1
|
Xu J, CailianWang, Liu T, Luo R, Zheng C, Zhang Y, Lang X. Meat quality differences and protein molecular mechanisms affecting meat flavor in different breeds of Tibetan sheep analyzed by 4D label-free quantitative proteomics. Food Chem 2025; 480:143977. [PMID: 40138833 DOI: 10.1016/j.foodchem.2025.143977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/22/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
To evaluate the meat quality of the new breed of Panou sheep, the longissimus dorsi (LD) muscles of 1.5-year-old Panou sheep and the local breed of Oula sheep were selected for comparative analysis in terms of meat quality, and the molecular mechanisms influencing flavor were investigated using 4D label-free proteomics technology. The results revealed that the fiber density, tenderness, and brightness of the Panou sheep meat were lower than those of the Oula sheep, and the composition of amino acids and flavor substances made it possible to determine that the Panou sheep meat has a high-quality and distinctive flavor. Proteomic analysis indicated that the metabolic pathways that may be associated with meat flavor are amino acid catabolism and sugar metabolism. This study explored the role of proteins in the regulation of meat flavor in Tibetan sheep, which provides a reference for the identification of meat products and subsequent breed improvement.
Collapse
Affiliation(s)
- Jianfeng Xu
- Institute of Animal & Pasture Science and Green Agriculture, Gansu Academy of Agricultural Science, Lanzhou 730070, China; College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - CailianWang
- Institute of Animal & Pasture Science and Green Agriculture, Gansu Academy of Agricultural Science, Lanzhou 730070, China
| | - Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ruirui Luo
- Institute of Animal & Pasture Science and Green Agriculture, Gansu Academy of Agricultural Science, Lanzhou 730070, China
| | - Chen Zheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanshu Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xia Lang
- Institute of Animal & Pasture Science and Green Agriculture, Gansu Academy of Agricultural Science, Lanzhou 730070, China.
| |
Collapse
|
2
|
Qin J, Li Y, Li Y, Qiao Z, Yan L, Chen K, Wu K, Qian H, Peng B, Jiang F. An ammonia-responsive aerogel-type colorimetric sensor for non-destructive monitoring of shrimp freshness. Food Res Int 2025; 201:115630. [PMID: 39849773 DOI: 10.1016/j.foodres.2024.115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/09/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
The colorimetric sensor for volatile amines (VA) detection can realize non-destructive monitoring of shrimp quality. However, its sensing performance still needs to be improved. In this study, we proposed an aerogel-type colorimetric sensor to improve VA sensing performance and realize early detection of shrimp spoilage. The sensor was composed of konjac glucomannan-based aerogel prepared by sol-gel and freeze-drying, and pH-responsive dyes (neutral red) which were adsorbed on the aerogel surface. The sensor could show color change from pink to orange under the exposure of NH3, a marker of spoiled shrimp and the Euclidean Distance (ΔE) of the sensor was positively correlated with NH3 concentration. Due the three-dimensional network of the aerogel and its adsorption performance, the sensitivity of the aerogel-type sensor in NH3 detection was ∼6 times higher and the maximum ΔE was ∼1.5 times higher compared with the film-type sensor. It also showed stable sensing performance under various environment and was further successfully used in shrimp freshness monitoring. It was found that ΔE higher than 23.88 indicated the spoilage of shrimp. The above results provided a general approach for the designing of high-performance colorimetric sensor for real-time and non-destructive monitoring of shrimp freshness.
Collapse
Affiliation(s)
- Jichao Qin
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yujie Li
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yue Li
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Zhuoqun Qiao
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Li Yan
- Wuhan Hongzhicai Packaging and Printing Co., Ltd., Wuhan 430040, China
| | - Kai Chen
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Kao Wu
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Hong Qian
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; School of Nursing and Health Management, Wuhan Donghu University, Wuhan 430212, China
| | - Bo Peng
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| | - Fatang Jiang
- Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
3
|
Park MK, Choi YS. Effective Strategies for Understanding Meat Flavor: A Review. Food Sci Anim Resour 2025; 45:165-184. [PMID: 39840241 PMCID: PMC11743833 DOI: 10.5851/kosfa.2024.e124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 01/23/2025] Open
Abstract
This review provides an effective strategy for understanding meat flavor. Understanding the taste of meat is essential for improving meat quality, and the taste should be analyzed based on complex chemical research to identify various factors that impact the composition, formation, and development of meat. To address flavor chemistry in meat, the discussion focuses on the major compounds responsible for the characteristic flavors of different meats, such as lipids, proteins, and Maillard reaction products. Meat flavor is largely based on heat-induced chemical reactions that convert flavor precursors, such as sugars, proteins, and lipids, into volatile compounds. The flavor of meat is influenced by animal species, sex, age, feed, and processing, and in this respect, flavor is one of the representative quality indicators of meat. Research on meat flavor uses omics technology to study the molecular mechanisms that affect meat quality, including flavor, tenderness, and fat composition. Therefore, this review provides a comprehensive understanding of the complex processes governing meat flavor and provides avenues for further research and industrial applications to advance the meat industry.
Collapse
Affiliation(s)
- Min Kyung Park
- Food Processing Research Group, Korea Food Research Institute, Wanju 55365, Korea
| | - Yun-Sang Choi
- Food Processing Research Group, Korea Food Research Institute, Wanju 55365, Korea
| |
Collapse
|
4
|
You Z, Bai Y, Bo D, Feng Y, Shen J, Wang Y, Li J, Bai Y. A review of taste-active compounds in meat: Identification, influencing factors, and taste transduction mechanism. J Food Sci 2024; 89:8128-8155. [PMID: 39468910 DOI: 10.1111/1750-3841.17480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Poultry and livestock meat are important parts of the human diet. As living standards have improved, food taste has become a major influence on consumer quality assessment and meat purchasing choices. There is increasing research interest in meat taste and meat taste-active compounds, which include free amino acids, flavor nucleotides, taste-active peptides, organic acids, soluble sugars, and inorganic ions. Taste component research is also an important part of sensory science. A deeper understanding of the meat taste perception mechanism and interactions among different taste compounds will promote the development of meat science and sensory evaluation. This article reviews the main taste compounds in meat, factors influencing their concentrations, and the identification and measurement of taste-active compounds, as well as summarizing the mechanisms of taste sensing and perception. Finally, the future of scientific taste component evaluation is discussed. This review provides a theoretical basis for research on meat taste and an important reference for the development of the meat industry.
