1
|
Yang Y, Yao F, Sun Y, Yang Z, Li R, Bai G, Lin W, Chen H. Appropriately Reduced Nitrogen and Increased Phosphorus in Ratooning Rice Increased the Yield and Reduced the Greenhouse Gas Emissions in Southeast China. PLANTS (BASEL, SWITZERLAND) 2024; 13:438. [PMID: 38337971 PMCID: PMC10857620 DOI: 10.3390/plants13030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Reducing greenhouse gas emissions while improving productivity is the core of sustainable agriculture development. In recent years, rice ratooning has developed rapidly in China and other Asian countries, becoming an effective measure to increase rice production and reduce greenhouse gas emissions in these regions. However, the lower yield of ratooning rice caused by the application of a single nitrogen fertilizer in the ratooning season has become one of the main reasons limiting the further development of rice ratooning. The combined application of nitrogen and phosphorus plays a crucial role in increasing crop yield and reducing greenhouse gas emissions. The effects of combined nitrogen and phosphorus application on ratooning rice remain unclear. Therefore, this paper aimed to investigate the effect of combined nitrogen and phosphorus application on ratooning rice. Two hybrid rice varieties, 'Luyou 1831' and 'Yongyou 1540', were used as experimental materials. A control treatment of nitrogen-only fertilization (187.50 kg·ha-1 N) was set, and six treatments were established by reducing nitrogen fertilizer by 10% (N1) and 20% (N2), and applying three levels of phosphorus fertilizer: N1P1 (168.75 kg·ha-1 N; 13.50 kg·ha-1 P), N1P2 (168.75 kg·ha-1 N; 27.00 kg·ha-1 P), N1P3 (168.75 kg·ha-1 N; 40.50 kg·ha-1 P), N2P1 (150.00 kg·ha-1 N; 13.50 kg·ha-1 P), N2P2 (150.00 kg·ha-1 N; 27.00 kg·ha-1 P), and N2P3 (150.00 kg·ha-1 N; 40.50 kg·ha-1 P). The effects of reduced nitrogen and increased phosphorus treatments in ratooning rice on the yield, the greenhouse gas emissions, and the community structure of rhizosphere soil microbes were examined. The results showed that the yield of ratooning rice in different treatments followed the sequence N1P2 > N1P1 > N1P3 > N2P3 > N2P2 > N2P1 > N. Specifically, under the N1P2 treatment, the average two-year yields of 'Luyou 1831' and 'Yongyou 1540' reached 8520.55 kg·ha-1 and 9184.90 kg·ha-1, respectively, representing increases of 74.30% and 25.79% compared to the N treatment. Different nitrogen and phosphorus application combinations also reduced methane emissions during the ratooning season. Appropriately combined nitrogen and phosphorus application reduced the relative contribution of stochastic processes in microbial community assembly, broadened the niche breadth of microbial communities, enhanced the abundance of functional genes related to methane-oxidizing bacteria and soil ammonia-oxidizing bacteria in the rhizosphere, and decreased the abundance of functional genes related to methanogenic and denitrifying bacteria, thereby reducing greenhouse gas emissions in the ratooning season. The carbon footprint of ratooning rice for 'Luyou 1831' and 'Yongyou 1540' decreased by 25.82% and 38.99%, respectively, under the N1P2 treatment compared to the N treatment. This study offered a new fertilization pattern for the green sustainable development of rice ratooning.
Collapse
Affiliation(s)
- Yuncheng Yang
- College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (F.Y.); (Y.S.); (Z.Y.); (R.L.); (G.B.); (W.L.)
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feifei Yao
- College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (F.Y.); (Y.S.); (Z.Y.); (R.L.); (G.B.); (W.L.)
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yangbo Sun
- College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (F.Y.); (Y.S.); (Z.Y.); (R.L.); (G.B.); (W.L.)
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhipeng Yang
- College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (F.Y.); (Y.S.); (Z.Y.); (R.L.); (G.B.); (W.L.)
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rong Li
- College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (F.Y.); (Y.S.); (Z.Y.); (R.L.); (G.B.); (W.L.)
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ge Bai
- College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (F.Y.); (Y.S.); (Z.Y.); (R.L.); (G.B.); (W.L.)
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenxiong Lin
- College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (F.Y.); (Y.S.); (Z.Y.); (R.L.); (G.B.); (W.L.)
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongfei Chen
- College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (F.Y.); (Y.S.); (Z.Y.); (R.L.); (G.B.); (W.L.)
