1
|
Liu Z, Dong G, Liu J, Wang L, Chen Q, Wang Z, Zeng M, He Z, Chen J, Hu W, Pan H. Screening of strains from pickles and evaluation of characteristics of different methods of fast and low salt fermented mustard leaves (Brassica juncea var. multiceps). Food Res Int 2025; 201:115557. [PMID: 39849706 DOI: 10.1016/j.foodres.2024.115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/17/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
The aim of this study was to isolate strains with excellent fermentation performance from pickles, thus enhancing the quality of rapid, low-salt fermented mustard leaves (Brassica juncea var. multiceps) through process optimization and inoculation fermentation. A high-throughput screening method for acid-producing strains was developed, significantly improving screening efficiency. Lactiplantibacillus plantarum CS8 and Saccharomyces cerevisiae CX1, were selected for their superior fermentation performance and used in subsequent fermentation. Four fermentation methods (spontaneous fermentation, optimized spontaneous fermentation, co-fermentation, and two-phase fermentation) were compared for fermenting fresh mustard leaves at 30 °C for 5 days. Compared to spontaneous fermentation, the other methods resulted in lower pH, higher acid production, and reduced nitrite content, thereby enhancing food safety. Significant variations in metabolites (volatiles, organic acids, and free amino acids) were observed among the groups, with the two-phase fermentation method showing the most favorable changes. Sensory evaluation and microbial community analysis further indicated that the two-phase fermentation achieved higher scores for flavor, taste and overall acceptability, while also shortening the fermentation period and improving both flavor and safety. Therefore, inoculation with these two strains using the two-phase fermentation method can efficiently produce high-quality pickle products in a short time. This research contributes to the industrial production of fermented vegetables, enhancing both pickle quality and economic benefits.
Collapse
Affiliation(s)
- Zhenheng Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gaofeng Dong
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650202, China
| | - Jing Liu
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650202, China
| | - Lei Wang
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650202, China
| | - Qiuming Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiyao Hu
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650202, China.
| | - Hongyang Pan
- Analysis and Testing Center, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Wang X, Liu X, Sun C, Cheng Y, Li Z, Qiu S, Huang Y. Effect of temperature on the quality and microbial community during Daocai fermentation. Food Chem X 2024; 24:101827. [PMID: 39421152 PMCID: PMC11483281 DOI: 10.1016/j.fochx.2024.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Daocai is a traditional salted pickle in the southeastern region of Guizhou with a unique aroma, color, and taste. The quality of Daocai is greatly influenced by the fermentation temperature. In this study, high-throughput sequencing and headspace-gas chromatography-ion mobility spectrometry were used to investigate the changes in microbial community succession and volatile flavor compounds during Daocai fermentation under temperature-controlled (D group) and non-temperature-controlled (C group).We found that the predominant genera in the C group samples were Latilactobacillus(40.57 %), Leuconostoc(21.25 %), Cystofilobasidium(22.12 %), Vishniacozyma(23.89 %), and Leucosporidium(24.95 %), whereas Weissella(29.39 %), Lactiplantibacillus(45.61 %), Mucor(68.26 %), and Saccharomyces(23.94 %) were the predominant genera in the D group. A total of 92 VFCs were detected in Daocai samples, including 5 isothiocyanates, 16 esters, 14 alcohols, 24 aldehydes, 17 ketones, 3 acids, 2 pyrazines, 1 pyridines, 1 thiazoles, 3 furans, 4 alkenes, and 2 nitriles. Further analysis revealed Latilactobacillus, Leuconostoc, Lactococcus, Cystofilobasidium, Leucosporidium, Holtermanniella, and Dioszegia as key bacteria involved in flavor formation. They are closely related to the formation of flavors such as aldehydes, furans, pyridines, and alkenes. This study contributes to our understanding of the relationship between bacterial communities and the flavor formation during Daocai fermentation.
Collapse
Affiliation(s)
- Xueli Wang
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Xueting Liu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Chunmei Sun
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Yanwei Cheng
- Department of Food and Drug, Guizhou Vocational College of Agriculture, Guiyang 551400, China
| | - Zhen Li
- Zhenyuan County Li's Food Co., Ltd. Qiandongnan Miao and Dong Autonomous Prefecture, 557700, China
| | - Shuyi Qiu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Yongguang Huang
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| |
Collapse
|
3
|
Li Z, Wang M, Yang Z. Analysis of the association between microbiota and flavor formation during Zizhong Dongjian fermentation process. Food Sci Nutr 2024; 12:9493-9510. [PMID: 39619991 PMCID: PMC11606816 DOI: 10.1002/fsn3.4460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 03/17/2025] Open
Abstract
Zizhong Dongjian (ZZDJ) is one of the most famous and popular fermented vegetables in China. The aim of this study was to explore the microbial communities and volatile flavor compounds of ZZDJ during different fermentation periods, as well as to reveal the potential correlation between microbiota and flavor. A total of 84 volatile flavor compounds were detected in 0-year to 3-year ZZDJ samples. Hydrocarbons were the most abundant flavor compounds in 0-year and 1-year samples, while esters became the predominant flavor components in 2-year and 3-year samples. Furthermore, Loigolactobacillus, Pseudomonas, and Virgibacillus were most predominant bacteria during the fermentation process of ZZDJ. Interestingly, all the fungi identified were yeasts. Among them, Zygosaccharomyces and Symmetrospora dominated alternatively throughout the fermentation process of ZZDJ. Through analysis of relativity between flavor compounds and microorganism of ZZDJ, we found that Uncultured Pseudomonas sp., Virgibacillus sediminis, Zygosaccharomyces rouxii, and Symmetrospora marina might play important roles in flavor information of ZZDJ.