Collapse
Affiliation(s)
- Zerui You
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yilin Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Dongdong Bo
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuqing Feng
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiameng Shen
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Wang
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Li
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yueyu Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Huang Y, Xu C, Huang X, Tan Y, Li S, Yin Z. Metabolome and Transcriptome Profiling Reveals Age-Associated Variations in Meat Quality and Molecular Mechanisms of Taihe Black-Bone Silky Fowls. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21946-21956. [PMID: 39354852 DOI: 10.1021/acs.jafc.4c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
To explore the changes in meat quality and molecular mechanisms during the growth and development of Taihe black-bone silky fowl, this study employed liquid chromatography-mass spectrometry (LC-MS/MS) metabolomics to elucidate the dynamic changes of key differential metabolites (DMs) affecting meat quality, indicating that chicken at D120 had higher levels of ω-3 polyunsaturated fatty acids (PUFAs), creatine, anserine, and homocarnosine, while D150 had the most stachydrine and D210 had the most acylcarnitines. Additionally, D120 and D180 had more umami and sweet compounds. Furthermore, key metabolic pathways influenced by age included purine metabolism, the pentose phosphate pathway, nicotinate and nicotinamide metabolism, and taurine and hypotaurine metabolism. Transcriptomic identified differential expression genes (DEGs) are predominantly enriched in focal adhesion, the TGF-β signaling pathway, and the MAPK signaling pathway. Integrated metabolomics and transcriptomics revealed complex regulatory networks of DEGs and DMs in key metabolic pathways. This research enhanced our understanding of the biology of Taihe black-bone silky fowl meat quality, revealing possible biomarkers.
Collapse
Affiliation(s)
- Yunyan Huang
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Chunhui Xu
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Xuan Huang
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Yuting Tan
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Shibao Li
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| | - Zhaozheng Yin
- College of Animal Science, Zhejiang University, Hangzhou 310030, China
| |
Collapse
|
6
|
Zhang B, Cao M, Wang X, Guo S, Ding Z, Kang Y, Hu L, Xiong L, Pei J, Ma Y, Guo X. The Combined Analysis of GC-IMS and GC-MS Reveals the Differences in Volatile Flavor Compounds between Yak and Cattle-Yak Meat. Foods 2024; 13:2364. [PMID: 39123555 PMCID: PMC11311445 DOI: 10.3390/foods13152364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
In order to investigate the composition and differences in volatile organic compounds (VOCs) in yak and cattle-yak meat and determine the key metabolites and metabolic pathways related to flavor formation. In this study, the VOCs and non-volatile metabolites in Longissimus dorsi muscle of two groups of samples were detected and analyzed by gas chromatography-ion migration spectrometry (GC-IMS) and gas chromatography-mass spectrometry (GC-MS). The results showed that 31 VOCs were identified by GC-IMS, including 5 alcohols, 5 ketones, 5 esters, 3 aldehydes, 2 furans, 2 hydrocarbons, 1 amine, 1 acid, 1 thiazole, 1 pyrazine, and 5 others. Most of them were alcohols, ketones, esters, and aldehydes. A total of 75 non-volatile metabolites with significant differences were obtained by GC-MS screening, among which amino acid contents such as serine, glycine, phenylalanine, and aspartic acid were significantly up-regulated in cattle-yak, and glutamic acid and tyrosine were significantly up-regulated in yak. The non-volatile differential metabolites in the two groups were significantly enriched in the metabolic pathways of arginine biosynthesis and oxidative phosphorylation. By combining GC-IMS and GC-MS, this study comprehensively and intuitively reflected the differences in VOCs between yak and cattle-yak meat, and clarified the metabolomic reasons for the differences in VOCs, so as to provide a theoretical basis for meat quality improvement.
Collapse
Affiliation(s)
- Ben Zhang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Liyan Hu
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yi Ma
- Institute of Animal Husbandry and Veterinary Science, Tianjin Academy of Agriculture Sciences, Tianjin 300381, China
| | - Xian Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.Z.); (M.C.); (X.W.); (S.G.); (Z.D.); (Y.K.); (L.H.); (L.X.); (J.P.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
7
|
Zhou Z, Ren F, Huang Q, Cheng H, Cun Y, Ni Y, Wu W, Xu B, Yang Q, Yang L. Characterization and interactions of spoilage of Pseudomonas fragi C6 and Brochothrix thermosphacta S5 in chilled pork based on LC-MS/MS and screening of potential spoilage biomarkers. Food Chem 2024; 444:138562. [PMID: 38330602 DOI: 10.1016/j.foodchem.2024.138562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
Pseudomonas and Brochothrix are the main spoilage organisms in pork, and each of these plays an essential role in the spoilage process. However, the effect of co-contamination of these two organisms in pork has not been elucidated. The changing bacterial communities during spontaneous spoilage of pork at 4 °C were evaluated using high-throughput sequencing. The dominant spoilage bacteria were isolated and these were identified as Pseudomonas fragi C6 and Brochothrix thermosphacta S5. Chilled pork was then experimentally contaminated with these strains, individually and in combination, and the progression of spoilage was assessed by analyzing various physicochemical indicators. These included total viable counts (TVC), pH, color, total volatile basic nitrogen (TVB-N), and detection of microbial metabolites. After 7 days of chilled storage, co-contaminated pork produced higher TVC and TVB-N values than mono-contaminated samples. Metabolomic analysis identified a total of 8,084 metabolites in all three groups combined. Differential metabolites were identified, which were involved in 38 metabolic pathways. Among these pathways, the biosynthesis of alkaloids derived from purine and histidine was identified as an important pathway related to spoilage. Specifically, histidine, histamine, AMP, IMP, GMP, succinic acid, and oxoglutaric acid were identified as potential spoilage biomarkers. The study showed that the combined presence of P. fragi C6 and B. thermosphacta S5 bacteria makes chilled pork more prone to spoilage, compared to their individual presence. This study provides insights that can assist in applying appropriate techniques to maintain quality and safety changes in meat during storage and further the assessment of freshness.
Collapse
Affiliation(s)
- Zhonglian Zhou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Fangqi Ren
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Qianli Huang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Haoran Cheng
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Yu Cun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yongsheng Ni
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Wenda Wu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Qinghua Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Liu Yang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
8
|
Yao B, Zhang D, Wu X, He R, Gao H, Chen K, Xiang D, Tang Y. Exploring the impact of irradiation on the sensory quality of pork based on a metabolomics approach. Food Chem X 2024; 22:101460. [PMID: 38803672 PMCID: PMC11129168 DOI: 10.1016/j.fochx.2024.101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The effects of irradiation on pork quality characteristics were investigated by combining sensory experiments, pork color, TBARS, volatile components, and differential metabolites. Pork irradiated at a dose of 1 kGy received the highest sensory scores, whereas pork irradiated at doses of 3 and 5 kGy obtained lower sensory scores, particularly with regard to odor. Irradiation makes pork more ruddy and promotes fat oxidation, leading to increased a* and TBARS values. The main volatile substances in irradiated pork were hydrocarbons, aldehydes, and alcohols, and hexanal, heptanal, and valeric acid were considered as important substances responsible for the generation of radiation-induced off-flavors. 65 differential metabolites were identified. l-pyroglutamic acid, l-glutamate, l-proline, fumarate acids, betaine, and l-anserine were considered as the main substances contributing to the differences in pork quality. In addition, metabolic pathways such as arginine biosynthesis, alanine, aspartate and glutamate metabolism were found to be considerably affected by irradiation.
