1
|
Han Z, Shi S, Yao B, Shinali TS, Shang N, Wang R. Recent Insights in
Lactobacillus
-Fermented Fruit and Vegetable Juice: Compositional Analysis, Quality Evaluation, and Functional Properties. FOOD REVIEWS INTERNATIONAL 2025:1-35. [DOI: 10.1080/87559129.2025.2454284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Affiliation(s)
- Zixin Han
- China Agricultural University
- China Agricultural University
| | | | | | | | - Nan Shang
- China Agricultural University
- China Agricultural University
| | | |
Collapse
|
2
|
Mhlanga P, Mianda SM, Sivakumar D. Impact of Fermentation of Pumpkin Leaves and Melon Varieties with Lactobacillus Strains on Physicochemical Properties, Antioxidant Activity, and Carotenoid Compounds. Foods 2024; 13:3562. [PMID: 39593978 PMCID: PMC11592831 DOI: 10.3390/foods13223562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
This study examined the impact of fermentation using Lactiplantibacillus plantarum (L75) and Bifidobacterium longum (BF) on the total soluble solids (TSS), pH, TA, LAB survival, color properties, ascorbic acid content, total phenolic content (TPC), carotenoid components, and antioxidant properties of smoothies made from melon varieties (Cantaloupe, Honeydew, and Watermelon) separately with pumpkin leaves (Cucurbita moschata and Cucurbita pepo). For all smoothies, pH (r = -0.74) and TSS (r = -0.79) were inversely and strongly correlated with LAB counts, while LAB counts were positively correlated with TA (r = 0.87). Fermentation time (24 to 72 h) significantly (p < 0.05) decreased the TSS (%), pH, and color properties of all smoothies fermented with L75 or BF, while TA increased. Fermenting Cantaloupe melon and C pepo leaves with L75 (CMCL75) for 24 h increased the ascorbic acid content to 3.8 mg/100 mL. The sensory panel scores were highest for Watermelon and C. moschata or C. pepo fermented with L75 or BF for 24 h. TPC concentration was highest in CMCL75 (70.76 mg of gallic acid per 100 mL) after 24 h. C. pepo leaves and Cantaloupe fermented with L75 (CPCL75) showed the highest concentration of total carotenoids (70.38 mg/100 mL), lutein (2.53 µg/100 mL), cis β-carotene (25.43 µg/100 mL), and trans β-carotene (620.37 µg/100 mL). In contrast, CMCL75 showed the highest concentration of zeaxanthin (0.70 mg/100 mL). This study demonstrated the potential of fermenting Cantaloupe and pumpkin leaves together with the L75 strain to produce non-dairy functional products.
Collapse
Affiliation(s)
- Pretty Mhlanga
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (P.M.); (S.M.M.)
| | - Sephora Mutombo Mianda
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (P.M.); (S.M.M.)
| | - Dharini Sivakumar
- Department of Crop Sciences, Tshwane University of Technology, Pretoria 0001, South Africa; (P.M.); (S.M.M.)
- Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4108, Australia
| |
Collapse
|
3
|
Subedi U, Raychaudhuri S, Fan S, Ogedengbe O, Obanda DN. Fermenting kale ( Brassica oleracea L.) enhances its functional food properties by increasing accessibility of key phytochemicals and reducing antinutritional factors. Food Sci Nutr 2024; 12:5480-5496. [PMID: 39139952 PMCID: PMC11317736 DOI: 10.1002/fsn3.4195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 08/15/2024] Open
Abstract
The properties of kale as a functional food are well established. We sought to determine how fermentation further enhances these properties. We tested different fermentation conditions: (i) spontaneous fermentation with naturally occurring bacteria, (ii) spontaneous fermentation with 2% salt, (iii) Lactococcus lactis, (iv) Lactobacillus acidophilus, (v) mixture of L. lactis and L. acidophilus, (vi) mixture of L. lactis, L. acidophilus, and Clostridium butyricum. We quantified selected bioactive components using high-performance liquid chromatography (HPLC) and antinutritional factors using a gravimetric method and spectrophotometry. We then determined (i) the antioxidant capacity of the vegetable, (ii) anti-inflammation capacity, and (iii) the surface microbiota composition by 16S sequencing. All fermentation methods imparted some benefits. However, fermentation with mixed culture of L. lactis and L. acidophilus was most effective in increasing polyphenols and sulforaphane accessibility, increasing antioxidant activity, and reducing antinutritional factors. Specifically, fermentation with L. lactis and L. acidophilus increased total polyphenols from 8.5 to 10.7 mgGAE/g (milligrams of gallium acid equivalent per gram) and sulforaphane from 960.8 to 1777 μg/g (microgram per gram) but decreased the antinutritional factors oxalate and tannin. Total oxalate was reduced by 49%, while tannin was reduced by 55%-65%. The antioxidant capacity was enhanced but not the anti-inflammation potential. Both unfermented and fermented kale protected equally against lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages and prevented increases in inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 messenger RNA (IL-6 mRNA) expression by 84.3%, 62%, 68%, and 85.5%, respectively. Unfermented and naturally fermented kale had high proportions of sulfur reducing Desulfubrio and Proteobacteria usually associated with inflammation. Fermenting with L. lactis and/or L. acidophilus changed the bacterial proportions, reducing the Proteobacteria while increasing the genera Lactobacilli and Lactococcus. In summary, fermentation enhances the well-known beneficial impacts of kale. Fermentation with mixed cultures of L. lactis and L. acidophilus imparts higher benefits compared to the single cultures or fermentation with native bacteria present in the vegetable.