Collapse
Affiliation(s)
- Zhang Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Miao Wang
- Laboratory Animal Center, West China School of Basic Medical Science & Forensic MedicineSichuan UniversityChengduChina
| | - Zhirong Yang
- Key Laboratory of Biological Resource and Ecological Environment of the Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
4
|
Xiao Y, Zhang S, Wang X, Zhao X, Liu Z, Chu C, Wang Y, Hu X, Yi J. Characterization of key aroma-active compounds in fermented chili pepper ( Capsicum frutescens L.) using instrumental and sensory techniques. Food Chem X 2024; 23:101581. [PMID: 39040151 PMCID: PMC11260950 DOI: 10.1016/j.fochx.2024.101581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
The aroma profile of fermented chili pepper was analyzed using gas chromatography-mass spectrometry (GC-MS) coupled with chromatography-olfactometry (GC-O). A total of 19 aroma-active compounds were detected, exhibiting aroma intensities spanning from 1.8 to 4.2. And 12 aroma-active compounds were determined as pivotal odorants through odor activity value (OAV) calculation. Concentrations of these aroma-active compounds were quantified and subsequently employed in reconstructing the aroma profile of fermented chili pepper. Quantitative descriptive sensory analysis and electronic nose analysis proved that the aroma profile of fermented chili pepper was basically reconstituted. Omission experiments confirmed that methyl salicylate, linalool, 2-methoxy-3-isobutylpyrazine, and phenylethyl alcohol were the key aroma-active compounds of fermented chili pepper. Moreover, the perceptual interactions between the key aroma-active compounds were investigated. It was found that methyl salicylate masked the floral aroma, while phenylethyl alcohol had an additive effect on the aroma of linalool and 2-methoxy-3-isobutylpyrazine.
Collapse
Affiliation(s)
- Yue Xiao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Shiyao Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Xinyu Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Xinyi Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Chuanqi Chu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Yanfei Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory for Food Advanced Manufacturing, Kunming 650500, China
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China
| |
Collapse
|
5
|
Jia S, Zheng P, Li M, Chen C, Li X, Zhang N, Ji H, Yu J, Dong C, Liang L. The effect of cold plasma treatment on the fruit quality and aroma components of winter jujubes (Ziziphus jujuba Mill. 'Dongzao'). J Food Sci 2024; 89:6350-6361. [PMID: 39261646 DOI: 10.1111/1750-3841.17329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/13/2024]
Abstract
Cold plasma (CP) is a novel environmental-friendly preservation technology that causes minimal damage to fruits. The flavor and quality of winter jujubes have decreased with the extended storage time. Currently, the research on the use of CP on winter jujubes (Ziziphus jujuba Mill. 'Dongzao') mainly focuses on the effect of the treatment on storage quality. There is limited research on the effect of CP treatment on the flavor of winter jujubes. This study used different CP (80 kV) treatment durations (0, 5, and 10 min) to treat winter jujubes. The appropriate treatment time was selected by observing the changes in color, respiratory intensity, soluble sugar content, total acid content, and vitamin C (VC) content of winter jujubes. Amino acid analyzer and headspace solid-phase microextraction in combination with gas chromatography coupled with mass spectrometric detection were used to analyze the effect of CP treatment on the flavor compounds of winter jujubes. The results showed that the 5-min CP treatment could significantly slow down the red coloration of winter jujube while maintaining high soluble sugar, total acid, and VC content. At the respiration peak, the respiratory intensity of the 5-min CP treatment group was 0.74 mg CO2·kg-1·h-1 lower than that of the control group (p < 0.05). CP treatment slowed down the decrease in the content of amino acids and volatile organic compounds (such as 2-methyl-4-pentenal, 2-hexenal, and 3-hexenal) in winter jujubes. This study will provide basic data for applying CP preservation technology in postharvest winter jujubes.
Collapse
Affiliation(s)
- Sitong Jia
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin, China
| | - Pufan Zheng
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Mo Li
- School of Agriculture and Environment, College of Sciences, Massey University, Palmerston North, New Zealand
| | - Cunkun Chen
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Xiaoxue Li
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Na Zhang
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Haipeng Ji
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Jinze Yu
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Chenghu Dong
- Institute of Agricultural Products Preservation and Processing Technology (National Engineering Technology Research Center for Preservation of Agriculture Products), Tianjin Academy of Agricultural Sciences/Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Liya Liang
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
6
|
Liu L, Liu T, Wang H, Zhao Y, Xu X, Zeng M. Identification and validation of core microbes for the formation of the characteristic flavor of fermented oysters (Crassostrea gigas). Food Chem 2024; 449:138970. [PMID: 38653141 DOI: 10.1016/j.foodchem.2024.138970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 04/25/2024]
Abstract
Self-fermented oyster homogenates were prepared to investigate core microbes and their correlations with flavor formation mechanisms. Five bacterial and four fungal genera were identified. Correlation analysis showed that Saccharomyces cerevisiae, Kazachstania, and L. pentosus were core species for the flavor of fermented products. Four core microbes were selected for inoculation into homogenates. Twelve key aroma compounds with odor activity values >1 were identified by gas chromatography-mass spectrometry. L. plantarum and S. cerevisiae were beneficial for producing key aroma compounds such as 1-octen-3-ol, (E,Z)-2,6-nonadienal, and heptanal. Fermentation with four microbes resulted in significant increases in contents of Asp, Glu, Lys, inosine monophosphate, and guanosine monophosphate, which provided freshness and sweetness. Fermentation with four microbes resulted in high digestibility, antioxidant abilities, and zinc contents. This study has elucidated the mechanism of flavor formation by microbial action and provides a reference for targeted flavor control in fermented oyster products.
