1
|
Lira KDL, Barna Fernandes B, Dos Santos Lima LM, Dos Santos Matos Paiva G, Araujo Caldas L, Monteiro J, Lima Nunes Silva AC, Sartorelli P, de Medeiros LS, Augusto Calixto L, Longo Junior LS, de Vasconcellos SP. Coffee husk valorization through choline chloride/lactic acid (1:10) green catalyst extraction for lignin monomers recovery. ENVIRONMENTAL TECHNOLOGY 2025:1-17. [PMID: 40036116 DOI: 10.1080/09593330.2025.2464266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025]
Abstract
The processing of coffee consists on the separation of the grains from other parts of the fruit, then roasted and extracted to obtain the beverage that is so appreciated worldwide. Several studies have dedicated efforts to treat the residue from coffee processing, while recovering lignols of industrial interest. Given this scenario, the nutrients in the coffee husk can enhance microbial growth, providing optimal conditions for the microorganisms to produce metabolites that may have medicinal properties. Deep eutectic solvents (DES) are a class of solvents and/or catalysts designed on demand for specific uses, being used to enhance extraction processes of coffee husk. Our present study was successful establishing conditions where the coffee husk enhanced the growth of microorganisms from two Brazilian biomes, the endophytic fungus from Cerrado and the actinomycete, from Atlantic Rainforest in Boraceia, São Paulo. The DES composed by ChCl/LA (1:10) was selected as cosolvent for the extraction, while it also optimized microbial cultivation conditions. Coffee husk was an excellent supplement for culture media, once the fungus FE316 produced Fumiquinazoline A, Tripprostatin B and Pseurotin A, while the actinomycete AC154 produced Trichorozin-IV as metabolites only expressed when in addition to the coffee husk. UHPLC-MS/MS analysis enabled the annotation of lignin monomer compounds, such as alkaloids, phenylpropanoids and terpenoids present in the coffee husk, more specifically, caffeic acid, isochlorogenic acid B, chlorogenic acid and coniferyl aldehyde, underscoring the value of this biomass.
Collapse
Affiliation(s)
- Keith Dayane Leite Lira
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bianca Barna Fernandes
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lidiane Maria Dos Santos Lima
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Lhaís Araujo Caldas
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jackson Monteiro
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Clara Lima Nunes Silva
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Patricia Sartorelli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lívia Soman de Medeiros
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leandro Augusto Calixto
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz Sidney Longo Junior
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
2
|
Divya Priya A, Martin A. UHPLC-MS/MS based comprehensive phenolic profiling, antimicrobial and antioxidant activities of Indian Rhodomyrtus tomentosa fruits. Sci Rep 2025; 15:945. [PMID: 39762407 PMCID: PMC11704065 DOI: 10.1038/s41598-024-84800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Rhodomyrtus tomentosa fruits, endemic to the Western Ghats were analyzed for its free, bound and esterified phenolics by Ultra High Performance Liquid Chromatography-Mass Spectrometry. Overall, twenty-nine phenolic compounds were identified, amongst them 18 were detected in this fruit for the first time. Gallic acid (80.44 ± 8.74 mg/100 g) and ellagic acid (107.47 ± 7.28 mg/100 g) were the most prominent ones found in the bound phenolic fraction and gallic acid (103.76 ± 6.34 mg/100 g) in the esterified phenolic fraction of the fruit, respectively. Total Phenolic content was found to be highest in bound phenolics (7.09 ± 0.17 mg Gallic acid equivalent/g). The antioxidant and antimicrobial activities of the three extracts namely free, bound and esterified phenolic fruit fractions have been analyzed. Bound phenolics exhibited the highest antioxidant potential (DPPH-15.63 ± 0.86; ABTS-34.73 ± 0.07; FRAP-17.89 ± 0.27 mg/g Ascorbic acid equivalent). The bound phenolics showed good antimicrobial activity against Bacillus cereus, Staphylococcus aureus and Escherichia coli with a MIC of 0.156, 0.625 and 1.25 mg/mL respectively. The exploration of phenolic compounds in Indian variety of Rhodomyrtus tomentosa fruits may provide useful insights on its utilization as a functional food ingredient.
Collapse
Affiliation(s)
- A Divya Priya
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Asha Martin
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
3
|
Kim HS, Jung S, Kim MJ, Jeong JY, Hwang IM, Lee JH. Comparative Analysis of N-Lactoyl-phenylalanine and 3-Phenyllactic Acid Production in Lactic Acid Bacteria from Kimchi: Metabolic Insights and Influencing Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27177-27186. [PMID: 39606886 DOI: 10.1021/acs.jafc.4c07158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
N-Lactoyl-phenylalanine (Lac-Phe) is a metabolite known for its appetite-suppressing and antiobesity properties, while phenyllactic acid (PLA) is recognized for its antibacterial activity. Both metabolites are derived from phenylalanine and lactic acid metabolism through peptidase and dehydrogenase activities. The aim of this study was to investigate the production of Lac-Phe and PLA in kimchi, focusing on the role of lactic acid bacteria (LAB). Ultrahigh performance liquid chromatography coupled with time-of-flight mass spectrometry was used to quantify these metabolites in homemade and commercial kimchi. Lac-Phe and PLA were detected in both kimchi sample types. Various genera, including Lactobacillus, Leuconostoc, and Weissella, were evaluated for Lac-Phe and PLA production. LAB strains exhibiting high Lac-Phe production generally showed lower PLA production, indicating an inverse relationship between these two metabolites. Analysis of dipeptidase sequences revealed that the presence of carnosine dipeptidase 2 (CNDP2)-like M20 metallopeptidase is crucial for Lac-Phe production in LAB. Additionally, phenylalanine was identified as a major factor for both Lac-Phe and PLA production, whereas lactic acid supplementation did not significantly affect their production levels.