Collapse
Affiliation(s)
- Bo Yao
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Food Industry Collaborative Innovation Center, Xihua University, Chengdu 610039, China
| | - Xinyu Wu
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Ruiyan He
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Hui Gao
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Kailan Chen
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dan Xiang
- Chengdu Xiwang Food., Ltd, Chengdu 610000, China
| | - Yong Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Sichuan Yiyang Modern Agricultural Development, Ltd, Chengdu 610000, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| |
Collapse
|
9
|
Lin Y, Sun L, Lv Y, Liao R, Zhang K, Zhou J, Zhang S, Xu J, He M, Wu C, Zhang D, Shen X, Dai J, Gao J. Transcriptomic and metabolomic dissection of skeletal muscle of crossbred Chongming white goats with different meat production performance. BMC Genomics 2024; 25:443. [PMID: 38704563 PMCID: PMC11069289 DOI: 10.1186/s12864-024-10304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The transcriptome and metabolome dissection of the skeletal muscle of high- and low- growing individuals from a crossbred population of the indigenous Chongming white goat and the Boer goat were performed to discover the potential functional differentially expressed genes (DEGs) and differential expression metabolites (DEMs). RESULTS A total of 2812 DEGs were detected in 6 groups at three time stages (3,6,12 Month) in skeletal muscle using the RNA-seq method. A DEGs set containing seven muscle function related genes (TNNT1, TNNC1, TNNI1, MYBPC2, MYL2, MHY7, and CSRP3) was discovered, and their expression tended to increase as goat muscle development progressed. Seven DEGs (TNNT1, FABP3, TPM3, DES, PPP1R27, RCAN1, LMOD2) in the skeletal muscle of goats in the fast-growing and slow-growing groups was verified their expression difference by reverse transcription-quantitative polymerase chain reaction. Further, through the Liquid chromatography-mass spectrometry (LC-MS) approach, a total of 183 DEMs in various groups of the muscle samples and these DEMs such as Queuine and Keto-PGF1α, which demonstrated different abundance between the goat fast-growing group and slow-growing group. Through weighted correlation network analysis (WGCNA), the study correlated the DEGs with the DEMs and identified 4 DEGs modules associated with 18 metabolites. CONCLUSION This study benefits to dissection candidate genes and regulatory networks related to goat meat production performance, and the joint analysis of transcriptomic and metabolomic data provided insights into the study of goat muscle development.
Collapse
Affiliation(s)
- Yuexia Lin
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
| | - Lingwei Sun
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Yuhua Lv
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
| | - Rongrong Liao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
| | - Keqing Zhang
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
| | - Jinyong Zhou
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
| | - Shushan Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Jiehuan Xu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Mengqian He
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Caifeng Wu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Defu Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China
| | - Xiaohui Shen
- Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| | - Jianjun Dai
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China.
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China.
| | - Jun Gao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Shanghai, 201106, China.
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China.
| |
Collapse
|
10
|
Su G, Yu C, Liang S, Wang W, Wang H. Multi-omics in food safety and authenticity in terms of food components. Food Chem 2024; 437:137943. [PMID: 37948800 DOI: 10.1016/j.foodchem.2023.137943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
One of the main goals of food science is to ensure the high quality and safety of food. The inspection technology for known hazards has matured, and the identification of unknown and potential food safety hazards, as well as the identification of their composition and origin, is a challenge faced by food safety. Food safety and authenticity require multi-omics methods to support the implementation of qualitative discrimination to precise quantitative analysis, from targeted screening to non-target detection, and from multi component to full component analysis to address these challenges. The present review aims to provide characterizations, advantages, the latest progress, and prospects of using omics (including genomics, proteomics, and metabonomics) in food safety and authenticity. Multi omics strategies used to detect and verify different standard biomarkers of food will contribute to understanding the basic relationship between raw materials, processing, foods, nutrition, food safety, and human health.
Collapse
Affiliation(s)
- Guangyue Su
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, PR of China
| | - Chong Yu
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Shuwen Liang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wei Wang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Haifeng Wang
- Shenyang Pharmaceutical University, Shenyang 110016, PR China; Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
11
|
Fei L, Ma Z, Yue A, Cui P, Qiu Y, Lyu F, Zhang J. Effect of low-voltage electrostatic field-assisted partial freezing on large yellow croaker protein properties and metabolomic analysis during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2359-2371. [PMID: 37985177 DOI: 10.1002/jsfa.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Large yellow croaker is highly perishable during storage because of high protein and moisture content. The degradation of the fish is mainly attributed to microbial growth and enzyme activity, so it is important to find an efficient storage method to extend its shelf life. METHODOLOGY This study investigated the effect of a low-voltage electrostatic field combined with partial freezing treatment on the physicochemical properties of myofibrillar protein (MP) and metabolomic analysis of large yellow croaker during preservation. The samples in chilled storage (C), partial freezing storage (PF) and 6 kV/m low-voltage electrostatic field partial freezing storage (LVEF-PF) were analyzed during an 18 day storage period. RESULTS In comparison with the C and PF groups, LVEF-PF delayed the oxidation of MP by inhibiting the formation of carbonyl groups (2.25 nmol/mg pro), and maintaining higher sulfhydryl content (29.73 nmol/mg pro). Fourier transform infrared (FTIR) spectroscopy and fluorescence spectroscopy analysis also demonstrated that the LVEF-PF treatment maintained the stability of the protein structure by increasing the a-helix ratio (19.88%) and reducing the random coil ratio (17.83%). Scanning electron microscopy showed that, compared with the LVEF-PF group, there was more degeneration and aggregation of MP in the C and PF groups after 18 days' storage. The results of untargeted metabolomic analysis showed that 415 kinds of differential metabolites were identified after storage, and the difference levels of differential metabolites were least between the samples treated with LVEF-PF stored on the ninth day and the fresh samples. The main differential metabolic pathways during storage were amino acid metabolism and lipid metabolism. CONCLUSION The LVEF-PF treatment could maintain the stability of myofibrillar protein in large yellow croaker during storage. These results showed a potential application of the LVEF-PF method for aquatic product preservation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lifeng Fei
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Ze Ma
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Aodong Yue
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yue Qiu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
12
|
Li Q, Yi X, Li L, Sun Y, Nie Z, Du J, Cao L, Gao J, Xu G. Effects of effective microorganisms on the physiological status, intestinal microbiome, and serum metabolites of Eriocheir sinensis. Int Microbiol 2024; 27:167-178. [PMID: 37261580 DOI: 10.1007/s10123-023-00375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
The compound known as effective microorganisms (EMs) is widely used in aquaculture to improve water quality, but how they affect the health of Chinese mitten crab (Eriocheir sinensis) is unclear, especially in terms of intestinal microbiota and serum metabolites. In this study, we fed juvenile crabs with an EM-containing diet to explore the effects of EM on the physiological status, intestinal microbiome, and metabolites of E. sinensis. The activities of alanine aminotransferase and alkaline phosphatase were significantly enhanced by EM, indicating that EM supplementation effectively enhanced the antioxidant capacity of E. sinensis. Proteobacteria, Tenericutes, Firmicutes, Bacteroidetes, and Actinobacteria were the main intestinal microbes in both the control and EM groups. Linear discriminant effect size analysis showed that Fusobacteriaceae, Desulfovibrio, and Morganella were biomarkers in the control group, and Exiguobacterium and Rhodobacteraceae were biomarkers in the EM group. Metabolomics analysis revealed that EM supplementation increased cellular energy sources and decreased protein consumption, and oxidative stress. Together, these results indicate that EM can optimize the intestinal microbiome and serum metabolites, thereby benefiting the health of E. sinensis.