Collapse
Affiliation(s)
- Li Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266400, China
| | - Tianhong Liu
- Marine Science research Institute of Shandong Province, Qingdao, Shandong Province 266100, China
| | - Hongjiang Wang
- Foshan Haitian (Suqian) Flavoring Food Co., LTD, Suqian, Jiangsu Province 233800, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266400, China.
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266400, China.
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266400, China.
| |
Collapse
|
7
|
Peng B, Li J, Yu C, Hu M, Zhong B, Shi S, Tu Z. Lipidomics profile and volatile compounds of squids (Illex argentinus, Ommastrephes Bartram and Dosidicus gigas) in the Argentine, North Pacific Ocean, Equator and Peru by UPLC-triple TOF-MS and HS-SPME-GC-O-MS. Food Res Int 2024; 189:114559. [PMID: 38876608 DOI: 10.1016/j.foodres.2024.114559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/19/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
Comprehensive lipid and volatile compound analyses were performed with squids collected from four varied geographical locations to discriminate the regional characteristics. A total of 1442 lipid molecules and 110 volatiles were detected in the squid muscle samples. There were significant differences in the lipid profiles between Argentine squid (Illex argentinus, AGT), North Pacific Ocean squid (Ommastrephes Bartram, NPO), Equatorial squid (Dosidicus gigas, EQ), and Peruvian squid (Dosidicus gigas, PR) muscle. Phosphatidylcholines (14.64%), triacylglycerols (12.42%), and ceramides (10.97%) were the main lipid components. The contents of polyunsaturated fatty acid in phospholipids and in glycerolipids were 30.35-52.05% and 18.11-25.15%, respectively. The volatiles in squids exhibited significant regional variation; 1-pentanol and 1-octanol, 2-ethyl-1-hexanol and terpinen-4-ol, 2,7-ethyl-1-hexanol, 3-methy-1-butanol and 2-propyl-1-pentanol were identified as characteristic flavor compounds in AGT, NPO, EQ, and PR, respectively. Sphingomyelin, phosphatidylserine, phosphatidylethanolamine, and ceramide were strongly correlated with volatiles in squid muscle. Our study is a reference for the lipid nutritional value and flavor compounds of squids.
Collapse
Affiliation(s)
- Bin Peng
- National R&D Branch Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jinlin Li
- National R&D Branch Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Chengwei Yu
- National R&D Branch Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Mingming Hu
- National R&D Branch Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Bizhen Zhong
- National R&D Branch Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Shengqi Shi
- China Aquatic Products Zhoushan Marine Fisheries Corporation, Zhoushan, Zhejiang 316000, China.
| | - Zongcai Tu
- National R&D Branch Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
8
|
Wang N, Ainiwan D, Liu Y, He J, Liu T. Effects of steam explosion-modified rice bran dietary fiber on volatile flavor compounds retention and release of red date-flavored naan (ethnic specialty food of Xinjiang) during storage. Food Chem X 2024; 22:101438. [PMID: 38846796 PMCID: PMC11154202 DOI: 10.1016/j.fochx.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
This study explored the effects of steam explosion-modified rice bran dietary fiber (S-RBDF) on red date-flavored naan quality and flavor characteristics. The results revealed that the rheological properties of the dough were improved with the incremental addition of S-RBDF (0-5%). The microstructure revealed that adding an appropriate amount of S-RBDF (1-5%) enabled more starch granules to be embedded in the dough network. Notably, the addition of 5% S-RBDF resulted in naan with an optimum specific volume and texture, which consumers preferred. Additionally, gas chromatography-mass spectrometry analysis showed that adding S-RBDF to naan contributed to the retention and sustained release of pleasant volatile compounds (e.g. red date flavor, etc.), while inhibiting the development of unpleasant volatile compounds by delaying the oxidation and decomposition of lipids and preserving the antioxidant phenolic compounds, thus contributing to flavor maintenance of naan during storage. Overall, these results provided a foundation for developing high-quality flavored naan.
Collapse
Affiliation(s)
- Nan Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
- Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Dilinuer Ainiwan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Yingxu Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Jialu He
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
- Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| |
Collapse
|
9
|
Liu X, Cai N, Cai Z, Li L, Ni H, Chen F. The effect of instant tea on the aroma of duck meat. Food Chem X 2024; 22:101401. [PMID: 38711775 PMCID: PMC11070817 DOI: 10.1016/j.fochx.2024.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Tea products, such as instant tea, have been shown to improve the aroma of meat products. However, the mechanisms by which tea products enhance meat aroma have not been adequately explained. In this study, we analyzed the impact of instant tea on the aroma of duck meat. Our results showed that treatment with instant tea led to increases in floral, baked, and grassy notes while reducing fishy and fatty notes. Several alcohols, aldehydes, ketones, indole and dihydroactinidiolide exhibited significantly increased OAVs. Conversely, certain saturated aldehydes, unsaturated aldehydes and alcohols displayed significantly decreased OAVs. The enhanced floral, baked and grassy notes were attributed to volatile compounds present in instant tea. The reduction in fishy and fatty notes was linked to polyphenols in instant tea interacting with nonanal, undecanal, (E)-2-octenal, (E)-2-nonenal, (E)-2-decenal, and 2,4-decadienal through hydrophobic interactions and electronic effects. This study enhances our understanding of how tea products improve meat aromas.