Collapse
Affiliation(s)
- Hyun-Sung Kim
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Sera Jung
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Min Ji Kim
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ji Young Jeong
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - In Min Hwang
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jong-Hee Lee
- Fermentation Regulation Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
4
|
López-Almada G, Mejía-León ME, Salazar-López NJ. Probiotic, Postbiotic, and Paraprobiotic Effects of Lactobacillus rhamnosus as a Modulator of Obesity-Associated Factors. Foods 2024; 13:3529. [PMID: 39593945 PMCID: PMC11592899 DOI: 10.3390/foods13223529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a pandemic currently affecting the world's population that decreases the quality of life and promotes the development of chronic non-communicable diseases. Lactobacillus rhamnosus is recognized for multiple positive effects on obesity and overall health. In fact, such effects may occur even when the microorganisms do not remain alive (paraprobiotic effects). This raises the need to elucidate the mechanisms by which obesity-associated factors can be modulated. This narrative review explores recent findings on the effects of L. rhamnosus, particularly, its postbiotic and paraprobiotic effects, on the modulation of adiposity, weight gain, oxidative stress, inflammation, adipokines, satiety, and maintenance of intestinal integrity, with the aim of providing a better understanding of its mechanisms of action in order to contribute to streamlining its clinical and therapeutic applications. The literature shows that L. rhamnosus can modulate obesity-associated factors when analyzed in vitro and in vivo. Moreover, its postbiotic and paraprobiotic effects may be comparable to the more studied probiotic actions. Some mechanisms involve regulation of gene expression, intracellular signaling, and enteroendocrine communication, among others. We conclude that the evidence is promising, although there are still multiple knowledge gaps that require further study in order to fully utilize L. rhamnosus to improve human health.
Collapse
Affiliation(s)
| | | | - Norma Julieta Salazar-López
- Facultad de Medicina de Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés, Centro Cívico, Mexicali 21000, BCN, Mexico
| |
Collapse
|
5
|
Feng J, Huang Z, Cui C, Zhao M, Feng Y. Synthesis, taste characteristics and taste mechanism of N-lactoyl leucine from soy sauce using sensory analysis and UPLC-MS/MS. Food Chem 2024; 454:139670. [PMID: 38820630 DOI: 10.1016/j.foodchem.2024.139670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Recently, amino acid derivatives gradually gained attention, but studies on N-lactoyl-leucine (Lac-Leu) and N-lactoyl-isoleucine (Lac-Ile) are limited. This study aims to explore the contributions of Lac-Leu and Lac-Ile to soy sauce. Lac-Leu and Lac-Ile were synthesized via enzymatic synthesis method catalyzed by Tgase. The mixed solutions containing Lac-Leu were found to have greater taste improvement than those containing Lac-Ile. Sensory evaluation indicated the sour, bitter, and astringent taste of Lac-Leu in water as well as its kokumi, astringent, and umami-enhancing taste in MSG solution. The taste threshold and umami-enhancing threshold of Lac-Leu measured by TDA and cTDA, respectively, were 0.08 mg/mL and 0.16 mg/mL. Molecular docking of Lac-Leu and Lac-Ile with the kokumi receptor CaSR and the umami receptors T1R1 and T1R3 indicated that Lac-Leu had higher affinities with receptors than Lac-Ile. These findings demonstrated the underlying contribution Lac-Leu made to soy sauce, indicating its potential to improve the flavor quality of soy sauce.
Collapse
Affiliation(s)
- Junwei Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Zikun Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| |
Collapse
|
6
|
Kumar A, Green KM, Rawat M. A Comprehensive Overview of Postbiotics with a Special Focus on Discovery Techniques and Clinical Applications. Foods 2024; 13:2937. [PMID: 39335866 PMCID: PMC11431132 DOI: 10.3390/foods13182937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing interest in postbiotics, a term gaining recognition alongside probiotics and prebiotics, aligns with a growing number of clinical trials demonstrating positive outcomes for specific conditions. Postbiotics present several advantages, including safety, extended shelf life, ease of administration, absence of risk, and patentability, making them more appealing than probiotics alone. This review covers various aspects, starting with an introduction, terminology, classification of postbiotics, and brief mechanisms of action. It emphasizes microbial metabolomics as the initial step in discovering novel postbiotics. Commonly employed techniques such as NMR, GC-MS, and LC-MS are briefly outlined, along with their application principles and limitations in microbial metabolomics. The review also examines existing research where these techniques were used to identify, isolate, and characterize postbiotics derived from different microbial sources. The discovery section concludes by highlighting challenges and future directions to enhance postbiotic discovery. In the second half of the review, we delve deeper into numerous published postbiotic clinical trials to date. We provide brief overviews of system-specific trial applications, their objectives, the postbiotics tested, and their outcomes. The review concludes by highlighting ongoing applications of postbiotics in extended clinical trials, offering a comprehensive overview of the current landscape in this evolving field.