Collapse
Affiliation(s)
- Quanjie Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Xiangyu Yi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Le Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Zhijuan Nie
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
13
|
Xu J, Wang Q, Wang Y, Bao M, Sun X, Li Y. Changes in Meat of Hu Sheep during Postmortem Aging Based on ACQUITY UPLC I-Class Plus/VION IMS QTof. Foods 2024; 13:174. [PMID: 38201203 PMCID: PMC10778791 DOI: 10.3390/foods13010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Meat and meat products have a critical role in the human diet as important high-nutrient foods that are widely consumed worldwide. This study evaluated the effects of postmortem aging on Hu sheep's meat quality in the longissimus dorsi (LD) muscle during postmortem aging. The samples were stored at 4 ± 1 °C; the meat quality was measured at 6 h, 12 h, 24 h, 36 h, 48 h, 72 h, 96 h, 120 h, 144 h, and 168 h of postmortem aging. The results showed that, during the postmortem aging process, the pH of the muscles first decreased and then increased, and the shear force first increased and then decreased. The muscle fiber skeleton began to degrade, and the overall meat quality was improved to some extent. In addition, through ACQUITY UPLC I-Class Plus IMS Qtof identification of the muscle samples at different time points during the postmortem maturation process of the meat of Hu sheep, a total of 2168 metabolites were identified, and 470 metabolites were screened based on the VIP, P, and FC values, of which 79 were involved in KEGG pathways. In addition, pathways such as sphingolipid metabolism, glycerophospholipid metabolism, phenylalanine metabolism, and fatty acid elongation and degradation play an important role in the metabolic product changes in the meat of Hu sheep throughout the entire maturation process. These findings provide some insights into the changes in meat quality during the post-slaughter maturation process of lake lamb.
Collapse
Affiliation(s)
| | | | | | | | - Xiaomei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (J.X.); (Q.W.); (Y.W.); (M.B.); (Y.L.)
| | | |
Collapse
|
14
|
Tang H, Zhang H, Liu D, Li S, Wang Z, Yu D, Guo ZB, Hou S, Zhou Z. Changes in physical architecture and lipids compounds in skeletal muscle from Pekin duck and Liancheng white duck. Poult Sci 2023; 102:103106. [PMID: 37837677 PMCID: PMC10585346 DOI: 10.1016/j.psj.2023.103106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/13/2023] [Accepted: 09/07/2023] [Indexed: 10/16/2023] Open
Abstract
As a complex food, meat displays various biochemical properties that are determined to a great extent by physical architecture and lipid metabolites. Pekin duck and Liancheng white duck are elite breeds with distinct characteristics. Here, we explored the development of the muscle fibers from embryonic stage to 10-wk after birth, and muscle fibers grow slowly after 8-wk. We investigated the meat quality, ultrastructure, lipidomics profiling, and lipids spatial distribution of skeletal muscle at 8 wk. Pekin duck has lower Warner-Bratzler shear force (WBSF) (P < 0.05), high intramuscular fat (IMF) (P < 0.01), longer and wider sarcomere, and higher mitochondrial density (P < 0.001). Liancheng white duck with tighter collagen architecture. A total of 950 lipids from 6 lipid classes identified with lipidomics were analyzed, the levels of GP, GL, and PR were significantly higher in Pekin duck (P < 0.05), SL and ST were significantly higher in Liancheng white duck (P < 0.05). There were 333 significantly different lipids (|log2(Fold Change)| ≥ 1 and FDR < 0.05) screened, most lipids distributed in the muscle tissue were uniform, but some specifically distributed in connective tissue. To some extent, the results demonstrate the high lipid deposition capacity of Pekin duck and the high medicinal function of Liancheng white duck. Our study provides new insights into the relationship between skeletal muscle architecture and meat toughness, which increased the knowledge of lipidomic characteristics and provide a basis for duck meat authentication.
Collapse
Affiliation(s)
- Hehe Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - He Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Dapeng Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Shunan Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Daxun Yu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zhan Bao Guo
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Shuisheng Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zhengkui Zhou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
15
|
Xiao Y, Zhang S, Liu Z, Wang T, Cai S, Chu C, Hu X, Yi J. Effect of inoculating Pichia spp. starters on flavor formation of fermented chili pepper: Metabolomics and genomics approaches. Food Res Int 2023; 173:113397. [PMID: 37803735 DOI: 10.1016/j.foodres.2023.113397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 10/08/2023]
Abstract
The influence of Pichia spp. on flavor formation and metabolic pathways during chili pepper fermentation was investigated in this study. Multiple omics approaches were employed, including metabolomics analysis to identify volatile and non-volatile flavor compounds, and genomic analysis to gain insights into the underlying molecular mechanism driving flavor formation of chili peppers inoculated with Pichia spp. The results showed that inoculation with Pichia spp. accelerated fermentation process of chili peppers compared to spontaneous fermentation. Metabolomics analysis showed P. fermentans promoted characteristic terpenes [e.g., (Z)-β-ocimene and linalool], L-glutamate, gamma-aminobutyric acid, and succinate production, while P. manshurica produced more alcohols (e.g., isoamyl alcohol and phenylethyl alcohol) and phenols (e.g., 4-ethylguaiacol and 2-methoxy-4-methylphenol). Genomics analysis revealed that a substantial portion of the genes in Pichia spp. were associated with amino acid and carbohydrate metabolism. Specifically, the pathways involved in amino acid metabolism and the release of glycoside-bound aromatic compounds were identified as the primary drivers behind the unique flavor of fermented chili peppers, facilitated by Pichia spp.
