1
|
Wang G, Wang X, Zhang T, Qin Z, Zheng F, Ye X, Sun B, Cheng H. Advancing flavor perception research with EEG microstate analysis: A dynamic approach to understanding brain responses to alcoholic stimuli. Food Chem 2025; 482:144218. [PMID: 40209384 DOI: 10.1016/j.foodchem.2025.144218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Understanding how our brain's perceptual system related to sensory evaluation of food can be affected by alcohol concentration is essential for both neuroscience and food science. This study applied EEG microstate analysis to characterize dynamic brain activity across seven alcohol levels (water, 5 %, 10 %, 20 %, 40 %, 53 % ABV, and Baijiu). Unlike traditional EEG analyses, microstate analysis provides a temporally resolved perspective on large-scale neural dynamics. Four microstates (A, B, C, D) were identified, with microstates B and C predominantly involved in sensory-emotional processing. Lower alcohol levels (≤20 % ABV) enhanced sensory focus, whereas higher concentrations (≥ 40 % ABV) induced frequent sensory re-evaluation and attentional shifts. These results reveal concentration-dependent neural adaptations, demonstrating that alcohol modulates both sensory and cognitive processing through dynamic brain state transitions. These findings enhance our understanding of alcohol-induced sensory and cognitive processing, providing insights for both neuro-flavor research and food science applications.
Collapse
Affiliation(s)
- Guangnan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaolei Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Tianyi Zhang
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Zihan Qin
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fuping Zheng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Wang G, Wang X, Cheng H, Li H, Qin Z, Zheng F, Ye X, Sun B. Application of electroencephalogram (EEG) in the study of the influence of different contents of alcohol and Baijiu on brain perception. Food Chem 2025; 462:140969. [PMID: 39197245 DOI: 10.1016/j.foodchem.2024.140969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/27/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Alcoholic beverages flavour is complex and unique with different alcohol content, and the application of flavour perception could improve the objectivity of flavour evaluation. This study utilized electroencephalogram (EEG) to assess brain reactions to alcohol percentages (5 %-53 %) and Baijiu's complex flavours. The findings demonstrate the brain's proficiency in discerning between alcohol concentrations, evidenced by increasing physiological signal strength in tandem with alcohol content. When contrasted with alcohol solutions of equivalent concentrations, Baijiu prompts a more significant activation of brain signals, underscoring EEG's capability to detect subtleties due to flavour complexity. Additionally, the study reveals notable correlations, with δ and α wave intensities escalating in response to alcohol stimulation, coupled with substantial activation in the frontal, parietal, and right temporal regions. These insights verify the efficacy of EEG in charting the brain's engagement with alcoholic flavours, setting the stage for more detailed exploration into the neural encoding of these sensory experiences.
Collapse
Affiliation(s)
- Guangnan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xiaolei Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Hehe Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Zihan Qin
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fuping Zheng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Wang J, Wang J, Qiao L, Zhang N, Sun B, Li H, Sun J, Chen H. From Traditional to Intelligent, A Review of Application and Progress of Sensory Analysis in Alcoholic Beverage Industry. Food Chem X 2024; 23:101542. [PMID: 38974198 PMCID: PMC11225692 DOI: 10.1016/j.fochx.2024.101542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Sensory analysis is an interdisciplinary field that combines multiple disciplines to analyze food qualitatively and quantitatively. At present, this analysis method has been widely used in product development, quality control, marketing, flavor analysis, safety supervision and inspection of alcoholic beverages. Due to the changing needs of analysis, new and more optimized methods are still emerging. Thereinto, intelligent and biometric technologies with growing attention have also been applied to sensory analysis. This work summarized the sensory analysis methods from three aspects, including traditional artificial sensory analysis, intelligent sensory technology, and innovative technologies. Meanwhile, the application sensory analysis in alcoholic beverages and its industrial production was scientifically emphasized. Moreover, the future tendency of sensory analysis in the alcoholic beverage industry is also highlights.