Collapse
Affiliation(s)
- Ujjwol Subedi
- Department of Nutrition and Food SciencesUniversity of MarylandCollege ParkMarylandUSA
| | - Samnhita Raychaudhuri
- Department of Nutrition and Food SciencesUniversity of MarylandCollege ParkMarylandUSA
| | - Si Fan
- Department of Nutrition and Food SciencesUniversity of MarylandCollege ParkMarylandUSA
| | - Opeyemi Ogedengbe
- Department of Nutrition and Food SciencesUniversity of MarylandCollege ParkMarylandUSA
| | - Diana N. Obanda
- Department of Nutrition and Food SciencesUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
4
|
Michalak-Tomczyk M, Rymuszka A, Kukula-Koch W, Szwajgier D, Baranowska-Wójcik E, Jachuła J, Welman-Styk A, Kędzierska K. Studies on the Effects of Fermentation on the Phenolic Profile and Biological Activity of Three Cultivars of Kale. Molecules 2024; 29:1727. [PMID: 38675547 PMCID: PMC11052505 DOI: 10.3390/molecules29081727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Fermentation is used not only to preserve food but also to enhance its beneficial effects on human health and achieve functional foods. This study aimed to investigate how different treatments (spontaneous fermentation or fermentation with the use of starter culture) affect phenolic content, antioxidant potential, and cholinesterase inhibitory activity in different kale cultivars: 'Halbhoner Grüner Krauser', 'Scarlet', and 'Nero di Toscana'. Chosen samples were further tested for their protective potential against the Caco-2 cell line. HPLC-MS analysis revealed that the fermentation affected the composition of polyphenolic compounds, leading to an increase in the content of rutin, kaempferol, sinapinic, and protocatechuic acids. In general, kale cultivars demonstrated various antioxidant activities, and fermentation led to an increase in total phenolic content and antioxidant activity. Fermentation boosted anti-cholinesterase activity most profoundly in 'Nero di Toscana'. Extracts of spontaneously fermented 'Scarlet' (SS) and 'Nero di Toscana' (NTS) showed cytoprotective properties, as revealed by the malondialdehyde (MDA), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) assays. Additionally, strong anti-inflammatory activity of NTS was shown by decreased release of cytokines IL-1β and TNF-α. Collectively, the conducted studies suggest fermented kale cultivars as a potential source for functional foods.
Collapse
Affiliation(s)
- Magdalena Michalak-Tomczyk
- Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1I Street, 20-708 Lublin, Poland; (A.R.); (A.W.-S.); (K.K.)
| | - Anna Rymuszka
- Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1I Street, 20-708 Lublin, Poland; (A.R.); (A.W.-S.); (K.K.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Street, 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Street, 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Jacek Jachuła
- Department of Botany, Mycology and Ecology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Agnieszka Welman-Styk
- Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1I Street, 20-708 Lublin, Poland; (A.R.); (A.W.-S.); (K.K.)
| | - Kinga Kędzierska
- Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1I Street, 20-708 Lublin, Poland; (A.R.); (A.W.-S.); (K.K.)