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Yuan X, Luo Y, Yang Y, Chen K, Wen Y, Luo Y, Li B, Ma Y, Guo C, Chen Z, Yang Z, Sun Y, Ma J. Effects of postponing nitrogen topdressing on starch structural properties of superior and inferior grains in hybrid indica rice cultivars with different taste values. FRONTIERS IN PLANT SCIENCE 2023; 14:1251505. [PMID: 37881615 PMCID: PMC10597642 DOI: 10.3389/fpls.2023.1251505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Introduction Nitrogen (N) fertilizer management, especially postponing N topdressing can affect rice eating quality by regulating starch quality of superior and inferior grains, but the details are unclear. This study aimed to evaluate the effects of N topdressing on starch structure and properties of superior and inferior grains in hybrid indica rice with different tastes and to clarify the relationship between starch structure, properties, and taste quality. Methods Two hybrid indica rice varieties, namely the low-taste Fyou 498 and high-taste Shuangyou 573, were used as experimental materials. Based on 150 kg·N hm-2, three N fertilizer treatments were established: zero N (N0), local farmer practice (basal fertilizer: tillering fertilizer: panicle fertilizer=7:3:0) (N1), postponing N topdressing (basal fertilizer: tillering fertilizer: panicle fertilizer=3:1:6) (N2). Results The starch granules of superior grains were more complete, and the decrease in small granules content and the stability of starch crystals were a certain extent less than those of inferior grains. Compared with N1, under N2, low-taste and high-taste varieties large starch granules content were significantly reduced by 6.89%, 0.74% in superior grains and 4.26%, 2.71% in inferior grains, the (B2 + B3) chains was significantly reduced by 1.61%, 0.98% in superior grains, and 1.18%, 0.97% in inferior grains, both reduced the relative crystallinity and 1045/1022 cm-1, thereby decreasing the stability of the starch crystalline region and the orderliness of starch granules. N2 treatment reduced the ΔHgel of two varieties. These changes ultimately contributed to the enhancement of the taste values in superior and inferior grains in both varieties, especially the inferior grains. Correlation analysis showed that the average starch volume diameter (D[4,3]) and relative crystallinity were significantly positively correlated with the taste value of superior and inferior sgrains, suggesting their potential use as an evaluation index for the simultaneous enhancement of the taste value of rice with superior and inferior grains. Discussion Based on 150 kg·N hm-2, postponing N topdressing (basal fertilizer: tillering fertilizer: panicle fertilizer=3:1:6) promotes the enhancement of the overall taste value and provides theoretical information for the production of rice with high quality.
Collapse
Affiliation(s)
- Xiaojuan Yuan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongheng Luo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yonggang Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kairui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yanfang Wen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yinghan Luo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bo Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yangming Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Changchun Guo
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, China
| | - Zongkui Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiyuan Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yongjian Sun
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Ma
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Yuan S, Yang C, Yu X, Zheng C, Xiao S, Xu L, Cui K, Huang J, Peng S. On-farm comparison in grain quality between main and ratoon crops of ratoon rice in Hubei Province, Central China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7259-7267. [PMID: 35736837 DOI: 10.1002/jsfa.12091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND While ratoon rice has been increasingly practiced by farmers recently in China, on-farm performance in grain quality of main and ratoon crops in the mechanized rice ratooning system is less studied and remains poorly understood. Therefore, a multi-location on-farm survey was conducted to collect rice grain samples from farmers' fields to determine grain quality of main and ratoon crops of ratoon rice at 12 locations across Hubei Province, central China, in 2016. RESULTS On average, milled and head rice percentage in the ratoon crop was 70.2% and 65.7%, which was significantly higher than in the main crop, whereas chalky grain percentage and grain chalkiness in ratoon crop (10.1% and 2.8%, respectively) were significantly lower than those in the main crop (36.6% and 14.2%, respectively). The differences in these quality traits between the two crops were consistent at all locations. Averaged across 12 locations, scores of translucency and gel consistency were significantly lower but amylose content and alkali spreading value were significantly higher in the ratoon crop than in the main crop, with the difference between the two crops varying in gel consistency by location. CONCLUSION Overall, grain quality, especially milling and appearance of the ratoon crop, was superior to the main crop in the mechanized rice ratooning system. As a result, this study emphasizes the potential role of the rice ratooning system in other regions with a similar biophysical background producing high-quality rice. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shen Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chen Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xing Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chang Zheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sen Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Le Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Analysis of Related Metabolites Affecting Taste Values in Rice under Different Nitrogen Fertilizer Amounts and Planting Densities. Foods 2022; 11:foods11101508. [PMID: 35627078 PMCID: PMC9141971 DOI: 10.3390/foods11101508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to explore the differences in metabolites related to rice quality formation under different nitrogen (N) fertilizers and planting densities. In this study, Yangnongxiang 28 was used as the experimental material with the following conditions: high nitrogen and low density (HNLD; high nitrogen: 360 kg·hm−2, low density: the row spacing of rice plants was 16 cm × 30 cm), medium nitrogen and medium density (MNMD; medium nitrogen: 270 kg·hm−2, medium density: the row spacing of rice plants was 13 cm × 30 cm), and low nitrogen and high density (LNHD; low nitrogen: 270 kg·hm−2, high density: the row spacing of rice plants was 10 cm × 30 cm). The rice quality indexes, including the processing quality, amylose content, and taste value, were compared under different treatments, and we analyzed their relationship with the metabolites. The results show that the milled rice rate of HNLD was 13.85% and was 1.89% higher than that of LNHD and MNMD, respectively. The head milled rice rate of HNLD was 32.45% and 6.39% higher than that of LNHD and MNMD, respectively. The milled rice rate and head milled rice rate of HNLD and MNMD were significantly higher than those of LNHD. This study identified 22 differential metabolites (DMs) in HNLD and LNHD, 38 DMs in HNLD and MNMD, and 23 DMs in LNHD and MNMD. Most of the identified differential metabolites were lipid metabolites, which were mainly enriched in the lipid metabolic pathways and amino acid metabolic pathways. The correlation analysis showed that the lipid metabolite physapubescin was significantly negatively correlated with the taste value. The lipid metabolites 2-undecen-1-ol, lucidenic acid F, and 8-deoxy-11,13-dihydroxygrosheimin were significantly positively correlated with the taste value. Lipids may be important substances that lead to differences in taste under different nitrogen fertilizer and density treatments.
Collapse
|