inducers to further reduce production costs and circumvent the toxicity of inducers. This extracellularly produced MD exhibited favorable effectiveness in inhibiting fruit mold growth, and its safety was preliminarily established by gavage testing in mice, suggesting that it can be developed into a green and sustainable fruit fungicide. In conclusion, this study provides novel approaches and systematic concepts for producing extracellularly active proteins or peptides with industrial significance. KEY POINTS: • First report of extracellular production of bioactive antifungal peptide in Escherichia coli. • The hybrid antifungal peptide MD showed strong inhibitory activity against Aspergillus flavus and Botrytis cinerea, and the activity was not affected by the fusion tag. • Endotoxin-free oxidative Escherichia coli suitable for the expression of multi-disulfide bond proteins was constructed.
Collapse
Affiliation(s)
- Mengning Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Linglong Fu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100193, People's Republic of China
| | - Na Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
3
|
Gharzouli M, Aouf A, Mahmoud E, Ali H, Alsulami T, Badr AN, Ban Z, Farouk A. Antifungal effect of Algerian essential oil nanoemulsions to control Penicillium digitatum and Penicillium expansum in Thomson Navel oranges ( Citrus sinensis L. Osbeck). FRONTIERS IN PLANT SCIENCE 2024; 15:1491491. [PMID: 39640995 PMCID: PMC11617202 DOI: 10.3389/fpls.2024.1491491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Fungal infection is a potential issue in citrus fruits, while essential oils from Cymbopogon citratus and Citrus limon could be better alternatives to synthetic fungicides in orange preservation. The nanoparticles produced during ultrasonication exhibited a monomodal distribution of particle sizes with a mean zeta potential and a polydispersity index mean value of 74.12 nm, -38.4 mV, and 0.19 for C. citratus and 103 nm, -28.4 mV, and 0.22 for C. limon. The micrographs of the nanoemulsions exhibited spherical morphology with diverse nanometer-scale sizes. Nanoemulsification enhances the levels of neral and geranial in both oils while reducing the levels of limonene, γ-terpinene, and β-myrcene. The essential oils and their nanoemulsions exhibited good MIC values against Gram-positive and Gram-negative bacteria, ranging from 2% to 0.12%, while MBC was 4% to 0.25% (v/v) for both. The extended genetic investigation of the isolated fungal strains from Thomson Navel oranges through analysis of the ITS sequences and BLAST indicated 100% homology to those of Penicillium digitatum and Penicillium expansum. Both oils' MIC and MFC values and nanoemulsions ranged from 0.12% to 0.06% and 2% to 0.03% against P. expansum and P. digitatum, respectively. Applying nanoemulsified C. limon and C. citratus as a coating on orange fruits significantly reduced the spread of P. expansum and P. digitatum fungi compared to the control. Coating with nanoemulsions reduced the negative changes in quality parameters during storage, such as weight loss, firmness, TSS, TA, pH, and ascorbic acid content. Citrus limon nanoemulsion did not alter the coated fruits' sensory attributes compared to C. citratus nanoemulsion.
Collapse
Affiliation(s)
- Merihane Gharzouli
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, University of Ferhat Abbas Setif1, Setif, Algeria
| | - Abdelhakim Aouf
- Laboratory of Applied Microbiology, Faculty of Natural and Life Sciences, University of Ferhat Abbas Setif1, Setif, Algeria
| | - Engy Mahmoud
- Flavor and Aroma Chemistry Department, National Research Centre, Cairo, Egypt
| | - Hatem Ali
- Food Technology Department, National Research Center, Cairo, Egypt
| | - Tawfiq Alsulami
- Food Science and Nutrition Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Cairo, Egypt
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Amr Farouk
- Flavor and Aroma Chemistry Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
4
|
Mesquita F, de Oliveira FL, da Silva EL, Brito DM, de Moraes ME, Souza PF, Montenegro RC. Synthetic Peptides Induce Human Colorectal Cancer Cell Death via Proapoptotic Pathways. ACS OMEGA 2024; 9:43252-43263. [PMID: 39464451 PMCID: PMC11500374 DOI: 10.1021/acsomega.4c08194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Cancer resistance to drugs and chemotherapy is a problem faced by public health systems worldwide. Repositioning antimicrobial peptides could be an efficient strategy to overcome that problem. This study aimed at repurposing antimicrobial peptides PepGAT and PepKAA for cancer treatment. After screening against several cancers, PepGAT and PepKAA presented IC50 values of 125.42 and 40.51 μM at 72 h toward colorectal cancer (CRC) cells. The mechanisms of action revealed that both peptides induced cell cycle arrest in G2/M and drove HCT-116 cells to death by triggering apoptosis. qPCR analysis revealed that peptides modulated gene expression in apoptosis, corroborating the data from caspase 3/7 and flow cytometry experiments. Yet, peptides induced ROS overaccumulation and increased membrane permeabilization, pore formation, and loss of internal content, leading to death. Additionally, peptides were able to inhibit cell invasion. Previous studies from the same group attested to no toxicity to normal human cells. Thus, PepGAT and PepKAA have great potential as anticancer molecules.