Collapse
Affiliation(s)
- Yue Xiao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| | - Shiyao Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| | - Zhijia Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| | - Chuanqi Chu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China.
| |
Collapse
|
16
|
Yuan Y, Yu M, Chen L, Ren X, Qu Y, Shari A, Li G. Comparative analysis of different metabolites in semen of Guanzhong dairy goats with different motility rates. Theriogenology 2023; 210:53-61. [PMID: 37473596 DOI: 10.1016/j.theriogenology.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
In order to explore the different metabolites of buck semen with different motility stored at 4 °C, the semen of bucks was collected by artificial vagina. The collected semen was divided into high motility group and low motility group after treatment, with 6 replicates set for each group. The semen metabolites of high motility group and low motility group were detected by Liquid Chromatography-Mass Spectrometry (LC-MS). The results showed that 101 different metabolites were detected in the high and low motility groups of bucks, of which 48 metabolites were significantly up-regulated (P < 0.05) and 53 metabolites were significantly down regulated (P < 0.05). Most of these metabolites belonged to lipids and lipid-like molecules, organic acids and their derivatives, and organic oxygen compounds, which were mainly related to energy metabolism. According to the functional enrichment analysis of the former differential metabolites in KEGG database, the top 20 most representative metabolic pathways were detected, among which the glycerophospholipid metabolic pathways changed significantly. From the perspective of metabolomics, this study revealed the differences of metabolites and characteristic compounds of semen with different motility of bucks under low temperature preservation, which provided a scientific basis for the preservation and utilization of semen of Guanzhong dairy goats in the future.
Collapse
Affiliation(s)
- Yuxin Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Mengqi Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lu Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xinyang Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yingxin Qu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Akang Shari
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Guang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
17
|
Lin Z, Wang G, Zhang K, Jiang S, Li S, Yang H. Metabolomics investigation of global responses of Cronobacter sakazakii against common sanitizing in infant formula processing environments. Food Res Int 2023; 172:113162. [PMID: 37689917 DOI: 10.1016/j.foodres.2023.113162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Cronobacter sakazakii, an opportunistic bacterium, has raised a serious outbreak in powdered infant formula recent years. In this work, four sanitizing strategies used during infant formula processing, including chlorine, quaternary ammonium chloride (QAC), 60 °C heating, and malic acid (MA), were utilized against C. sakazakii among planktonic, air-dried (A), and air-dried & washed (AW) state, followed by an exploration of the metabolic responses induced by these treatments via a dual-platform metabolomics analysis with the ultra-high performance liquid chromatography-mass spectrometry and nuclear magnetic resonance. In the planktonic state, MA was the most effective in inhibiting bacterial growth, followed by chlorine, QAC, and 60 °C heating. Under A state, the efficacy of heating improved considerably, compared to that in the planktonic state, and remained unaltered under AW state. Chlorine and QAC were ineffective to control bacterial growth under A state, but their efficacy rose under AW state. Furthermore, the metabolomic analysis revealed chlorine induces amino acids catabolism, membrane lysis, and depression in carbohydrate and nucleotide metabolism in both planktonic and AW states, while the initiation of antioxidation mechanism was only found under AW state. Although the metabolic change caused by QAC in the planktonic state was similar to chlorine, the accumulation of osmoprotectant and membrane phospholipids within the AW cells reflected the effort to restore intracellular homeostasis upon QAC. Heating was characterized by considerable amino acid anabolism, along with mildly perturbed carbohydrate and nucleotide metabolism for heat shock protein preparation in both states. Lastly, MA promoted amino acid-dependent acid resistance under the planktonic state, and the regulation of antioxidation and osmoprotection under AW state. The metabolomics study elucidated the intracellular perturbation induced by common sanitizing, as well as the bacterial response, which provides insights for novel sanitization development.
Collapse
Affiliation(s)
- Zejia Lin
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore.
| | - Guoshu Wang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Kexin Zhang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Shaoqian Jiang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Songshen Li
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Hongshun Yang
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Zhejiang 312000, China
| |
Collapse
|
18
|
Xu X, Liu H, Wang X, Zhang Q, Guo T, Hu L, Xu S. Evaluation of the Longissimus Thoracis et Lumborum Muscle Quality of Chaka and Tibetan Sheep and the Analysis of Possible Mechanisms Regulating Meat Quality. Animals (Basel) 2023; 13:2494. [PMID: 37570302 PMCID: PMC10417249 DOI: 10.3390/ani13152494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to comprehensively evaluate the characteristics in the longissimus thoracis et lumborum (LTL) muscle of Chaka (CK) sheep and Tibetan (TB) sheep, and transcriptomics-metabolomics association analysis was used to find the possible genes, differential metabolites, and significant differential metabolic pathways that lead to meat quality differences. Based on the researched results, the nutritional quality of meat, including the contents of ether extract (11.95% vs. 10.56%), unsaturated fatty acid (51.20% vs. 47.69%), and polyunsaturated fatty acid (5.71% vs. 3.97%), were better in TB sheep than in CK sheep, while the CK sheep has better muscle fiber characteristics, such as the total number (62 vs. 45) and muscle fiber density (1426.54 mm2 vs. 1158.77 mm2) and flavor. Omics research has shown that the key differential metabolites and metabolic pathways were dominated by amino acid metabolism, particularly the glutathione metabolism, taurine and hypotaurine metabolism, and lipid metabolism-related pathways, such as glycerophospholipid metabolism and the sphingolipid signaling pathway. The intermediate metabolite sn-Glycerol 3-phosphoethanolamine played a key role in determining sheep meat quality, which was regulated by GPAT2, PLPP2, AGPAT1, PNPLA2, and GPAT4 and correlated with meat color, texture, and flavor. Overall, these results will provide effective information and more evidence to support further exploration of valuable biomarkers of meat quality.