Collapse
Affiliation(s)
- Anand Kumar
- Biochemistry and Biotechnology Group, Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545, USA;
| | - Katelyn M. Green
- Biochemistry and Biotechnology Group, Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545, USA;
| | - Manmeet Rawat
- Department of Medicine, The Penn State University College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
7
|
Wang P, Wang S, Wang D, Li Y, Yip RCS, Chen H. Postbiotics-peptidoglycan, lipoteichoic acid, exopolysaccharides, surface layer protein and pili proteins-Structure, activity in wounds and their delivery systems. Int J Biol Macromol 2024; 274:133195. [PMID: 38885869 DOI: 10.1016/j.ijbiomac.2024.133195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Chronic wound healing is a pressing global public health concern. Abuse and drug resistance of antibiotics are the key problems in the treatment of chronic wounds at present. Postbiotics are a novel promising strategy. Previous studies have reported that postbiotics have a wide range of biological activities including antimicrobial, immunomodulatory, antioxidant and anti-inflammatory abilities. However, several aspects related to these postbiotic activities remain unexplored or poorly known. Therefore, this work aims to outline general aspects and emerging trends in the use of postbiotics for wound healing, such as the production, characterization, biological activities and delivery strategies of postbiotics. In this review, a comprehensive overview of the physiological activities and structures of postbiotic biomolecules that contribute to wound healing is provided, such as peptidoglycan, lipoteichoic acid, bacteriocins, exopolysaccharides, surface layer proteins, pili proteins, and secretory proteins (p40 and p75 proteins). Considering the presence of readily degradable components in postbiotics, potential natural polymer delivery materials and delivery systems are emphasized, followed by the potential applications and commercialization prospects of postbiotics. These findings suggest that the treatment of chronic wounds with postbiotic ingredients will help provide new insights into wound healing and better guidance for the development of postbiotic products.
Collapse
Affiliation(s)
- Pu Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Shuxin Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Donghui Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Yuanyuan Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Stocking Hall, 411 Tower Road, Ithaca, NY 14853, USA.
| | - Ryan Chak Sang Yip
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.
| | - Hao Chen
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| |
Collapse
|
8
|
Ollennu-Chuasam P, Ahmed H, Koistinen V, Hanhineva K, Linderborg KM, Suomela JP. Lipophilic and Hydrophilic Metabolites as Descriptors of Different Coffee Beverages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16461-16474. [PMID: 38984670 DOI: 10.1021/acs.jafc.4c03347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Coffee is a widely consumed beverage rich in bioactive phytochemicals. This study investigated the effect of brewing method on the profile of potential bioactive compounds in different coffee beverages using metabolomics and lipidomics based on UHPLC-MS/QTOF. The oil contents of the espresso coffee (EC), pot coffee (PC), instant coffee (IC), and filter coffee (FC) beverages studied were 0.13% ± 0.002, 0.12% ± 0.001, 0.04% ± 0.002, and 0.03% ± 0.003, respectively. Univariate analysis indicated significant differences (P < 0.001) in oil content when EC and PC beverages were compared with IC and FC beverages. Principal component analysis revealed similarities in the lipid profiles of FC and EC beverages and the hydrophilic profiles of PC and FC beverages. The EC beverage had the highest intensity of hydrophilic compounds such as adenine, theobromine, chlorogenic acid, and caffeine. The PC beverage was the most abundant in triglycerides, phosphatidylcholine, and diterpenes. Cafestol and kahweol esters, but not their free forms, were the most abundant diterpenes in the PC beverage. This work provides information on the differences in the profile of potentially bioactive compounds in four commonly consumed coffee beverage types and, thus, on the possible differences in the health effects of these coffee beverage types.