Collapse
Affiliation(s)
- Xieyuan Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ning Cai
- Xiamen Ocean Vocational College, Xiamen 361021, China
| | - Zhenzhen Cai
- Xiamen Ocean Vocational College, Xiamen 361021, China
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
- Xiamen Ocean Vocational College, Xiamen 361021, China
| | - Feng Chen
- Department of Food Science & Human Nutrition, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
10
|
Zhang Y, Liang Y, Zhang W, Ren Y, Bao X. Evaluation of fifteen processing methods of hellgrammites based on the flavor characteristics. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:651-674. [PMID: 38410265 PMCID: PMC10894185 DOI: 10.1007/s13197-023-05850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 02/28/2024]
Abstract
To investigate suitable processing methods for improve the flavor while maintaining quality, hellgrammites were subjected to fifteen different processing methods. The samples were tested by sensory evaluation and were analyzed using HS-SPME-GC-MS. The sensory evaluation revealed that five methods for head and chest removal, three wine-fried methods, and three vinegar-roasting methods significantly reduced the levels of hexanal (3129.05 ± 45.77 μg/kg) and heptanal (436.72 ± 7.42 μg/kg), compounds responsible for fishy and earthy flavors, compared to raw samples. The latter two methods exhibited increased aroma flavor. PCA and OPLS-DA analyses suggested that acids, alcohols, and esters played a crucial role in flavor modification. Notably, vinegar-roasting methods demonstrated the highest acid content and had a substantial impact on volatile compounds. Additionally, boiling methods effectively reduced the levels of hazardous compounds, such as toluene and 1,3-Dimethyl-benzene. However, other methods did not exhibit similar efficacy in reducing hazardous compounds. The accumulation of hazardous compounds showed a decreasing trend in the whole insect, head removal, and head and chest removal groups. Moreover, the relative odor activity value consistently identified aldehyde compounds, including hexanal and heptanal, as the main contributors to aroma. Overall, boiling and head and chest removal procedures were suggested as precautionary measures during the initial processing of hellgrammites-based food products. The vinegar-roasting and wine-fried methods could be employed to impart desired flavors, aligning with consumers' preferences. These findings lay the foundation for standardizing processing techniques and ensuring the quality control of products derived from hellgrammites.
Collapse
Affiliation(s)
- Yunying Zhang
- Pharmacy College, Southwest Minzu University, Chengdu, 610063 China
| | - Yupeng Liang
- Pharmacy College, Southwest Minzu University, Chengdu, 610063 China
| | - Wenming Zhang
- Pharmacy College, Southwest Minzu University, Chengdu, 610063 China
| | - Yan Ren
- Pharmacy College, Southwest Minzu University, Chengdu, 610063 China
| | - Xiaoming Bao
- Shimadzu (China) Co., Ltd, Chengdu, 610063 China
| |
Collapse
|
11
|
Wang Y, Quan S, Xia Y, Wu Z, Zhang W. Exploring the regulated effects of solid-state fortified Jiuqu and liquid-state fortified agent on Chinese Baijiu brewing. Food Res Int 2024; 179:114024. [PMID: 38342544 DOI: 10.1016/j.foodres.2024.114024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/13/2024]
Abstract
Zaopei is the direct source of Chinese liquor (Baijiu). Adding functional strains to Zaopei is a potential strategy to regulate Baijiu brewing, mainly including the two ways of solid-state fortified Jiuqu (SFJ) and liquid-state fortified agent (LFA). Here, to explore their regulated details, the response patterns of Zaopei microecosystem and the changes in the product features were comprehensively investigated. The results showed that SFJ more positively changed the physicochemical properties of Zaopei and improved its ester content, from 978.57 mg/kg to 1078.63 mg/kg over the fermentation of 30 days, while LFA decreased the content of esters, alcohols, and acids. Microbial analysis revealed that SFJ significantly increased Saccharomycopsis and Aspergillus from the start of fermentation and induced a positive interaction cluster driven by the added functional Paenibacillus, while LFA exhibited a community structure near that of the original microecosystem and led to a simpler network with the reduced microbial nodes and correlations. Metabolism analysis found that both SFJ and LFA weakened the flavor-producing metabolism by suppressing some key enzyme pathways, such as EC 3.2.1.51, EC 4.2.1.47, EC 1.1.1.27, EC 1.1.1.22, EC 1.5.1.10, EC 1.14.11.12. As a result, SFJ improved the raw liquor yield by 28.5 % and endowed the final product with a more fragrant aroma, mainly through ethyl (E)-cinnamate, ethyl isovalerate, ethyl phenacetate with the higher odor activity values, while LFA promoted the yield by 13.2 % and resulted in a purer and less intense aroma through the aroma-active β-damascenone, ethyl heptoate, ethyl phenacetate. These results facilitated the regulated mechanism of SFJ and LFA on Baijiu brewing and indicated that the used functional strains in this study could be applicated in SFJ way for the further industrial-scale application.
Collapse
Affiliation(s)
- Yan Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Shikai Quan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhengyun Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; School of Liquor-Brewing Engineering, Sichuan University of Jinjiang College, Meishan 620860, China.
| |
Collapse
|
12
|
Song W, Sun M, Lu H, Wang S, Wang R, Shang X, Feng T. Variations in Key Aroma Compounds and Aroma Profiles in Yellow and White Cultivars of Flammulina filiformis Based on Gas Chromatography-Mass Spectrometry-Olfactometry, Aroma Recombination, and Omission Experiments Coupled with Odor Threshold Concentrations. Foods 2024; 13:684. [PMID: 38472798 DOI: 10.3390/foods13050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Flammulina filiformis (F. filiformis) is called the 'benefiting intelligence' mushroom. There is a notable difference between a yellow cultivar (with a robust aroma) and a white mutant cultivar (with a high yield) of F. filiformis. A thorough analysis of aroma differences is essential to improve the aroma of high-yield strains. This study employed a combination of gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and aroma extract dilution analysis (AEDA) to analyze the variations in aroma compounds. Then, the contribution of the odorants was determined using flavor dilution (FD) factors and odor activity values (OAVs). Aroma omission and recombination experiments were used to identify the key odorants. A total of 16 key aroma compounds were characterized in F. filiformis, along with four eight-carbon volatiles (3-octanone, 3-octanol, octanal, and 1-octen-3-ol). Finally, the dominant aroma characteristic was "sweet" for the yellow strain, while it was "green" for the white strain. More research is required to investigate the enzymes and corresponding genes that regulate the synthesis of aroma compounds in F. filiformis for future breeding programs.