| |
Collapse
|
5
|
Zhang J, Zhong Y, Wang D, Deng Y, Li Y, Liu C, Wang JLT. Effect of mixed fermentation of Lactiplantibacillus plantarum and Lactiplantibacillus pentosus on phytochemical and flavor characteristics of Wallace melon juice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3776-3787. [PMID: 38294418 DOI: 10.1002/jsfa.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/25/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Melons (Cucumis melo L.) are among the most commonly consumed fruits but they are highly susceptible to mechanical damage and rot during storage and transportation. New processed products are needed to avoid postharvest fruit loss and to increase health benefits. Fermentation is an effective means of utilizing the nutrients and improving flavor. RESULTS Fermented melon juice (MJ) was prepared using three potential probiotics Lactiplantibacillus plantarum CICC21824 (LP), Lactiplantibacillus plantarum GB3-2 (LG), and Lactiplantibacillus pentosus XZ-34 (LX). The nutrition, flavor characteristics, and digestive properties of different fermented MJs were compared. The results demonstrated that, in comparison with mono-fermentation, mixed fermentation by LG and LX could increase the level of organic acids and phenolic acids. Correspondingly, antioxidant capacity was improved significantly and positively correlated with p-coumaric acid and cinnamic acid content. The production of alcohols and acids was more strongly enhanced by mixed culture fermentation, whereas mono-fermentation reduced the content of esters, especially ethyl acetate and isopropyl acetate. Aldehydes and ketones increased significantly in fermented MJ, and damascenone and heptanal could be the characteristic aroma compounds. CONCLUSION Mixed fermented MJ provides more beneficial phytochemicals, better flavor, and stronger antioxidant properties than mono-fermentation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junwei Zhang
- Department of Food Science and Technology, Bor Luh Food Safety Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhong
- Department of Food Science and Technology, Bor Luh Food Safety Center, Shanghai Jiao Tong University, Shanghai, China
| | - Danfeng Wang
- Department of Food Science and Technology, Bor Luh Food Safety Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Deng
- Department of Food Science and Technology, Bor Luh Food Safety Center, Shanghai Jiao Tong University, Shanghai, China
- Inner Mongolia Research Institute, Shanghai Jiao Tong University, Hohhot City, China
| | - Yuncheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Cong Liu
- Department of Agriculture, Hetao College, Bayannur, China
| | - Ji-Li-Te Wang
- Department of Agriculture, Hetao College, Bayannur, China
| |
Collapse
|
6
|
Gaur G, Gänzle MG. Conversion of (poly)phenolic compounds in food fermentations by lactic acid bacteria: Novel insights into metabolic pathways and functional metabolites. Curr Res Food Sci 2023; 6:100448. [PMID: 36713641 PMCID: PMC9876838 DOI: 10.1016/j.crfs.2023.100448] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Lactobacillaceae are among the major fermentation organisms in most food fermentations but the metabolic pathways for conversion of (poly)phenolic compounds by lactobacilli have been elucidated only in the past two decades. Hydroxycinnamic and hydroxybenzoic acids are metabolized by separate enzymes which include multiple esterases, decarboxylases and hydroxycinnamic acid reductases. Glycosides of phenolic compounds including flavonoids are metabolized by glycosidases, some of which are dedicated to glycosides of plant phytochemicals rather than oligosaccharides. Metabolism of phenolic compounds in food fermentations often differs from metabolism in vitro, likely reflecting the diversity of phenolic compounds and the unknown stimuli that induce expression of metabolic genes. Current knowledge will facilitate fermentation strategies to achieve improved food quality by targeted conversion of phenolic compounds.
Collapse
Affiliation(s)
- Gautam Gaur
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Michael G. Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Salas-Millán JÁ, Aznar A, Conesa E, Conesa-Bueno A, Aguayo E. Functional food obtained from fermentation of broccoli by-products (stalk): Metagenomics profile and glucosinolate and phenolic compounds characterization by LC-ESI-QqQ-MS/MS. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Changes in the content of glucosinolates, polyphenols and carotenoids during lactic-acid fermentation of cruciferous vegetables: a mini review. Food Chem X 2022; 16:100457. [PMID: 36339323 PMCID: PMC9626883 DOI: 10.1016/j.fochx.2022.100457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2022] [Accepted: 09/25/2022] [Indexed: 11/30/2022] Open
Abstract
Cruciferous vegetables as fermented products has been used since ancient times. During fermentation of cruciferous vegetables complete fermentation of glucosinolates occur. Fermentation decrease the content of complex polyphenols, while increase the content of polyphenols in free form. Carotenoid content decrease during fermentation of cruciferous vegetables.
Cruciferous vegetables are considered functional foods because of their content of health-related compounds. They are grown and consumed in various cultures around the world. Fermentation as a preservation method for cruciferous vegetables has been used since ancient times. This process results in fermented products that have a unique flavour and odour, high bioactivity, and a distinctly different phytochemical profile than raw vegetables. In this mini review, we summarize data on changes in phytochemical content during lactic-acid fermentation of various cruciferous vegetables. The main focus was on the changes in the group of glucosinolates, polyphenols and carotenoids.