Collapse
Affiliation(s)
| | - Hany Ahmed
- Food Sciences, Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Ville Koistinen
- Food Sciences, Department of Life Technologies, University of Turku, Turku 20014, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio 70211, Finland
| | - Kati Hanhineva
- Food Sciences, Department of Life Technologies, University of Turku, Turku 20014, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio 70211, Finland
| | - Kaisa M Linderborg
- Food Sciences, Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Jukka-Pekka Suomela
- Food Sciences, Department of Life Technologies, University of Turku, Turku 20014, Finland
| |
Collapse
|
9
|
Couto CDC, Chávez DWH, Oliveira EMM, Freitas-Silva O, Casal S. SPME-GC-MS untargeted metabolomics approach to identify potential volatile compounds as markers for fraud detection in roasted and ground coffee. Food Chem 2024; 446:138862. [PMID: 38430775 DOI: 10.1016/j.foodchem.2024.138862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Roasted ground coffee has been intentionally adulterated for economic revenue. This work aims to use an untargeted strategy to process SPME-GC-MS data coupled with chemometrics to identify volatile compounds (VOCs) as possible markers to discriminate Arabica coffee and its main adulterants (corn, barley, soybean, rice, coffee husks, and Robusta coffee). Principal Component Analysis (PCA) showed the difference between roasted ground coffee and adulterants, while the Hierarchical Clustering of Principal Components (HCPC) and heat map showed a trend of adulterants separation. The partial Least-Squares Discriminant Analysis (PLS-DA) approach confirmed the PCA results. Finally, 24 VOCs were putatively identified, and 11 VOCs are candidates for potential markers to detect coffee fraud, found exclusively in one type of adulterant: coffee husks, soybean, and rice. The results for possible markers may be suitable for evaluating the authenticity of ground-roasted coffee, thus acting as a coffee fraud control and prevention tool.
Collapse
Affiliation(s)
- Cinthia de Carvalho Couto
- Food and Nutrition Graduate Program, the Federal University of State of Rio de Janeiro, Av. Pasteur, 296, 22290-240 Rio de Janeiro, Brazil.
| | - Davy William Hidalgo Chávez
- Graduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro (PPGCTA-UFRRJ), Rodovia Br 465, km 7, 23890-000 Seropédica, Brazil.
| | | | - Otniel Freitas-Silva
- Embrapa Agroindústria de Alimentos, Av. das Américas, 29501, 23020-470 Rio de Janeiro, Brazil.
| | - Susana Casal
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
10
|
Zhai H, Dong W, Fu X, Li G, Hu F. Integration of widely targeted metabolomics and the e-tongue reveals the chemical variation and taste quality of Yunnan Arabica coffee prepared using different primary processing methods. Food Chem X 2024; 22:101286. [PMID: 38562182 PMCID: PMC10982556 DOI: 10.1016/j.fochx.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
UPLC-Q-TOF-MS and electronic tongue analysis were applied to analyse the metabolic profile and taste quality of Yunnan Arabica coffee under seven primary processing methods. The total phenolic content ranged from 34.44 to 44.42 mg/g DW, the e-tongue results revealed the strongest umami sensor response value in the sample prepared with traditional dry processing, while the samples prepared via honey processing II had the strongest astringency sensor response value. Metabolomics analysis identified 221 differential metabolites, with higher contents of amino acids and derivatives within dry processing II sample, and increased contents of lipids and phenolic acids in the honey processing III sample. The astringency and aftertaste-astringency of the coffee samples positively correlated with the trigonelline, 3,5-di-caffeoylquinic acid and 4-caffeoylquinic acid content. The results contributed to a better understanding of how the primary processing process affects coffee quality, and supply useful information for the enrichment of coffee biochemistry theory.
Collapse
Affiliation(s)
- Huinan Zhai
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou, Inner Mongolia 014109, China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
| | - Xingfei Fu
- Tropical and Subtropical Economic Crops Research Institute, Yunnan Academy of Tropical Sciences, Baoshan, Yunnan 678000, China
| | - Guiping Li
- Tropical and Subtropical Economic Crops Research Institute, Yunnan Academy of Tropical Sciences, Baoshan, Yunnan 678000, China
| | - Faguang Hu
- Tropical and Subtropical Economic Crops Research Institute, Yunnan Academy of Tropical Sciences, Baoshan, Yunnan 678000, China
| |
Collapse
|
11
|
Gao Z, Zhou MC, Lin J, Lu Y, Liu SQ. Metabolomics analysis of okara probiotic beverages fermented with Lactobacillus gasseri and Limosilactobacillus fermentum by LC-QTOF-MS/MS. Food Chem X 2024; 21:101178. [PMID: 38357377 PMCID: PMC10865209 DOI: 10.1016/j.fochx.2024.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/29/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
In this study, okara was fermented with probiotic strains Lactobacillus gasseri LAC 343 and Limosilactobacillus fermentum PCC, respectively. Significant increases in cell count (by 2.22 log CFU/mL for LAC and 0.82 log CFU/mL for PCC) and significant decreases in pH (by 1.31 for LAC and 1.03 for PCC) were found in fermented okara slurry. In addition, strain LAC tended to produce amino acids, while strain PCC depleted most amino acids. An untargeted metabolomic-based approach using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used to further understand the compositional changes and potential health benefits by identifying bioactive metabolites in fermented okara slurry. We successfully identified various beneficial bioactive compounds including γ-aminobutyric acid, indolelactic acid, d-phenyllactic acid, and p-hydroxyphenyllactic acid which had differences in fold-changes in okara slurry fermented with different strains. Our study indicated the feasibility of using probiotics to ferment okara for novel functional food development.