Collapse
Affiliation(s)
- Xianli Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.X.); (T.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjin Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.X.); (T.G.)
| | - Xungang Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.X.); (T.G.)
| | - Qian Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.X.); (T.G.)
| | - Tongqing Guo
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.X.); (T.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linyong Hu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.X.); (T.G.)
| | - Shixiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.X.); (T.G.)
| |
Collapse
|
19
|
Wang X, Jia W. Bio-based material-edible rosemary induced biodegradation of aflatoxin B1 via altering endogenous protective enzymes signatures in animal-derived foods. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132021. [PMID: 37437484 DOI: 10.1016/j.jhazmat.2023.132021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Aflatoxin B1 (AFB1) is the most hazardous mycotoxin, posing risks to public health. Utilization of bio-based materials to biodegrade AFB1 is a green strategy to overcome this issue. The investigation aimed to screen for endogenous protective enzymes in bio-based material-edible rosemary based on ultra-high performance liquid chromatography coupled to hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS)-proteomics and ascertain their impacts on the biodegradation and biotransformation of AFB1, and the trade-offs of multilevel metabolism of the animal-derived foods through untargeted metabolomics. The proteomics results verified that bio-based material-edible rosemary (0.20%, w/w) significantly up-regulated glutathione S-transferase and stimulated the down-regulation of cytochrome P450 1A2 levels via activating AhR nuclear translocation in rosemary-pickled AFB1-contaminated goat meat. Metabolomics results demonstrated that edible rosemary substantially increased histidine and glutathione implicated in the antioxidant status of goat meat. More importantly, edible rosemary with high endogenous protective enzyme content could efficiently biodegrade AFB1 in goat meat. We first unveiled that rosemary could not only efficiently biodegrade AFB1 up to 90.20% (20.00-1.96 μg kg-1) but also elevate the bio-ingestion quality of goat meat. These findings suggest that the bio-based material-rosemary is an efficient and environmentally friendly approach for biodegrading AFB1 and elevating the bio-ingestion composition of goat meat.
Collapse
Affiliation(s)
- Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
20
|
Cai WQ, Jiang CY, Shang S, Wang SC, Zhu KY, Dong XP, Zhou DY, Jiang PF. Insight into the relationship between metabolite dynamic changes and microorganisms of sea urchin ( S. intermedius) gonads during storage. Food Chem X 2023; 18:100727. [PMID: 37397197 PMCID: PMC10314180 DOI: 10.1016/j.fochx.2023.100727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Sea urchin gonads have high nutritional value and degenerate rapidly during storage. Previous assessment of the freshness of sea urchin gonads was based on experience without valid biochemical indicators. Thus, the current study is to find biochemical indicators representing the freshness of sea urchin gonads. Results showed that the dominant genera of sea urchin gonads were changed from Psychromonas, Ralstonia, and Roseimarinus to Aliivibrio, Psychrilyobacter, and Photobacterium. The differential metabolites of sea urchin gonads were mainly produced through amino acids metabolism. Among them, GC-TOF-MS based differential metabolites had the greatest enrichment in the valine, leucine and isoleucine biosynthesis pathway, while LC-MS based differential metabolites had the greatest enrichment in the alanine, aspartate and glutamate metabolism pathway. The growth of dominant genus (Aliivibrio) had a great influence on the production of differential metabolites. These results will provide valuable information for accurately judging the freshness and shelf life of sea urchin gonads.
Collapse
Affiliation(s)
- Wen-qiang Cai
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Cai-yan Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Shan Shang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Shu-chen Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Kai-yue Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Xiu-ping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Da-yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Peng-fei Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| |
Collapse
|
21
|
Liu D, Zhang H, Yang Y, Liu T, Guo Z, Fan W, Wang Z, Yang X, Zhang B, Liu H, Tang H, Yu D, Yu S, Gai K, Mou Q, Cao J, Hu J, Tang J, Hou S, Zhou Z. Metabolome-Based Genome-Wide Association Study of Duck Meat Leads to Novel Genetic and Biochemical Insights. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300148. [PMID: 37013465 PMCID: PMC10288243 DOI: 10.1002/advs.202300148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Meat is among the most consumed foods worldwide and has a unique flavor and high nutrient density in the human diet. However, the genetic and biochemical bases of meat nutrition and flavor are poorly understood. Here, 3431 metabolites and 702 volatiles in 423 skeletal muscle samples are profiled from a gradient consanguinity segregating population generated by Pekin duck × Liancheng duck crosses using metabolomic approaches. The authors identified 2862 metabolome-based genome-wide association studies (mGWAS) signals and 48 candidate genes potentially modulating metabolite and volatile levels, 79.2% of which are regulated by cis-regulatory elements. The level of plasmalogen is significantly associated with TMEM189 encoding plasmanylethanolamine desaturase 1. The levels of 2-pyrrolidone and glycerophospholipids are regulated by the gene expression of AOX1 and ACBD5, which further affects the levels of volatiles, 2-pyrrolidone and decanal, respectively. Genetic variations in GADL1 and CARNMT2 determine the levels of 49 metabolites including L-carnosine and anserine. This study provides novel insights into the genetic and biochemical basis of skeletal muscle metabolism and constitutes a valuable resource for the precise improvement of meat nutrition and flavor.
Collapse
Affiliation(s)
- Dapeng Liu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - He Zhang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Youyou Yang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Tong Liu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Zhanbao Guo
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Wenlei Fan
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Zhen Wang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Xinting Yang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Bo Zhang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Hongfei Liu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Hehe Tang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Daxin Yu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Simeng Yu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Kai Gai
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Qiming Mou
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Junting Cao
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Jian Hu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Jing Tang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Shuisheng Hou
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Zhengkui Zhou
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| |
Collapse
|
22
|
Gu M, Li C, Chen L, Li S, Xiao N, Zhang D, Zheng X. Insight from untargeted metabolomics: Revealing the potential marker compounds changes in refrigerated pork based on random forests machine learning algorithm. Food Chem 2023; 424:136341. [PMID: 37216778 DOI: 10.1016/j.foodchem.2023.136341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/16/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Data on changes in non-volatile components and metabolic pathways during pork storage were inadequately investigated. Herein, an untargeted metabolomics coupled with random forests machine learning algorithm was proposed to identify the potential marker compounds and their effects on non-volatile production during pork storage by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS). A total of 873 differential metabolites were identified based on analysis of variance (ANOVA). Bioinformatics analysis shows that the key metabolic pathways for protein degradation and amino acid transport are amino acid metabolism and nucleotide metabolism. Finally, 40 potential marker compounds were screened using the random forest regression model, innovatively proposing the key role of pentose-related metabolism in pork spoilage. Multiple linear regression analysis revealed that d-xylose, xanthine, and pyruvaldehyde could be key marker compounds related to the freshness of refrigerated pork. Therefore, this study could provide new ideas for the identification of marker compounds in refrigerated pork.