Collapse
Affiliation(s)
- Wei Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Huan Lu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Shengyou Wang
- Institute of Edible Fungi, Sanming Academy of Agricultural Sciences, Sanming 365000, China
- Fujian Key Laboratory of Crop Genetic Improvement and Innovative Utilization for Mountain Area, Sanming 365509, China
| | - Ruijuan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiaodong Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
13
|
Zhang Q, Tang J, Deng J, Cai Z, Jiang X, Zhu C. Effect of Capsaicin Stress on Aroma-Producing Properties of Lactobacillus plantarum CL-01 Based on E-Nose and GC-IMS. Molecules 2023; 29:107. [PMID: 38202690 PMCID: PMC10780002 DOI: 10.3390/molecules29010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Capsaicin stress, along with salt stress, could be considered the main stressors for lactic acid bacteria in traditional fermented pepper products. Until now, insufficient attention has been paid to salt stress, while the effect of capsaicin on the aroma-producing properties of Lactobacillus plantarum (L. plantarum) is unclear. The present study attempted to illustrate the effect of capsaicin stress on the aroma-producing properties of L. plantarum CL-01 isolated from traditionally fermented peppers based on E-nose and GC-IMS. The results showed that E-nose could clearly distinguish the overall flavor differences of L. plantarum CL-01 under capsaicin stress. A total of 48 volatile compounds (VOCs) were characterized by means of GC-IMS, and the main VOCs belonged to acids and alcohols. Capsaicin stress significantly promoted L. plantarum CL-01 to produce alpha-pinene, ethyl crotonate, isobutyric acid, trans-2-pentenal, 2-methyl-1-butanol, 3-methyl-3-buten-1-ol, 1-penten-3-one, 2-pentanone, 3-methyl-1-butanol-D, and 2-heptanone (p < 0.05). In addition, under capsaicin stress, the contents of 1-penten-3-one, 3-methyl-3-buten-1-ol, 5-methylfurfuryl alcohol, isobutanol, 2-furanmethanethiol, 2,2,4,6,6-pentamethylheptane, 1-propanethiol, diethyl malonate, acetic acid, beta-myrcene, 2-pentanone, ethyl acetate, trans-2-pentenal, 2-methylbutyl acetate, and 2-heptanone produced by L. plantarum CL-01 were significantly increased along with the fermentation time (p < 0.05). Furthermore, some significant correlations were observed between the response values of specific E-nose sensors and effective VOCs.
Collapse
Affiliation(s)
- Qian Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.Z.); (J.T.); (Z.C.)
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.Z.); (J.T.); (Z.C.)
| | - Jing Deng
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China;
| | - Zijian Cai
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.Z.); (J.T.); (Z.C.)
| | - Xiaole Jiang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China;
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (Q.Z.); (J.T.); (Z.C.)
| |
Collapse
|
14
|
Li Y, Luo X, Guo H, Bai J, Xiao Y, Fu Y, Wu Y, Wan H, Huang Y, Gao H. Metabolomics and metatranscriptomics reveal the influence mechanism of endogenous microbe (Staphylococcus succinus) inoculation on the flavor of fermented chili pepper. Int J Food Microbiol 2023; 406:110371. [PMID: 37659279 DOI: 10.1016/j.ijfoodmicro.2023.110371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
This study integrated metabolomic and metatranscriptomic techniques to examine how the endogenous microbe, Staphylococcus succinus, influenced the essential flavor of fermented chili peppers. The mechanisms governing spontaneous fermentation and S. succinus-inoculated fermentation were also elucidated. Esters (e.g., ethyl undecanoate, isoamyl acetate, and methyl salicylate), terpenes (e.g., terpinen-4-ol), and alcohols (e.g., α-terpineol, linalool, and 4-methyl-3-heptanol) were found to be the key aroma-active compounds, aspartic acid (Asp) and glutamic acid (Glu) were identified as primary flavoring free amino acids. Notably, during the early stages of S. succinus-inoculated fermentation, the production of these essential metabolites was abundant, while their gradual increase over time was observed in the case of spontaneous fermentation. Metatranscriptomic analysis revealed that S. succinus inoculation could up-regulate genes related to glycolysis, amino acid metabolism, and aroma compound synthesis. These changes sequentially boosted the production of sweet and umami free amino acids, enhanced organic acid levels, increased unique aroma compound generation, and further improved the flavor and quality of the fermented chili peppers. Therefore, S. succinus inoculation can augment the sensory quality of fermented chili peppers, making this strain a promising candidate for Sichuan pickle fermentation starters.