Collapse
Affiliation(s)
- Zihan Gao
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Melody Chang Zhou
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Jing Lin
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Yuyun Lu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China
| |
Collapse
|
12
|
Liu Q, Bi H, Wang K, Zhang Y, Chen B, Zhang H, Wang M, Fang Y. Revealing the Mechanisms of Enhanced β-Farnesene Production in Yarrowia lipolytica through Metabolomics Analysis. Int J Mol Sci 2023; 24:17366. [PMID: 38139198 PMCID: PMC10743872 DOI: 10.3390/ijms242417366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
β-Farnesene is an advanced molecule with promising applications in agriculture, the cosmetics industry, pharmaceuticals, and bioenergy. To supplement the shortcomings of rational design in the development of high-producing β-farnesene strains, a Metabolic Pathway Design-Fermentation Test-Metabolomic Analysis-Target Mining experimental cycle was designed. In this study, by over-adding 20 different amino acids/nucleobases to induce fluctuations in the production of β-farnesene, the changes in intracellular metabolites in the β-farnesene titer-increased group were analyzed using non-targeted metabolomics. Differential metabolites that were detected in each experimental group were selected, and their metabolic pathways were located. Based on these differential metabolites, targeted strain gene editing and culture medium optimization were performed. The overexpression of the coenzyme A synthesis-related gene pantothenate kinase (PanK) and the addition of four mixed water-soluble vitamins in the culture medium increased the β-farnesene titer in the shake flask to 1054.8 mg/L, a 48.5% increase from the initial strain. In the subsequent fed-batch fermentation, the β-farnesene titer further reached 24.6 g/L. This work demonstrates the tremendous application value of metabolomics analysis for the development of industrial recombinant strains and the optimization of fermentation conditions.
Collapse
Affiliation(s)
| | - Haoran Bi
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Q.L.); (K.W.); (Y.Z.); (B.C.); (H.Z.); (Y.F.)
| | | | | | | | | | - Meng Wang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Q.L.); (K.W.); (Y.Z.); (B.C.); (H.Z.); (Y.F.)
| | | |
Collapse
|
13
|
Zheng Z, Wei L, Zhu M, Qian Z, Liu J, Zhang L, Xu Y. Effect of lactic acid bacteria co-fermentation on antioxidant activity and metabolomic profiles of a juice made from wolfberry and longan. Food Res Int 2023; 174:113547. [PMID: 37986427 DOI: 10.1016/j.foodres.2023.113547] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
Lactic acid bacteria (LAB) fermentation is frequently employed to improve the nutritional, functional, and sensory characteristics of foods. Our study explored the effects of co-fermentation with Lacticaseibacillus paracasei ZH8 and Lactococcus lactis subsp. lactis YM313 on the physicochemical properties, antioxidant activity, and metabolomic profiles of wolfberry-longan juice (WLJ). Fermentation was carried out at 35 °C for 15 h. The results suggest that WLJ is a favorable substrate for LAB growth, reaching a total viable count exceeding 8 log CFU/mL after fermentation. LAB fermentation increased acidity, reduced the sugar content, and significantly impacted the juice color. The total phenolic and flavonoid contents of the WLJ and the antioxidant capacities based on 2,2-diphenyl-1-picrylhydrazyl (DPPH), ABTS radical scavenging abilities and FRAP were significantly improved by LAB fermentation. Nontargeted metabolomics analysis suggested that the contents of small molecule substances in WLJ were considerably affected by LAB fermentation. A total of 374 differential metabolites were identified in the juice before and after fermentation, with 193 significantly upregulated metabolites and 181 siginificantly downregulated metabolites. The regulation of metabolites is important for improving the flavor and functions of juices, such as L-eucylproline, Isovitexin, Netivudine, 3-Phenyllactic acid, vanillin, and ethyl maltol, ect. This study provides a theoretical foundation for developing plant-based foods fermented with LAB.
Collapse
Affiliation(s)
- Zhenjie Zheng
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Linya Wei
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Manli Zhu
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Zhenning Qian
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Jiao Liu
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Lili Zhang
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Yunhe Xu
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
14
|
Wang Y, Yang LH, Tong LL, Yuan L, Ren B, Guo DS. Comparative metabolic profiling of mycelia, fermentation broth, spore powder and fruiting bodies of Ophiocordyceps gracilis by LC-MS/MS. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:984-996. [PMID: 37482969 DOI: 10.1002/pca.3266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Ophiocordyceps gracilis, a type of edible and medicinal fungus, exhibits multiple health-promoting effects. Due to the scarcity of natural O. gracilis, artificial cultures have been developed as its substitutes. However, lacking comprehension of the metabolite composition of cultures limits its utilisation. OBJECTIVE This research aimed to evaluate the nutritional and medicinal value of four cultures of O. gracilis by analysing their metabolite composition. In addition, metabolic pathways in mycelia and fruiting bodies were analysed to explore fruiting body formation mechanism at metabolic level. METHOD The mycelia, fermentation broth, spore powder and fruiting bodies of O. gracilis were cultivated in this study. Their metabolite composition was compared using an untargeted metabolomics approach based on liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) showed that the four cultures have noticeable differences in metabolite composition. A total of 612 metabolites were identified, among which 159 metabolites showed significant differences, and these differential metabolites were classified into 13 categories. The metabolites in the fruiting bodies were the most abundant compared with other cultures. However, each culture had its own advantages and significantly accumulates some active metabolites respectively. Pearson's correlation analysed the mutual relationship among metabolites. In addition, seven metabolic pathways were closely related to fruiting body formation, such as "Biosynthesis of plant secondary metabolites", "amino acids metabolism", "tricarboxylic acid (TCA) cycle". CONCLUSION This study offered a reference to mycelia, fermentation broth, spore powder and fruiting bodies of O. gracilis as health-promoting functional foods and medicine.