Collapse
|
9
|
Pasta with Kiwiberry (Actinidia arguta): Effect on Structure, Quality, Consumer Acceptance, and Changes in Bioactivity during Thermal Treatment. Foods 2022; 11:foods11162456. [PMID: 36010456 PMCID: PMC9407217 DOI: 10.3390/foods11162456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, kiwiberry lyophilizate (KBL) was incorporated into pasta at different levels (5%, 10%, and 15% w/w). Kiwiberry fruits’ characteristics (ascorbic acid, carotenoids, phenolic compounds, and antioxidant activity determination) as well as physical (cooking properties, color, microscopic structure determination, texture, and water molecular dynamics analysis by low-field NMR) and chemical analyses (proximate composition phenolic compounds composition and antioxidant activity) of KBL-enriched pasta were investigated. The replacement of semolina with KBL in the production of pasta significantly changed its culinary properties. Results showed that the addition of KBL leads to a reduction in optimal cooking time and cooking weight (47.6% and 37.3%, respectively). Additionally, a significant effect of the KBL incorporation on the color of both fresh and cooked pasta was observed. A significant reduction in the L* value for fresh (27.8%) and cooked (20.2%) pasta was found. The KBL-enriched pasta had a different surface microstructure than the control pasta and reduced firmness (on average 44.7%). Low-field NMR results have confirmed that the ingredients in kiwiberry fruit can bind the water available in fresh pasta. The heat treatment resulted in increasing the availability of phenolic compounds and the antioxidant activity (64.7%) of cooked pasta. Sensory evaluation scores showed that the use of 5–10% of the KBL additive could be successfully accepted by consumers.
Collapse
|
10
|
Effects of the Probiotic, Lactobacillus delbrueckii subsp. bulgaricus, as a Substitute for Antibiotics on the Gastrointestinal Tract Microbiota and Metabolomics Profile of Female Growing-Finishing Pigs. Animals (Basel) 2022; 12:ani12141778. [PMID: 35883325 PMCID: PMC9311557 DOI: 10.3390/ani12141778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Lactobacillus delbrueckii subsp. bulgaricus (LDB) is an approved feed additive on the Chinese ‘Approved Feed Additives’ list. However, the possibility of LDB as an antibiotic replacement remains unclear. Particularly, the effect of LDB on microbiota and metabolites in the gastrointestinal tract (GIT) requires further explanation. This study aimed to identify the microbiota and metabolites present in fecal samples and investigate the relationship between the microbiota and metabolites to evaluate the potential of LDB as an antibiotic replacement in pig production. A total of 42 female growing-finishing pigs were randomly allocated into the antibiotic group (basal diet + 75 mg/kg aureomycin) and LDB (basal diet + 3.0 × 109 cfu/kg LDB) groups. Fecal samples were collected on days 0 and 30. Growth performance was recorded and assessed. 16S rRNA sequencing and liquid chromatography-mass spectrometry-based non-targeted metabolomics approaches were used to analyze the differences in microbiota and metabolites. Associations between the differences were calculated using Spearman correlations with the Benjamini−Hochberg adjustment. The LDB diet had no adverse effect on feed efficiency but slightly enhanced the average daily weight gain and average daily feed intake (p > 0.05). The diet supplemented with LDB increased Lactobacillus abundance and decreased that of Prevotellaceae_NK3B31_group spp. Dietary-supplemented LDB enhanced the concentrations of pyridoxine, tyramine, D-(+)-pyroglutamic acid, hypoxanthine, putrescine and 5-hydroxyindole-3-acetic acid and decreased the lithocholic acid concentration. The Lactobacillus networks (Lactobacillus, Peptococcus, Ruminococcaceae_UCG-004, Escherichia-Shigella, acetophenone, tyramine, putrescine, N-methylisopelletierine, N1-acetylspermine) and Prevotellaceae_NK3B31_group networks (Prevotellaceae_NK3B31_group, Treponema_2, monolaurin, penciclovir, N-(5-acetamidopentyl)acetamide, glycerol 3-phosphate) were the most important in the LDB effect on pig GIT health in our study. These findings indicate that LDB may regulate GIT function through the Lactobacillus and Prevotellaceae_NK3B31_group networks. However, our results were restrained to fecal samples of female growing-finishing pigs; gender, growth stages, breeds and other factors should be considered to comprehensively assess LDB as an antibiotic replacement in pig production.
Collapse
|