Collapse
Affiliation(s)
- Felipe
P. Mesquita
- Pharmacogenetics
Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Francisco L. de Oliveira
- Pharmacogenetics
Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Emerson L. da Silva
- Pharmacogenetics
Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Daiane M.S. Brito
- Pharmacogenetics
Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Maria E.A. de Moraes
- Pharmacogenetics
Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Pedro F.N. Souza
- Pharmacogenetics
Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
- Cearense
Foundation to Support Scientific and Technological Development, Fortaleza 60822-131, Brazil
| | - Raquel C. Montenegro
- Pharmacogenetics
Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
- Red
Latinoamericana de Implementación y Validación de guias
clinicas Farmacogenomicas (RELIVAF), Madrid 28015, Spain
| |
Collapse
|
5
|
Shao C, Wang Y, Li G, Guan H, Zhu Y, Zhang L, Dong N, Shan A. Novel design of simplified β-hairpin antimicrobial peptide as a potential food preservative based on Trp-pocket backbone. Food Chem 2024; 448:139128. [PMID: 38574714 DOI: 10.1016/j.foodchem.2024.139128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Food contamination from microbial deterioration requires the development of potent antimicrobial peptides (AMPs). The deployment of approved AMPs as dietary preservatives is limited due to barriers such as instability, toxicity, and high synthetic costs. This exploration utilizes the primary structural elements of the Trp-pocket backbone to engineer a series of β-hairpin AMPs (XWRWRPGXKXXR-NH2, X representing I, V, F, and/or L). Peptides WpLF, with Phe as X and Leu arranged at the 11th position, demonstrated exceptional selectivity index (SI = 123.08) and sterilization effects both in vitro and in vivo. WpLF consistently exhibited stable bacteriostasis, regardless of physiological salts, serum, and extreme pH. Mechanistic analysis indicated that the peptide penetrates microbial cell membranes, inducing membrane disruption, thereby impeding drug resistance evolution. Conclusively, AMPs engineered by the Trp-pocket skeleton hold substantial potential as innovative biological preservatives in food preservation, providing valuable insights for sustainable and safe peptide-based food preservatives.
Collapse
Affiliation(s)
- Changxuan Shao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuanmengxue Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Guoyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongrui Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yongjie Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Licong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Na Dong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
6
|
Yang Y, Huang L, Huang Z, Ren Y, Xiong Y, Xu Z, Chi Y. Food-derived peptides unleashed: emerging roles as food additives beyond bioactivities. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38889067 DOI: 10.1080/10408398.2024.2360074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Innovating food additives stands as a cornerstone for the sustainable evolution of future food systems. Peptides derived from food proteins exhibit a rich array of physicochemical and biological attributes crucial for preserving the appearance, flavor, texture, and nutritional integrity of foods. Leveraging these peptides as raw materials holds great promise for the development of novel food additives. While numerous studies underscore the potential of peptides as food additives, existing reviews predominantly focus on their biotic applications, leaving a notable gap in the discourse around their abiotic functionalities, such as their physicochemical properties. Addressing this gap, this review offers a comprehensive survey of peptide-derived food additives in food systems, accentuating the application of peptides' abiotic properties. It furnishes a thorough exploration of the underlying mechanisms and diverse applications of peptide-derived food additives, while also delineating the challenges encountered and prospects for future applications. This well-time review will set the stage for a deeper understanding of peptide-derived food additives.