Collapse
Affiliation(s)
- Yumeng Li
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Xiaoqin Luo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Jinrong Bai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Yue Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Yuan Fu
- Jian Yang City Product Quality Supervision & Testing Institute, Jianyang, China
| | - Yanping Wu
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Hongyu Wan
- Jian Yang City Product Quality Supervision & Testing Institute, Jianyang, China.
| | - Yina Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Nutrition, Metabolism & Food Safety, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
15
|
Long Z, Zhao S, Xu X, Du W, Chen Q, Hu S. Dynamic Changes in Flavor and Microbiota in Traditionally Fermented Bamboo Shoots ( Chimonobambusa szechuanensis (Rendle) Keng f.). Foods 2023; 12:3035. [PMID: 37628035 PMCID: PMC10453856 DOI: 10.3390/foods12163035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Dissecting flavor formation and microbial succession during traditional fermentation help to promote standardized and large-scale production in the sour shoot industry. The principal objective of the present research is to elucidate the interplay between the physicochemical attributes, flavor, and microbial compositions of sour bamboo shoots in the process of fermentation. The findings obtained from the principal component analysis (PCA) indicated notable fluctuations in both the physicochemical parameters and flavor components throughout the 28 day fermentation process. At least 13 volatile compounds (OAV > 1) have been detected as characteristic aroma compounds in sour bamboo shoots. Among these, 2,4-dimethyl Benzaldehyde exhibits the highest OAV (129.73~668.84) and is likely the primary contributor to the sour odor of the bamboo shoots. The analysis of the microbial community in sour bamboo shoots revealed that the most abundant phyla were Firmicutes and Proteobacteria, while the most prevalent genera were Enterococcus, Lactococcus, and Serratia. The results of the correlation analysis revealed that Firmicutes exhibited a positive correlation with various chemical compounds, including 3,6-nonylidene-1-ol, 2,4-dimethyl benzaldehyde, silanediol, dimethyl-, nonanal, and 2,2,4-trimethyl-1,3-pentylenediol diisobutyrate. Similarly, Lactococcus was found to be positively correlated with several chemical compounds, such as dimethyl-silanediol, 1-heptanol, 3,6-nonylidene-1-ol, nonanal, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, dibutyl phthalate, and TA. This study provides a theoretical basis for the standardization of traditional natural fermented sour bamboo production technology, which will help to further improve the flavor and quality of sour bamboo.
Collapse
Affiliation(s)
- Zhijian Long
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Z.L.); (S.Z.); (X.X.); (W.D.); (Q.C.)
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Mianyang 621010, China
| | - Shilin Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Z.L.); (S.Z.); (X.X.); (W.D.); (Q.C.)
| | - Xiaofeng Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Z.L.); (S.Z.); (X.X.); (W.D.); (Q.C.)
| | - Wanning Du
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Z.L.); (S.Z.); (X.X.); (W.D.); (Q.C.)
| | - Qiyang Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Z.L.); (S.Z.); (X.X.); (W.D.); (Q.C.)
| | - Shanglian Hu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Z.L.); (S.Z.); (X.X.); (W.D.); (Q.C.)
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Mianyang 621010, China
| |
Collapse
|
16
|
Liu H, Ainiwan D, Liu Y, Dong X, Fan H, Sun T, Huang P, Zhang S, Wang D, Liu T, Zhang Y. Adsorption and controlled release performances of flavor compounds by rice bran insoluble dietary fiber improved through steam explosion method. Curr Res Food Sci 2023; 7:100550. [PMID: 37534307 PMCID: PMC10391727 DOI: 10.1016/j.crfs.2023.100550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023] Open
Abstract
In this study, steam explosion was employed as a modification process for rice bran insoluble dietary fiber (RBIDF) to improve the flavor adsorption and controlled release capacities of RBIDF. Results showed that the flavor adsorption ability of RBIDF was effectively improved due to the unfolding structure, increased specific surface area and pore volume and exposure of more functional groups after steam explosion treatment. The mechanism of the flavor adsorption behavior of modified RBIDF was preliminarily explored using adsorption kinetics and isotherms combined with SEM and DSC analysis. Results showed that the Langmuir isotherm model and pseudo-second-order kinetic model yielded the best fit to the adsorption data, indicating monolayer adsorption of flavor onto the modified RBIDF, and the adsorption was mainly driven by chemisorption process. The flavor release profile of modified RBIDF was investigated by HS-SPME/GC-MS and E-nose. After long-time storage, the flavor compounds were retained at a higher concentration in the modified RBIDF compared with the untreated RBIDF, indicating that the steam explosion treatment prolonged the retention time and enhanced the retention and controlled release capacities of RBIDF for flavor compounds. This study provides indications for potential applications of steam explosion-modified RBIDF as a novel flavor delivery system and functional ingredient.
Collapse
Affiliation(s)
- Hongcheng Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun, 130118, China
| | - Dilinuer Ainiwan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-Efficiency Utilization of Jilin Province, Changchun, 130118, China
| | - Yingxu Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun, 130118, China
| | - Xiaolan Dong
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-Efficiency Utilization of Jilin Province, Changchun, 130118, China
| | - Hongxiu Fan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun, 130118, China
| | - Tong Sun
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Key Laboratory of Technological Innovations for Grain Deep-processing and High-Efficiency Utilization of By-Products of Jilin Province, Changchun, 130118, China
| | - Pingyun Huang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Key Laboratory of Technological Innovations for Grain Deep-processing and High-Efficiency Utilization of By-Products of Jilin Province, Changchun, 130118, China
| | - Shanshan Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Key Laboratory of Technological Innovations for Grain Deep-processing and High-Efficiency Utilization of By-Products of Jilin Province, Changchun, 130118, China
| | - Dawei Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-Efficiency Utilization of Jilin Province, Changchun, 130118, China
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-Efficiency Utilization of Jilin Province, Changchun, 130118, China
| | - Yanrong Zhang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun, 130118, China
| |
Collapse
|
17
|
Mei Y, Ge L, Lai H, Wang Y, Zeng X, Huang Y, Yang M, Zhu Y, Li H, Li J, Guo C, Hu T, Zhao N. Decoding the evolution of aromatic volatile compounds and key odorants in Suancai (a Chinese traditional fermented vegetable) during fermentation using stir bar sorptive extraction–gas chromatography–olfactometry–mass spectrometry. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
18
|
Identification and validation of core microbes associated with key aroma formation in fermented pepper paste (Capsicum annuumL.). Food Res Int 2023; 163:112194. [PMID: 36596132 DOI: 10.1016/j.foodres.2022.112194] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Fermented peppers are usually obtained by the spontaneous fermentation of microorganisms attached to fresh peppers, and the variable microbial composition would lead to inconsistencies in flavor between batches. To demonstrate the roles of microorganisms in flavor formation, the core microbes closely associated with the key aroma compounds of fermented pepper paste were screened and validated in this study. Lactobacillus was the dominant bacterial genus in fermented pepper paste, whereas the main fungal genera were Alternaria and Kazachstania. Nine strains of the genera Lactobacillus, Weissella, Bacillus, Zygosaccharomyces, Kazachstania, Debaryomyces, and Pichia were isolated from fermented pepper paste. Eleven key aroma compounds were identified using gas chromatography combined with olfactometry and relative odor activity values. Correlation analysis showed that Zygosaccharomyces and Kazachstania were positively correlated with the majority of the key aroma compounds, whereas Lactobacillus was negatively correlated with them. Thus, Zygosaccharomyces and Kazachstania were identified as core genera associated with the key odorants. Finally, Zygosaccharomyces bisporus, Kazachstania humilis, and Lactiplantibacillus plantarum were used as starter cultures for fermented peppers, confirming that Z. bisporus and K. humilis were more beneficial for the key aroma compounds (e.g., acetate, linalool, and phenyl ethanol) rather than L. plantarum. This study contributed to understanding the flavor formation mechanism and provided references for the quality control of food fermentation.