Collapse
Affiliation(s)
- Minghui Gu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Cheng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shaobo Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Naiyu Xiao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Xiaochun Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
23
|
Zhang J, Zhang Q, Li F. Characteristics of key microorganisms and metabolites in irradiated marbled beef. Meat Sci 2023; 199:109121. [PMID: 36724675 DOI: 10.1016/j.meatsci.2023.109121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Insights into changes in microorganisms and metabolites in irradiated marbled beef may help elucidate the beneficial effects of irradiation on prolonging the shelf life of meat. In this study, 16S rRNA gene sequencing, ultra-high-performance liquid chromatography-tandem mass spectrometry, and Pearson's correlation analyses were conducted to detect key microorganisms, core metabolites, and potential correlation between the microbiome and metabolome in marbling beef. Microbiome analysis showed that irradiation effectively eradicated the spoilage bacterium Leuconostoc and reduced the proportions of Carnobacterium and Lactobacillus in marbled beef. Additionally, results of metabolomic analysis involving irradiated marbled beef revealed that metabolites with significant differences were mainly organic acids and their derivatives, lipids, and lipid-like molecules, including six core metabolites. Furthermore, a significant correlation between key bacteria and metabolites was observed. Carnobacterium, Lactobacillus, and Leuconostoc affected the accumulation of core metabolites in irradiated marbled beef by influencing amino acid and lipid metabolism. Characterization of the microbiota and metabolites, as well as clarification of their correlation, can contribute to a better understanding of the mechanisms whereby irradiation helps maintain meat quality.
Collapse
Affiliation(s)
- Ju Zhang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi 712100, China.
| | - Qian Zhang
- Ulanqab Vocational College, Ulanqab 012000, China
| | - Feiran Li
- Shaanxi Institute of Zoology, No. 85 Xing Qing Ave, Xian, 710032, Shaanxi, China
| |
Collapse
|
24
|
Chen X, Cao J, Geng A, Zhang X, Wang H, Chu Q, Yan Z, Zhang Y, Liu H, Zhang J. Integration of GC-MS and LC-MS for metabolite characteristics of thigh meat between fast- and slow-growing broilers at marketable age. Food Chem 2023; 403:134362. [PMID: 36183464 DOI: 10.1016/j.foodchem.2022.134362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 11/26/2022]
|
25
|
Felicia WXL, Rovina K, ‘Aqilah NMN, Vonnie JM, Yin KW, Huda N. Assessing Meat Freshness via Nanotechnology Biosensors: Is the World Prepared for Lightning-Fast Pace Methods? BIOSENSORS 2023; 13:217. [PMID: 36831985 PMCID: PMC9954215 DOI: 10.3390/bios13020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
In the rapidly evolving field of food science, nanotechnology-based biosensors are one of the most intriguing techniques for tracking meat freshness. Purine derivatives, especially hypoxanthine and xanthine, are important signs of food going bad, especially in meat and meat products. This article compares the analytical performance parameters of traditional biosensor techniques and nanotechnology-based biosensor techniques that can be used to find purine derivatives in meat samples. In the introduction, we discussed the significance of purine metabolisms as analytes in the field of food science. Traditional methods of analysis and biosensors based on nanotechnology were also briefly explained. A comprehensive section of conventional and nanotechnology-based biosensing techniques is covered in detail, along with their analytical performance parameters (selectivity, sensitivity, linearity, and detection limit) in meat samples. Furthermore, the comparison of the methods above was thoroughly explained. In the last part, the pros and cons of the methods and the future of the nanotechnology-based biosensors that have been created are discussed.
Collapse
Affiliation(s)
- Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nasir Md Nur ‘Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Joseph Merillyn Vonnie
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Koh Wee Yin
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nurul Huda
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Locked Bag No. 3, Sandakan 90509, Sabah, Malaysia
| |
Collapse
|
26
|
Jia W, Wang X, Shi L. Endogenous hydrocortisone caused metabolic perturbation and nutritional deterioration of animal-derived food in a dose-dependent manner. Food Chem 2023; 401:134145. [DOI: 10.1016/j.foodchem.2022.134145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 12/24/2022]
|
27
|
Novel Insights into Total Flavonoids of Rhizoma Drynariae against Meat Quality Deterioration Caused by Dietary Aflatoxin B1 Exposure in Chickens. Antioxidants (Basel) 2022; 12:antiox12010083. [PMID: 36670945 PMCID: PMC9854432 DOI: 10.3390/antiox12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a group of highly toxic mycotoxins that are commonly found in human and animal foods and threaten animal and human food safety. Total flavonoids of Rhizoma Drynaria (TFRD), a traditional Chinese medicinal herb, exert multiple biological activities such as immunomodulatory, anti-inflammatory, and anti-oxidation effects. Here, a total of 160 healthy 21-day-old male broilers were randomly divided into four groups: the CON group, the TFRD group, the AFB1 group, and the AFB1 + TFRD group. The study found that AFB1 exposure altered the breast meat quality-related indicators, including meat sensory and physical indicators. Metabolomics analysis further showed that the change in meat quality was closely associated with significantly differential metabolites of breast muscle. Furthermore, spotlighted amino acid content contributes to changes in the secondary structure of the myofibrillar protein by Raman spectroscopy analysis, which was associated with the oxidative stress and inflammatory response in AFB1-exposed breast meat. Meanwhile, dietary 125 mg/kg TFRD supplementation could effectively restore the changes in breast meat quality. Taken together, these results by multi-technical analysis revealed that AFB1 exposure causes deterioration of chicken meat quality and that TFRD may be a potential herbal extract to antagonize mycotoxicity.
Collapse
|
28
|
Effect of fermentation by Pediococcus pentosaceus and Staphylococcus carnosus on the metabolite profile of sausages. Food Res Int 2022; 162:112096. [PMID: 36461402 DOI: 10.1016/j.foodres.2022.112096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
A multi-omics approach was applied to investigate the differences and correlations between characteristic volatile flavor substances and non-volatile metabolites in sausages fermented by Pediococcus pentosaceus (P. pentosaceus) and Staphylococcus carnosus (S. carnosus) alone and in a mixture. Twenty-seven volatile metabolites were identified by headspace solid-phase microextraction/gas chromatography-mass. According to orthogonal projections to latent structures-differential analysis, 17 characteristic volatile metabolites were detected in the sausages of different treatments. Utilizing ultra-high-performance liquid chromatography coupled with a mass spectrometer to analyze metabolite profiles, 42.03% of the non-volatile metabolites were classified as lipids and lipid-like molecules, 25.00% of organic acids and derivatives, and others. Seventeen characteristic flavor substances were significantly correlated with twenty differential non-volatile metabolites, and the non-volatile metabolites changed significantly. Differences in the characteristics and combinations of microorganisms themselves have a decisive role in the development of flavor substances and non-volatile metabolites in sausages.