Collapse
Affiliation(s)
- Yanli Yang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Lunjie Huang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhangjun Huang
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Yao Ren
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yanfei Xiong
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Zhenghong Xu
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yuanlong Chi
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Efremenko E, Aslanli A, Stepanov N, Senko O, Maslova O. Various Biomimetics, Including Peptides as Antifungals. Biomimetics (Basel) 2023; 8:513. [PMID: 37999154 PMCID: PMC10669293 DOI: 10.3390/biomimetics8070513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Biomimetics, which are similar to natural compounds that play an important role in the metabolism, manifestation of functional activity and reproduction of various fungi, have a pronounced attraction in the current search for new effective antifungals. Actual trends in the development of this area of research indicate that unnatural amino acids can be used as such biomimetics, including those containing halogen atoms; compounds similar to nitrogenous bases embedded in the nucleic acids synthesized by fungi; peptides imitating fungal analogs; molecules similar to natural substrates of numerous fungal enzymes and quorum-sensing signaling molecules of fungi and yeast, etc. Most parts of this review are devoted to the analysis of semi-synthetic and synthetic antifungal peptides and their targets of action. This review is aimed at combining and systematizing the current scientific information accumulating in this area of research, developing various antifungals with an assessment of the effectiveness of the created biomimetics and the possibility of combining them with other antimicrobial substances to reduce cell resistance and improve antifungal effects.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | | | | | | | | |
Collapse
|
8
|
Yu L, Yang M, Jiang D, Jin H, Jin Z, Chu X, Zhao M, Wu S, Zhang F, Hu X. Antibacterial peptides from Monochamus alternatus induced oxidative stress and reproductive defects in pine wood nematode through the ERK/MAPK signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105511. [PMID: 37532327 DOI: 10.1016/j.pestbp.2023.105511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023]
Abstract
Pine wilt disease is a devastating disease of pine caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Long-term use of chemical nematicides leads to the development of resistance in nematodes and harms the environment. Evaluations for green environmental protection agents, identified the antibacterial peptide, MaltDef1, from Monochamus alternatus which had nematicidal effect. We studied its nematicidal activity and action against PWN. In this study, the antibacterial peptide S-defensin was synthesized from M. alternatus. The results showed that S-defensin caused mortality to the PWN, causing shrinkage, pore, cell membrane dissolution and muscle atrophy. In addition, PWN reproduction was also affected by S-defensin; it decreased in a concentration dependent manner with increasing treatment concentration. By contrast, reactive oxygen species (ROS) in vivo increased in a concentration-dependent manner. We applied transcriptome to analyze the changes in gene expressions in S-defensin treated PWN, and found that the most significantly enriched pathway was the ERK/MAPK signaling pathway. RNAi was used to validate the functions of four differential genes (Let-23, Let-60, Mek-2 and Lin-1) in this pathway. The results showed that knockdown of these genes significantly decreased the survival rate and reproductive yield of, and also increased ROS in PWN. The antibacterial peptide S-defensin had a significant inhibitory effect on the survival and reproduction of PWN, shown by cell membrane damage and intracellular biological oxidative stress via regulating the ERK/MAPK signaling pathway. This indicates that S-defensin has a target in B. xylophilus, against which new green target pesticides can be developed.
Collapse
Affiliation(s)
- Lu Yu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meijiao Yang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Di Jiang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haole Jin
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zehong Jin
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Chu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingzhen Zhao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Songqing Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiping Zhang
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xia Hu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
9
|
Tang R, Tan H, Dai Y, Li L, Huang Y, Yao H, Cai Y, Yu G. Application of antimicrobial peptides in plant protection: making use of the overlooked merits. FRONTIERS IN PLANT SCIENCE 2023; 14:1139539. [PMID: 37538059 PMCID: PMC10394246 DOI: 10.3389/fpls.2023.1139539] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/07/2023] [Indexed: 08/05/2023]
Abstract
Pathogen infection is one of the major causes of yield loss in the crop field. The rapid increase of antimicrobial resistance in plant pathogens has urged researchers to develop both new pesticides and management strategies for plant protection. The antimicrobial peptides (AMPs) showed potential on eliminating plant pathogenic fungi and bacteria. Here, we first summarize several overlooked advantages and merits of AMPs, which includes the steep dose-response relations, fast killing ability, broad synergism, slow resistance selection. We then discuss the possible application of AMPs for plant protection with above merits, and highlight how AMPs can be incorporated into a more efficient integrated management system that both increases the crop yield and reduce resistance evolution of pathogens.
