1
|
Sidhartha PN, Ch S, Ghosh B, Chappanda KN. The quality by design approach for optimization of slayer exciter based low power portable atmospheric plasma jet on bactericidal efficacy of Pseudomonas aeruginosa. JOURNAL OF BIOPHOTONICS 2023; 16:e202200333. [PMID: 36883954 DOI: 10.1002/jbio.202200333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 06/07/2023]
Abstract
A simple, portable, economical low-temperature atmospheric plasma (LTAP) for bactericidal efficacy of Gram-negative bacteria (Pseudomonas aeruginosa) with different carrier gases (argon, helium, and nitrogen) using the quality by design (QbD) approach, design of experiments (DoE), and response surface graphs (RSG) is presented. Box-Behnken design was used as the DoE to narrow down and further optimize the experimental factors of LTAP. Plasma exposure time, input DC voltage, and carrier gas flow rate were varied to examine the bactericidal efficacy using the zone of inhibition (ZOI). A higher bactericidal efficacy was achieved under the optimal bactericidal factors having ZOI of 50.837 ± 2.418 mm2 with the plasma power density of 132 mW/cm3 for LTAP-Ar at 61.19 s, 14.8747 V, and 219.379 sccm than LTAP-He and LTAP-N2 . The LTAP-Ar was further evaluated at different frequencies and probe lengths to achieve a ZOI of 58.237 ± 4.01 mm2 .
Collapse
Affiliation(s)
- P N Sidhartha
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Telangana, Hyderabad, 500078 Medchal, India
| | - Sanjay Ch
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Telangana, Hyderabad, 500078 Medchal, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Telangana, Hyderabad, 500078 Medchal, India
| | - Karumbaiah N Chappanda
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Telangana, Hyderabad, 500078 Medchal, India
- Sensors and Nano Electronics (SANE) Lab, School of Applied Engineering and Technology, Southern Illinois University Carbondale, 62901, Illinois, USA
| |
Collapse
|
2
|
Kubina S, Costa D, Cazeaux C, Villena I, Favennec L, Razakandrainibe R, La Carbona S. Persistence and survival of Cryptosporidium parvum oocysts on lamb's lettuce leaves during plant growth and in washing conditions of minimally-processed salads. Int J Food Microbiol 2023; 388:110085. [PMID: 36652747 DOI: 10.1016/j.ijfoodmicro.2023.110085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Cryptosporidium is the causative agent of cryptosporidiosis, which results, among others, in profuse diarrhoea. Transmission to humans occurs via the faecal-oral route directly by contact with infected hosts or indirectly by waterborne or foodborne routes. For the latter, parasite transmission is closely linked to the oocyst's ability to persist and survive in food matrices. In this study, we evaluated the persistence and survival of Cryptosporidium oocysts in lamb's lettuce: i) during plant growth and ii) in conditions mimicking the industrial washing process applied in minimally-processed vegetables (MPV). Results show that oocysts persisted during the growth of lamb's lettuce, i.e. two months from the 2-leaf stage until the 8-leaf harvest time (-0.89 Log10 of oocysts). However, their survival decreased from as early as one week (-0.61 Log10), and only 6 % of oocysts remained infective at the time of harvest. The washing process had a limited effect on parasite load (<0.5 Log10) and no effect on survival; chlorination of washing water did not improve the efficiency (removal and inactivation) of the process. The ability of C. parvum to persist and survive throughout the food chain may drive its transmission to humans through MPV products. Appropriate management measures should be implemented at each operational level to limit contamination and ensure food safety of fresh produce.
Collapse
Affiliation(s)
- Sophie Kubina
- ACTALIA Food Safety Department, 310 Rue Popielujko, Saint-Lô 50000, France; Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, Rouen 76000, France.
| | - Damien Costa
- Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, Rouen 76000, France; Laboratoire de Parasitologie-Mycologie, CNR Laboratoire Expert Cryptosporidioses, Centre Hospitalier Universitaire de Rouen, Rouen 76000, France.
| | - Catherine Cazeaux
- ACTALIA Food Safety Department, 310 Rue Popielujko, Saint-Lô 50000, France.
| | - Isabelle Villena
- Laboratoire de Parasitologie-Mycologie, EA 7510, SFR CAP-Santé, Université Reims-Champagne Ardenne, CHU, Reims, 51100, France.
| | - Loïc Favennec
- Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, Rouen 76000, France; Laboratoire de Parasitologie-Mycologie, CNR Laboratoire Expert Cryptosporidioses, Centre Hospitalier Universitaire de Rouen, Rouen 76000, France.
| | - Romy Razakandrainibe
- Laboratoire de Parasitologie, EA 7510, Université de Rouen Normandie, Rouen 76000, France; Laboratoire de Parasitologie-Mycologie, CNR Laboratoire Expert Cryptosporidioses, Centre Hospitalier Universitaire de Rouen, Rouen 76000, France.
| | | |
Collapse
|
3
|
De Baerdemaeker K, Van Reepingen A, Nikiforov A, De Meulenaer B, De Geyter N, Devlieghere F. Non-Thermal Plasma Decontamination Using a Multi-Hollow Surface Dielectric Barrier Discharge: Impact of Food Matrix Composition on Bactericidal Efficacy. Foods 2023; 12:foods12020386. [PMID: 36673477 PMCID: PMC9858114 DOI: 10.3390/foods12020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
The non-thermal plasma (NTP) treatment of food products as an alternative for thermal processing has been investigated over the last few years. This quasi-neutral gas contains a wide variety of reactive oxygen and nitrogen species (RONS), which could be lethal for bacterial cells present in the product. However, apart from only targeting bacteria, the RONS will also interact with components present in the food matrix. Therefore, these food components will protect the microorganisms, and the NTP treatment efficiency will decrease. This effect was investigated by supplementing a plain agar medium with various representative food matrix components. After inoculation with Escherichia coli O157:H7 (STEC) MB3885, the plates were treated for 30 s by a multi-hollow surface dielectric barrier discharge (MSDBD) generated in either dry air or air at 75% humidity, at constant power (25.7 ± 1.7 W). Subsequently, the survival of the cells was quantified. It has been found that the addition of casein hydrolysate (7.1 ± 0.2 m%), starch (2.0 m%), or soybean oil (4.6 m%) decreased the inactivation effect significantly. Food products containing these biomolecules might therefore need a more severe NTP treatment. Additionally, with increasing humidity of the plasma input gas, ozone levels decreased, and the bactericidal effect was generally less pronounced.
Collapse
Affiliation(s)
- Klaas De Baerdemaeker
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Amber Van Reepingen
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Anton Nikiforov
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
| | - Bruno De Meulenaer
- NutriFOODchem Research Group, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
| | - Frank Devlieghere
- Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-9-264-61-77
| |
Collapse
|