Collapse
Affiliation(s)
- Yue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Lin-Hui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ling-Ling Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Li Yuan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
15
|
Tang F, Cao Q, Wei B, Teng J, Huang L, Xia N. Screening strategy for predominant phenolic components of digestive enzyme inhibitors in passion fruit peel extracts on simulated gastrointestinal digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3871-3881. [PMID: 36317249 DOI: 10.1002/jsfa.12302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND The targeted biological activity of a natural product is often the result of the combined action of multiple functional components. Screening for predominant contributing components of targeting activity is crucial for quality evaluation. RESULTS Thirteen and nine phenolic compounds inhibiting α-glucosidase and α-amylase, respectively, were identified in the ethanol extracts of passion fruit peel through liquid chromatography-tandem mass spectrometry and multivariate analysis. Considering the different concentrations of components and their interactions, the role of the semi-inhibitory concentration (IC50 ) in the dose-effect relationship is limited. We proposed the active contribution rate (ACR), which is the ratio of a single component concentration to its IC50 in the whole, to assess the relative activity of each compound. Luteolin, quercetin, and vitexin exhibited a minimum IC50 . Before the simulation of gastrointestinal digestion, quercetin, salicylic acid, and luteolin were identified as the dominant contributors to α-glucosidase inhibition according to ACR, while salicylic acid, 2,3-dihydroxybenzoic acid, and quercetin were identified as dominant contributors to α-amylase inhibition. After simulated digestion, the contents of all polyphenolic compounds decreased by various degrees. Salicylic acid, gentisic acid, and vitexin became the dominant inhibitors of α-glucosidase based on ACR (cumulative 57.96%), while salicylic acid and 2,3-dihydroxybenzoic acid became the dominant inhibitors of α-amylase (cumulative 84.50%). CONCLUSION Therefore, the ACR evaluation strategy can provide a quantitative reference for screening the predominant contributor components of a specific activity in complex systems. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fuhao Tang
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Qiqi Cao
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Baoyao Wei
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jianwen Teng
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Li Huang
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ning Xia
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
16
|
Nerurkar PV, Yokoyama J, Ichimura K, Kutscher S, Wong J, Bittenbender HC, Deng Y. Medium Roasting and Brewing Methods Differentially Modulate Global Metabolites, Lipids, Biogenic Amines, Minerals, and Antioxidant Capacity of Hawai'i-Grown Coffee ( Coffea arabica). Metabolites 2023; 13:412. [PMID: 36984852 PMCID: PMC10051321 DOI: 10.3390/metabo13030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
In the United States, besides the US territory Puerto Rico, Hawai'i is the only state that grows commercial coffee. In Hawai'i, coffee is the second most valuable agricultural commodity. Health benefits associated with moderate coffee consumption, including its antioxidant capacity, have been correlated to its bioactive components. Post-harvest techniques, coffee variety, degree of roasting, and brewing methods significantly impact the metabolites, lipids, minerals, and/or antioxidant capacity of brewed coffees. The goal of our study was to understand the impact of roasting and brewing methods on metabolites, lipids, biogenic amines, minerals, and antioxidant capacity of two Hawai'i-grown coffee (Coffea arabica) varieties, "Kona Typica" and "Yellow Catuai". Our results indicated that both roasting and coffee variety significantly modulated several metabolites, lipids, and biogenic amines of the coffee brews. Furthermore, regardless of coffee variety, the antioxidant capacity of roasted coffee brews was higher in cold brews. Similarly, total minerals were higher in "Kona Typica" cold brews followed by "Yellow Catuai" cold brews. Hawai'i-grown coffees are considered "specialty coffees" since they are grown in unique volcanic soils and tropical microclimates with unique flavors. Our studies indicate that both Hawai'i-grown coffees contain several health-promoting components. However, future studies are warranted to compare Hawai'i-grown coffees with other popular brand coffees and their health benefits in vivo.