Collapse
|
10
|
Yang Z, Wei Y, Wu W, Zhang L, Wang J, Shan A. Characterization of simplified nonapeptides with broad-spectrum antimicrobial activities as potential food preservatives, and their antibacterial mechanism. Food Funct 2023; 14:3139-3154. [PMID: 36892465 DOI: 10.1039/d2fo03861g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Antimicrobial peptides (AMPs) have attracted attention in the field of food preservatives due to their favorable biosafety and potential antimicrobial activity. However, high synthetic cost, systemic toxicity, a narrow antimicrobial spectrum, and poor antimicrobial activity become the main bottlenecks for their practical applications. To address these questions, a set of derived nonapeptides were designed based on a previously discovered ultra-short peptide sequence template (RXRXRXRXL-NH2) and screened to identify an optimal peptide-based food preservative with excellent antimicrobial properties. Among these nonapeptides, the designed peptides 3IW (RIRIRIRWL-NH2) and W2IW (RWRIRIRWL-NH2) presented a membrane-disruptive and reactive oxygen species (ROS) accumulation mechanism to execute potent and rapid broad-spectrum antimicrobial activity without observed cytotoxicity. Moreover, they exhibited favorable antimicrobial stability regardless of high ionic strength, heat, and excessive acid-base conditions, retaining potent antimicrobial effects for chicken meat preservation. Collectively, their ultra-short sequence length and potent broad-spectrum antimicrobial capacity may be beneficial for the further development of green and safe peptide-based food preservatives.
Collapse
Affiliation(s)
- Zhanyi Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Yingxin Wei
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Wanpeng Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Licong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Jiajun Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Epinecidin-1, a marine antifungal peptide, inhibits Botrytis cinerea and delays gray mold in postharvest peaches. Food Chem 2023; 403:134419. [DOI: 10.1016/j.foodchem.2022.134419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022]
|
12
|
Li Y, Wang M, Li Y, Hong B, Kang D, Ma Y, Wang J. Two novel antimicrobial peptides against vegetative cells, spores and biofilm of Bacillus cereus. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
13
|
Branco LAC, Souza PFN, Neto NAS, Aguiar TKB, Silva AFB, Carneiro RF, Nagano CS, Mesquita FP, Lima LB, Freitas CDT. New Insights into the Mechanism of Antibacterial Action of Synthetic Peptide Mo-CBP 3-PepI against Klebsiella pneumoniae. Antibiotics (Basel) 2022; 11:antibiotics11121753. [PMID: 36551410 PMCID: PMC9774128 DOI: 10.3390/antibiotics11121753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Klebsiella pneumoniae is a multidrug-resistant opportunistic human pathogen related to various infections. As such, synthetic peptides have emerged as potential alternative molecules. Mo-CBP3-PepI has presented great activity against K. pneumoniae by presenting an MIC50 at a very low concentration (31.25 µg mL-1). Here, fluorescence microscopy and proteomic analysis revealed the alteration in cell membrane permeability, ROS overproduction, and protein profile of K. pneumoniae cells treated with Mo-CBP3-PepI. Mo-CBP3-PepI led to ROS overaccumulation and membrane pore formation in K. pneumoniae cells. Furthermore, the proteomic analysis highlighted changes in essential metabolic pathways. For example, after treatment of K. pneumoniae cells with Mo-CBP3-PepI, a reduction in the abundance of protein related to DNA and protein metabolism, cytoskeleton and cell wall organization, redox metabolism, regulation factors, ribosomal proteins, and resistance to antibiotics was seen. The reduction in proteins involved in vital processes for cell life, such as DNA repair, cell wall turnover, and protein turnover, results in the accumulation of ROS, driving the cell to death. Our findings indicated that Mo-CBP3-PepI might have mechanisms of action against K. pneumoniae cells, mitigating the development of resistance and thus being a potent molecule to be employed in producing new drugs against K. pneumoniae infections.