Collapse
|
19
|
Contribution of microbial communities to flavors of Pixian Douban fermented in the closed system of multi-scale temperature and flow fields. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
20
|
Impact of Inoculating with Indigenous Bacillus marcorestinctum YC-1 on Quality and Microbial Communities of Yibin Yacai (Fermented Mustard) during the Fermentation Process. Foods 2022; 11:foods11223593. [PMID: 36429185 PMCID: PMC9689668 DOI: 10.3390/foods11223593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Bacillus species play an important role in improving the quality of some fermented foods and are also one of the dominant bacteria in Yibin Yacai (fermented mustard). However, little is known about their effects on the quality of Yibin Yacai. Here, the effect of Bacillus marcorestinctum YC-1 on the quality and microbial communities of Yibin Yacai during the fermentation process was investigated. Results indicated that the inoculation of Bacillus marcorestinctum YC-1 promoted the growth of Weissella spp. and Lactobacillus spp. and inhibited the growth of pathogens, accelerating the synthesis of free amino acids and organic acids and the degradation of nitrite. Furthermore, inoculating Yibin Yacai with YC-1 could effectively enhance the synthesis of alcohols and terpenoids in yeasts, thus producing more linalool, terpinen-4-ol, and α-muurolen in Yibin Yacai, and endowing it with pleasant floral, fruity, woody, and spicy aromas. These findings reveal that the inoculation of B. marcorestinctum YC-1 can improve the quality and safety of Yibin Yacai by changing microbial communities as fermentation proceeds.
Collapse
|
21
|
Jia WB, Zhao YQ, Liao SY, Li PW, Zou Y, Chen SX, Chen W, He CL, Du X, Zhu MZ, Xu W. Dynamic changes in the diversity and function of bacterial community during black tea processing. Food Res Int 2022; 161:111856. [DOI: 10.1016/j.foodres.2022.111856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/03/2022] [Accepted: 08/21/2022] [Indexed: 11/24/2022]
|
22
|
Wang D, Chen G, Tang Y, Ming J, Huang R, Li J, Ye M, Fan Z, Yin L, Zhang Q, Zhang W. Effect of non-core microbes on the key odorants of paocai. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Wang D, Chen G, Tang Y, Li J, Huang R, Ye M, Ming J, Wu Y, Xu F, Lai X, Zhang Q, Zhang W. Correlation between autochthonous microbial communities and flavor profiles during the fermentation of mustard green paocai (Brassica juncea Coss.), a typical industrial-scaled salted fermented vegetable. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Ruan W, Liu J, Li P, Zhao W, Zhang A, Liu S, Wang Z, Liu J. Dynamics of Microbial Communities, Flavor, and Physicochemical Properties during Ziziphus jujube Vinegar Fermentation: Correlation between Microorganisms and Metabolites. Foods 2022; 11:3334. [PMID: 36359947 PMCID: PMC9655239 DOI: 10.3390/foods11213334] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 07/26/2023] Open
Abstract
Jujube pulp separated from Ziziphus jujube is often discarded after processing, resulting in a serious waste of resources and environmental pollution. Herein, Ziziphus jujube pulp was used as a raw material for vinegar fermentation. To investigate the dynamic distribution of microorganisms and flavor substances in ZJV, correlations between environmental variables (e.g., total acid, reducing sugar, temperature) and flavor substances (organic acids, amino acids, volatile substances) and microorganisms were analyzed. Physicochemical indicators (temperature, total acid, alcohol) were the main factors affecting ZJV fermentation. The middle and later stages of ZJV fermentation were the periods showing the largest accumulation of flavor substances. Organic acids (acetic acid, malic acid, citric acid, lactic acid), amino acids (Asp, Glu, Arg) and volatile substances (ethyl phenylacetate, phenethyl alcohol) were important odor-presenting substances in ZJV. In the bacterial community, the Operational Taxonomic Units (OTUs) with an average relative abundance of more than 10% in at least one fermentation stage were mainly Acetobacter, Lactobacillus and Saccharopolyspora, while it was Thermomyces in the fungal community. Pearson correlation coefficients showed that Penicillium, Lactobacillus and Acetobacter were the core microorganisms, implying that these microorganisms contributed to the flavor formation greatly in ZJV fermentation. This study reveals the correlation between physicochemical indexes and flavor substances and microorganisms in ZJV fermentation. The results of the study can provide a theoretical basis for the development of the ZJV industry.