Collapse
Affiliation(s)
- Pratibha V. Nerurkar
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Jennifer Yokoyama
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Kramer Ichimura
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Shannon Kutscher
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Jamie Wong
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Harry C. Bittenbender
- Department of Tropical Plant and Soil Sciences (TPSS), CTAHR, UHM, Honolulu, HI 96822, USA
| | - Youping Deng
- Bioinformatics Core, Departmentt of Quantitative Health Sciences, University of Hawai‘i Cancer Center (UHCC), John A. Burns School of Medicine (JABSOM), UHM, Honolulu, HI 96813, USA
| |
Collapse
|
17
|
Jeon HJ, Kim J, Seok WY, Kim GS, Choi B, Shin M, Lee JH, Kim Y, Yang J, Jung YH. Metabolome changes in probiotics in the stationary phase increases resistance to lyophilization. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
18
|
Wu J, Zhao J, Zhou Y, Cui C, Xu J, Li L, Feng Y. Discovery of N-l-Lactoyl-l-Trp as a Bitterness Masker via Structure-Based Virtual Screening and a Sensory Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2082-2093. [PMID: 36689686 DOI: 10.1021/acs.jafc.2c07807] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
N-Lactoyl-amino acid derivatives (N-Lac-AAs) are of increasing interest as potential taste-active compounds. The complexity and diversity of N-Lac-AAs pose a significant challenge to the effective discovery of taste-active N-Lac-AAs. Therefore, a structure-based virtual screening was used to identify taste-active N-Lac-AAs. Virtual screening results showed that N-lactoyl-hydrophobic amino acids had a higher affinity for taste receptors, specifically N-l-Lac-l-Trp. And then, N-l-Lac-l-Trp was synthesized in yields of 22.3% by enzymatic synthesis in the presence of l-lactate and l-Trp, and its chemical structure was confirmed by MS/MS and one-dimensional (1D) and two-dimensional (2D) NMR. Sensory evaluation revealed that N-l-Lac-l-Trp had a significant taste-masking effect on quinine, d-salicin, caffeine, and l-Trp, particularly l-Trp and caffeine. N-l-Lac-l-Trp had a better masking effect on the higher concentration of bitter compounds. It reduced the bitterness of caffeine (500 mg/L) and l-Trp (1000 mg/L) by approximately 20 and 26%, respectively. The result of the ligand-receptor interaction and a quantum mechanical analysis showed that N-l-Lac-l-Trp increased the binding affinity to the bitter receptor mainly through hydrogen bonding and lowering the electrostatic potential.
Collapse
Affiliation(s)
- Jing Wu
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yubo Zhou
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chun Cui
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Jucai Xu
- School of Biotechnology and Health Sciences & International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529020, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yunzi Feng
- School of Food Science and Technology, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
19
|
Sadeghi A, Ebrahimi M, Shahryari S, Kharazmi MS, Jafari SM. Food applications of probiotic yeasts; focusing on their techno-functional, postbiotic and protective capabilities. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Wu J, Gao J, Lin J, Cui C, Li L, He S, Brennan C. Preparation and Taste Characteristics of Kokumi N-Lactoyl Phenylalanine in the Presence of Phenylalanine and Lactate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5396-5407. [PMID: 35452224 DOI: 10.1021/acs.jafc.2c00530] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
N-l-Lactoyl phenylalanine (N-l-lactoyl-Phe) has been identified as a taste-active contributor in many fermented foods. However, its preparation, taste property, and content in foodstuffs are little known to date. In the current study, two preparation technologies of N-l-lactoyl-Phe including heating and enzymatic methods were investigated. Other investigations include its taste property and quantification in several fermented foods. The results indicated that the heating preparation and enzymatic preparation only produced N-l-lactoyl-Phe instead of N-d-lactoyl-Phe in the presence of l-lactate/d-lactate and l-phenylalanine (Phe). A high yield (58.0% ± 0.7%) of N-l-lactoyl-Phe was achieved under the following conditions: Phe, lactate, CaO, and water at molar ratios of 1:8:0.3:9 kept at 100 °C for 3 h. With nine enzymes, a maximum yield of 21.2% ± 0.3% was achieved in the aqueous solution under mild operating conditions: 0.18 M Phe, 0.90 M lactate, 5 g/L Debitrase HYW 20, pH 8, and 55 °C for 24 h. The sensory evaluation revealed that N-l-lactoyl-Phe in water enhanced the salty and umami intensity. It also enhanced the thickness, mouthfulness, and continuity of salt solution, model broth, and chicken broth, revealing that N-l-lactoyl-Phe was a kokumi-active compound. The kokumi thresholds of N-l-lactoyl-Phe in these solutions were 50, 50, and 25 mg/L, respectively. N-l-Lactoyl-Phe was quantified in traditional Chinese fermented foods as 30.12 ± 0.28 mg/kg in preserved pickles, 14.11 ± 0.14 mg/kg in soybean paste, 4.87 ± 0.16 mg/kg in fermented bean, 0.71 ± 0.11 mg/kg in rice vinegar, and 20.34 ± 0.18 mg/kg in soy sauce. These results revealed the potential of N-l-lactoyl-Phe as a taste enhancer, presenting a new opportunity for the food industry.