Collapse
Affiliation(s)
- Levi A. C. Branco
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Pedro F. N. Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
- Correspondence: or
| | - Nilton A. S. Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Tawanny K. B. Aguiar
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Ayrles F. B. Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Rômulo F. Carneiro
- Department of Fisheries Engineering, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Celso S. Nagano
- Department of Fisheries Engineering, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Felipe P. Mesquita
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Luina B. Lima
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| | - Cleverson D. T. Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60020-181, CE, Brazil
| |
Collapse
|
14
|
Zheng X, Nie W, Xu J, Zhang H, Liang X, Chen Z. Characterization of antifungal cyclic dipeptides of Lacticaseibacillus paracasei ZX1231 and active packaging film prepared with its cell-free supernatant and bacterial nanocellulose. Food Res Int 2022; 162:112024. [PMID: 36461308 DOI: 10.1016/j.foodres.2022.112024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/13/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022]
Abstract
Fungal infection and/or spoilage are major concerns of crop and food security worldwide, prompting the developments and application of various antimicrobial agents. In this study, nine strains of lactic acid bacteria (LAB) with antifungal activities were isolated from the traditional Chinese fermented wort of Meigui rice vinegar, where fungi coexist. The cell-free supernatant (CFS) of Lacticaseibacillus paracasei ZX1231 exhibited significant inhibitory activities against Aspergillus niger, Penicillium citrinum, Penicillium polonicum, Zygosaccharomyces rouxii, Talaromyces rubrifaciens, and Candida albicans. Among the four cyclic dipeptides (CDPs) uncovered from the CFS, cyclo(Phe-Leu) and cyclo(Anthranily-Pro) were found in the family Lactobacillaceae for the first time, which inhibited the C. albicans filamentation by targeting upon RAS1-cAMP-PKA pathway. CFS antifungal activities were optimally combined with a bacterial nanocellulose (BNC) matrix to prepare the active quality packaging CFS-BNC films. The challenge tests confirmed that CFS-BNC films significantly inhibited the fungi growth and thus prolonged the shelf life of bread, beef, cheese and soy sauce. L. paracasei ZX1231, its CFS, and the CFS-BNC film may have extensive applications in food preservation and food packaging.
Collapse
|
15
|
Parra ALC, Freitas CDT, Souza PFN, von Aderkas P, Borchers CH, Beattie GA, Silva FDA, Thornburg RW. Ornamental tobacco floral nectar is a rich source of antimicrobial peptides. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111427. [PMID: 36007629 DOI: 10.1016/j.plantsci.2022.111427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Although floral nectar is a rich source of nutrients, it is rarely infected by microorganisms. Defense molecules such as proteins have been identified in this fluid, but defense peptides have been largely overlooked. Thus, the aim of this study was to perform an extensive peptidomic analysis of the ornamental tobacco floral nectar to seek peptides involved in nectar defense. Using LC-MS/MS, 793 peptides were sequenced and characterized. After extensive bioinformatics analysis, six peptides were selected for further characterization, synthesis, and evaluation of their antimicrobial properties against phytopathogenic fungi and bacteria. All six peptides had antimicrobial activity to some extent. However, the activity varied by peptide concentration and microorganism tested. An analysis of the action mechanism revealed damage in the cell membrane induced by peptides. The results show that floral nectar is rich in peptides and that, together with proteins and hydrogen peroxide, they contribute to plant defense against microorganisms during pollination.
Collapse
Affiliation(s)
- Aura L C Parra
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA.
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Patrick von Aderkas
- University of Victoria - Genome BC Proteomics Center, University of Victoria, Victoria, BC V8P 5C2, Canada; Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Fredy D A Silva
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Robert W Thornburg
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
16
|
Duarte JA, Alves-Ribeiro G, Machado FP, Folly D, Peñaloza E, Garret R, Santos MG, Ventura JA, Wermelinger GF, Robbs BK, Rocha L, Fiaux SB. Glimpsing the chemical composition and the potential of Myrtaceae plant extracts against the food spoilage fungus Thielaviopsis ethacetica. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Latex peptidases produce peptides capable of delaying fungal growth in bread. Food Chem 2022; 373:131410. [PMID: 34710691 DOI: 10.1016/j.foodchem.2021.131410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 01/17/2023]
Abstract
Antimicrobial peptides (AMPs) have been reported to be promising alternatives to chemical preservatives. Thus, this study aimed to characterise AMPs generated from the hydrolysis of wheat gluten proteins using latex peptidases of Calotropis procera, Cryptostegia grandiflora, and Carica papaya. The three hydrolysates (obtained after 16 h at 37 °C, using a 1: 25 enzyme: substrate ratio) inhibited the growth of Aspergillus niger, A. chevalieri, Trichoderma reesei, Pythium oligandrum, Penicillium sp., and Lasiodiplodia sp. by 60-90%, and delayed fungal growth on bread by 3 days when used at 0.3 g/kg. Moreover, the specific volume and expansion factor of bread were not affected by the hydrolysates. Of 28 peptides identified, four were synthesised and exhibited activity against Penicillium sp. Fluorescence and scanning electron microscopy suggested that the peptides damaged the fungal plasma membrane. Bioinformatics analysis showed that no peptide was toxic and that the antigenic ones had cleavage sites for trypsin or pepsin.
Collapse
|
18
|
Synthetic Antimicrobial Peptides for Controlling Fungi in Foods. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|