Collapse
|
29
|
Identification of Canine Pyometra-Associated Metabolites Using Untargeted Metabolomics. Int J Mol Sci 2022; 23:ijms232214161. [PMID: 36430638 PMCID: PMC9697130 DOI: 10.3390/ijms232214161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Canine pyometra frequently occurs in middle-aged to older intact bitches, which seriously affects the life of dogs and brings an economic loss to their owners. Hence, finding a key metabolite is very important for the diagnosis and development of a new safe and effective therapy for the disease. In this study, dogs with pyometra were identified by blood examinations, laboratory analyses and diagnostic imaging, and fifteen endometrium tissues of sick dogs with pyometra and fifteen controls were collected and their metabolites were identified utilizing a UHPLC-qTOF-MS-based untargeted metabolomics approach. The results indicated that the elevated inflammatory cells were observed in dogs with pyometra, suggesting that sick dogs suffered systemic inflammation. In the untargeted metabolic profile, 705 ion features in the positive polarity mode and 414 ion features in the negative polarity mode were obtained in endometrium tissues of sick dogs with pyometra, with a total of 275 differential metabolites (173 in positive and 102 in negative polarity modes). Moreover, the multivariate statistical analyses such as PCA and PLS-DA also showed that the metabolites were significantly different between the two groups. Then, these differential metabolites were subjected to pathway analysis using Metaboanalyst 4.0, and Galactose metabolism, cAMP signaling pathway and Glycerophospholipid metabolism were enriched, proving some insights into the metabolic changes during pyometra. Moreover, the receiver operating characteristic curves further confirmed kynurenic acid was expected to be a candidate biomarker of canine pyometra. In conclusion, this study provided a new idea for exploring early diagnosis methods and a safe and effective therapy for canine pyometra.
Collapse
|
30
|
Harlina PW, Maritha V, Musfiroh I, Huda S, Sukri N, Muchtaridi M. Possibilities of Liquid Chromatography Mass Spectrometry
(LC-MS)-Based Metabolomics and Lipidomics in the Authentication of Meat
Products: A Mini Review. Food Sci Anim Resour 2022; 42:744-761. [PMID: 36133639 PMCID: PMC9478982 DOI: 10.5851/kosfa.2022.e37] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Putri Widyanti Harlina
- Department of Food Industrial Technology,
Faculty of Agro-Industrial Technology, Universitas
Padjadjaran, Bandung 45363, Indonesia
- Corresponding author: Putri
Widyanti Harlina, Department of Food Industrial Technology, Faculty of
Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia,
Tel: +62-22-7798844, E-mail:
| | - Vevi Maritha
- Department of Pharmaceutical Analysis and
Medicinal Chemistry, Faculty of Pharmacy, Universitas
Padjadjaran, Bandung 45363, Indonesia
| | - Ida Musfiroh
- Department of Pharmaceutical Analysis and
Medicinal Chemistry, Faculty of Pharmacy, Universitas
Padjadjaran, Bandung 45363, Indonesia
| | - Syamsul Huda
- Department of Food Industrial Technology,
Faculty of Agro-Industrial Technology, Universitas
Padjadjaran, Bandung 45363, Indonesia
| | - Nandi Sukri
- Department of Food Industrial Technology,
Faculty of Agro-Industrial Technology, Universitas
Padjadjaran, Bandung 45363, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and
Medicinal Chemistry, Faculty of Pharmacy, Universitas
Padjadjaran, Bandung 45363, Indonesia
- Corresponding author:
Muchtaridi Muchtaridi, Department of Pharmaceutical Analysis and Medicinal
Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363,
Indonesia, Tel: +62-22-8784288888 (ext. 3210), E-mail:
| |
Collapse
|
31
|
Tokysheva G, Makangali K, Uzakov Y, Kakimov M, Vostrikova N, Baiysbayeva M, Mashanova N. The potential of goat meat as a nutrition source for schoolchildren. POTRAVINARSTVO 2022. [DOI: 10.5219/1763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The issue of rational nutrition of children is still extremely relevant and an effective factor in ensuring the preservation of the life and health of children. Pathological conditions associated with intolerance to certain components of food are increasingly common. Biologically complete products play an important role in the organization of rational nutrition of children, which can be created only in industrial production conditions. When assessing the chemical composition of experimental goat meat samples (Zaanenskaya, Alpine, Nubian), no abnormal deviations were detected, and all indicators were in the generally accepted contents of this type of animal muscle tissue. The mineral composition showed that goat meat is rich in such elements as potassium – 1693.22 – 4125.83 mg/kg; sodium – 852.27 – 1518 mg/kg, magnesium – 125.33 – 295.8 mg/kg; calcium – 79.27 – 160.79 mg/kg, iron 11.42-87.52 mg/kg. The vitamin composition of goat meat showed that the content of pantothenic acid (B5) was 0.53 – 0.62 mg / 100g, pyridoxine (B6) 0.52 – 0.64 mg/100g tocopherol 0.27 – 0.33 mg/100g. The mass fraction of goat meat proteins was 2.1 ±0.3 – 2.4 ±0.4%. The study of the dynamics of changes in the composition of protein fractions based on the results of comparative studies of the ratio of sarcoplasmic proteins showed the content of water-soluble (1.75 – 4.06%), salt-soluble (1.75 – 2.44%), alkali-soluble (11.15 – 15.10%) proteins. The salt-soluble fraction reflects the total changes in the state of protein fractions, the solubility of which was not the same for the rocks under consideration (the highest concentration was determined in the Nubian rock).
Collapse
|
32
|
Fang J, Feng L, Lu H, Zhu J. Metabolomics reveals spoilage characteristics and interaction of Pseudomonas lundensis and Brochothrix thermosphacta in refrigerated beef. Food Res Int 2022; 156:111139. [DOI: 10.1016/j.foodres.2022.111139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
|
33
|
Zhang R, Zhu Z, Jia W. Time-Series Lipidomics Insights into the Progressive Characteristics of Lipid Constituents of Fresh Walnut during Postharvest Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13796-13809. [PMID: 34763422 DOI: 10.1021/acs.jafc.1c05120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A high-throughput lipid profiling platform adopting an accurate quantification strategy was built based on Q-Orbitrap mass spectrometry. Lipid components of fresh walnut during postharvest storage were determined, and the fatty acid distributions in triacylglycerol and polar lipids were also characterized. A total of 554 individual lipids in fresh walnut were mainly glycerolipids (56.7%), glycerophospholipids (32.4%), and sphingolipids (11%). With the progress of postharvest storage, 16 lipid subclasses in the stored walnut sample were significantly degraded, in which 34 lipids changed significantly between the fresh and stored groups. The sphingolipid metabolism, glycerolipid metabolism, and linoleic acid metabolism pathways were significantly enriched. The oxidation and degradation mechanism of linoleic acid in walnut kernel during postharvest storage was proposed. The established lipidomics platform can supply reliable and traceable lipid profiling data, help to improve the understanding of lipid degradation in fresh walnut, and offer a framework for analyzing lipid metabolisms in other tree nuts.
Collapse
Affiliation(s)
- Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zhenbao Zhu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| |
Collapse
|