Collapse
Affiliation(s)
- Jing Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Jingrong Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junjie Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shan He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Charles Brennan
- School of Science STEM College, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
21
|
Wang Y, Nie S, Li C, Xiang H, Zhao Y, Chen S, Li L, Wu Y. Application of Untargeted Metabolomics to Reveal the Taste-Related Metabolite Profiles during Mandarin Fish (Siniperca chuatsi) Fermentation. Foods 2022; 11:foods11070944. [PMID: 35407031 PMCID: PMC8998124 DOI: 10.3390/foods11070944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Spontaneous fermentation is a critical processing step that determines the taste quality of fermented mandarin fish (Siniperca chuatsi). Here, untargeted metabolomics using ultra-high-performance liquid chromatography coupled with Q Exactive tandem mass spectrometry was employed to characterize the taste-related metabolite profiles during the fermentation of mandarin fish. The results demonstrated that the taste profiles of mandarin fish at different stages of fermentation could be distinguished using an electronic tongue technique. Sixty-two metabolites, including amino acids, small peptides, fatty acids, alkaloids, and organic acids, were identified in fermented mandarin fish samples. Additional quantitative analysis of amino acids revealed glutamic acid and aspartic acid as significant contributors to the fresh flavor. Furthermore, the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that amino acid metabolism was the dominant pathway throughout the fermentation process. This study provides a scientific and theoretical reference for the targeted regulation of the quality of fermented mandarin fish.
Collapse
Affiliation(s)
- Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.W.); (S.N.); (C.L.); (H.X.); (Y.Z.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shi Nie
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.W.); (S.N.); (C.L.); (H.X.); (Y.Z.); (S.C.); (L.L.)
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.W.); (S.N.); (C.L.); (H.X.); (Y.Z.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Huan Xiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.W.); (S.N.); (C.L.); (H.X.); (Y.Z.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.W.); (S.N.); (C.L.); (H.X.); (Y.Z.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.W.); (S.N.); (C.L.); (H.X.); (Y.Z.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.W.); (S.N.); (C.L.); (H.X.); (Y.Z.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yanyan Wu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People’s Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.W.); (S.N.); (C.L.); (H.X.); (Y.Z.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel.: +86-20-89108346; Fax: +86-20-84451442
| |
Collapse
|
22
|
Chan MZA, Liu SQ. Fortifying foods with synbiotic and postbiotic preparations of the probiotic yeast, Saccharomyces boulardii. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Coffee brews as food matrices for delivering probiotics: Opportunities, challenges, and potential health benefits. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Chan MZA, Lu Y, Liu SQ. In vitro bioactivities of coffee brews fermented with the probiotics Lacticaseibacillus rhamnosus GG and Saccharomyces boulardii CNCM-I745. Food Res Int 2021; 149:110693. [PMID: 34600688 DOI: 10.1016/j.foodres.2021.110693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 01/27/2023]
Abstract
Previously, we demonstrated the production of bioactive metabolites (e.g., indole-3-lactate, 4-hydroxyphenyllactate, 3-phenyllactate, 2-isopropylmalate) by the probiotics Lacticaseibacillus rhamnosus GG and Saccharomyces boulardii CNCM-I745 during coffee brew fermentation. However, it remains unclear if in situ production of bioactive metabolites confers additional health benefits to coffee brews. Here, we aimed to investigate the in vitro bioactivities of freeze-dried cell-free coffee supernatants fermented with L. rhamnosus GG and/or S. boulardii CNCM-I745, compared to non-fermented coffee supernatants. In vitro bioactivity assays pertained to α-amylase and α-glucosidase inhibition, antiglycative activities, anti-proliferation against human cancer cell lines (MCF-7, HCT116, and HepG2), cellular antioxidant activities, and anti-inflammatory activities. We demonstrated that non-fermented coffee supernatants displayed weak starch hydrolase inhibition (IC50 > 36.00 mg/mL), but otherwise displayed strong anti-glycative (IC50 0.71-0.74 mg/mL), anti-proliferative (IC50 0.45, 0.36, and < 0.5 mg/mL for MCF-7, HCT116, and HepG2 respectively), cellular antioxidant (85,844.22 µmol quercetin equivalents/100 g coffee supernatant), and anti-inflammatory activities (35.7% reduction in nitrite production at 0.13 mg/mL). In all the assays tested, probiotic fermented coffee supernatants exhibited very similar bioactivities compared to non-fermented coffee supernatants, and improvements were not observed. Overall, in vitro bioactivities of coffee brews were not improved via in situ metabolite production by L. rhamnosus GG and/or S. boulardii CNCM-I745. Therefore, bioactive metabolites produced during probiotic-induced food fermentations may not necessarily confer additional health benefits compared to non-fermented counterparts.
Collapse
Affiliation(s)
- Mei Zhi Alcine Chan
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore.
| | - Yuyun Lu
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore.
| | - Shao-Quan Liu
- Department of Food Science & Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu, China.
| |
Collapse
|