Collapse
Affiliation(s)
- Wei Ruan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, 598 Heping West Road, Shijiazhuang 050031, China
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050000, China
| | - Junli Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, 598 Heping West Road, Shijiazhuang 050031, China
| | - Pengliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, 598 Heping West Road, Shijiazhuang 050031, China
| | - Wei Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, 598 Heping West Road, Shijiazhuang 050031, China
| | - Aixia Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, 598 Heping West Road, Shijiazhuang 050031, China
| | - Songyan Liu
- Shijiazhuang Quality Inspection Centre of Animal Products, Feed, and Veterinary Drugs, 3 Yixi Street, Shijiazhuang 050035, China
| | - Zhixin Wang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050000, China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, 598 Heping West Road, Shijiazhuang 050031, China
| |
Collapse
|
25
|
Mi T, Wang D, Yao S, Yang H, Che Y, Wu C. Effects of salt concentration on the quality and microbial diversity of spontaneously fermented radish paocai. Food Res Int 2022; 160:111622. [DOI: 10.1016/j.foodres.2022.111622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/04/2022]
|
26
|
Zhao N, Ge L, Lai H, Wang Y, Mei Y, Huang Y, Zeng X, Su Y, Shi Q, Li H, Yuan H, Zhu Y, Zuo Y, Pang F, Guo C, Wang H, Hu T. Unraveling the contribution of pre-salting duration to microbial succession and changes of volatile and non-volatile organic compounds in Suancai (a Chinese traditional fermented vegetable) during fermentation. Food Res Int 2022; 159:111673. [DOI: 10.1016/j.foodres.2022.111673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
|
27
|
Zhao Y, Suyama T, Wu Z, Zhang W. Characterization of variations and correlations between flavor metabolites and microbial communities of industrial paocai brine during fermentation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yajiao Zhao
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Taikei Suyama
- National Institute of Technology Akashi College Akashi 674‐8501 Japan
| | - Zhengyun Wu
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Wenxue Zhang
- College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
- School of Liquor‐Brewing Engineering Sichuan University Jinjiang College Meishan 620860 China
| |
Collapse
|
28
|
Lin Z, Wu ZY, Zhang WX. Bioinformatics analysis of amino acid decarboxylases related to four major biogenic amines in pickles. Food Chem 2022; 393:133339. [PMID: 35653994 DOI: 10.1016/j.foodchem.2022.133339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Microbial amino acid decarboxylases (AADs) produce biogenic amines (BAs) in fermented food. However, a systematic comparison of the AADs' properties from different microorganisms in pickle fermentation remains unexplored. Here, we bioinformatically analyzed the amino acid sequences of AADs corresponding to four major BAs for common microorganisms in pickle fermentation. We showed that their sequences, besides tyrosine decarboxylase, differed among microorganisms. Overall, the AAD sequences varied lesser among bacterial species than between bacteria and fungi, with those in Lactobacillus sharing occasionally high similarity with other bacteria. Most AADs were predicted as stable cytosolic endoenzymes. Molecular docking showed that most commonly used spice components in pickle production, especially pepper, chili, and ginger, strongly bind to the AAD active sites, thus may inhibit the enzymes and reduce the BA accumulation. This study provides insights for deeply understanding the different microbial AAD properties in pickle fermentation and reducing BAs by appropriately using spices.
Collapse
Affiliation(s)
- Ze Lin
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Zheng-Yun Wu
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China.
| | - Wen-Xue Zhang
- Department of Food Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| |
Collapse
|
29
|
Study of bacterial community succession and reconstruction of the core lactic acid bacteria to enhance the flavor of paocai. Int J Food Microbiol 2022; 375:109702. [DOI: 10.1016/j.ijfoodmicro.2022.109702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/17/2022] [Accepted: 05/01/2022] [Indexed: 11/17/2022]
|
30
|
Cui J, Zhai X, Guo D, Du W, Gao T, Zhou J, Schwab WG, Song C. Characterization of Key Odorants in Xinyang Maojian Green Tea and Their Changes During the Manufacturing Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:279-288. [PMID: 34932338 DOI: 10.1021/acs.jafc.1c06473] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Xinyang Maojian (XYMJ) green tea is a famous high-grade Chinese green tea, but the key odorants contributing to its aroma have been poorly understood. In this study, solid-phase microextraction and solvent-assisted flavor evaporation were used for sample preparation, and gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O) were used for both qualitative and quantitative analysis. A total of 50 volatile compounds of five chemical classes were identified in XYMJ tea infusion. Among them, nine odorants including nonanal, β-ionone, octanal, E-nerolidol, linalool, cis-3-hexenyl hexanoate, geraniol, decanal, and β-cyclocitral were identified as key odorants of XYMJ based on GC-O, odor activity values, and aroma combination experiments. Changes in the content of these aroma-active compounds during the manufacturing process of XYMJ (fresh leaves, fixing, rolling, shaping, and drying) were also determined. Most aroma-active compounds decreased after the fixation process, with the exception of cis-3-hexenyl hexanoate. This is the first study to investigate the key odorants in XYMJ using the sensomics approach. The findings of this study provide novel information on the aroma quality of XYMJ.
Collapse
Affiliation(s)
- Jilai Cui
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, Henan 464000, People's Republic of China
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Danyang Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Wenkai Du
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Ting Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| | - Jie Zhou
- College of Life Science, Xinyang Normal University, 237 Nanhu R., Xinyang, Henan 464000, People's Republic of China
| | - Wilfried G Schwab
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 130 Changjiang Ave W., Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|