Collapse
Affiliation(s)
- Junyi Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Lina Qiao
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Ning Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Hehe Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jinyuan Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| |
Collapse
|
4
|
Yang T, Zhang P, Hu J, Xu W, Jiang W, Feng R, Lou Y, Jin X, Qian Z, Gao F, Gao K, Liu R, Yang Y. Exploring the neural correlates of fat taste perception and discrimination: Insights from electroencephalogram analysis. Food Chem 2024; 450:139353. [PMID: 38636376 DOI: 10.1016/j.foodchem.2024.139353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Understanding neural pathways and cognitive processes involved in the transformation of dietary fats into sensory experiences has profound implications for nutritional well-being. This study presents an efficient approach to comprehending the neural perception of fat taste using electroencephalogram (EEG). Through the examination of neural responses to different types of fatty acids (FAs) in 45 participants, we discerned distinct neural activation patterns associated with saturated versus unsaturated fatty acids. The spectrum analysis of averaged EEG signals revealed notable variations in δ and α-frequency bands across FA types. The topographical distribution and source localization results suggested that the brain encodes fat taste with specific activation timings in primary and secondary gustatory cortices. Saturated FAs elicited higher activation in cortical associated with emotion and reward processing. This electrophysiological evidence enhances our understanding of fundamental mechanisms behind fat perception, which is helpful for guiding strategies to manage hedonic eating and promote balanced fat consumption.
Collapse
Affiliation(s)
- Tianyi Yang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Peng Zhang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, Shanghai 200040, China
| | - Wei Xu
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wei Jiang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Rui Feng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, Shanghai 200040, China
| | - Yajun Lou
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xiaofei Jin
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Fan Gao
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Keqiang Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Yamin Yang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
5
|
Tonacci A, Scalzini G, Díaz-Guerrero P, Sanmartin C, Taglieri I, Ferroni G, Flamini G, Odello L, Billeci L, Venturi F. Chemosensory analysis of emotional wines: Merging of explicit and implicit methods to measure emotions aroused by red wines. Food Res Int 2024; 190:114611. [PMID: 38945619 DOI: 10.1016/j.foodres.2024.114611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Wine is a cultural product capable of arousing emotions. Measuring emotions and figuring out how much they could influence preferences or purchase decisions of consumers is a new trend in sensory and consumer research. However, the complexity of feelings makes the measure of emotions extremely challenging. Thus, a comprehensive understanding of emotions related to sensory stimuli in wine tasting is still missing. The purpose of the study is to evaluate the emotional power of tasting red wines using a multidisciplinary approach, combining sensory analysis performed by trained panelists, implicit and explicit measurements of emotions and chemical analysis of the wines tasted. Various red wines, renowned for their high polyphenol content and expected to exhibit rich texture, mouthfeel, and aging potential, have been utilized to this extent. The results obtained showed that the emotions measured were well-correlated with quantitative and hedonic attributes obtained using classic sensory analysis. Some aromatic molecules can be identified as markers capable of eliciting positive and negative emotional reactions. While increasing literature in the topic is recently available, our study appears to be the first highlighting the presence of autonomic nervous system (ANS) differences verified by means of electrocardiogram (ECG) features, related to explicit and complete sensory patterns, in response to sensory stimuli related to emotional wine, with higher sympathetic values at extrema and vagal increase in the presence of neutral sensory compounds.
Collapse
Affiliation(s)
- Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Pisa, Italy
| | - Giulia Scalzini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| | - Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.
| | - Giuseppe Ferroni
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Guido Flamini
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Luigi Odello
- Centro Studi Assaggiatori Società Cooperativa, Brescia, Italy
| | - Lucia Billeci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Pisa, Italy
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Zhao Q, Ye Z, Deng Y, Chen J, Chen J, Liu D, Ye X, Huan C. An advance in novel intelligent sensory technologies: From an implicit-tracking perspective of food perception. Compr Rev Food Sci Food Saf 2024; 23:e13327. [PMID: 38517017 DOI: 10.1111/1541-4337.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
Food sensory evaluation mainly includes explicit and implicit measurement methods. Implicit measures of consumer perception are gaining significant attention in food sensory and consumer science as they provide effective, subconscious, objective analysis. A wide range of advanced technologies are now available for analyzing physiological and psychological responses, including facial analysis technology, neuroimaging technology, autonomic nervous system technology, and behavioral pattern measurement. However, researchers in the food field often lack systematic knowledge of these multidisciplinary technologies and struggle with interpreting their results. In order to bridge this gap, this review systematically describes the principles and highlights the applications in food sensory and consumer science of facial analysis technologies such as eye tracking, facial electromyography, and automatic facial expression analysis, as well as neuroimaging technologies like electroencephalography, magnetoencephalography, functional magnetic resonance imaging, and functional near-infrared spectroscopy. Furthermore, we critically compare and discuss these advanced implicit techniques in the context of food sensory research and then accordingly propose prospects. Ultimately, we conclude that implicit measures should be complemented by traditional explicit measures to capture responses beyond preference. Facial analysis technologies offer a more objective reflection of sensory perception and attitudes toward food, whereas neuroimaging techniques provide valuable insight into the implicit physiological responses during food consumption. To enhance the interpretability and generalizability of implicit measurement results, further sensory studies are needed. Looking ahead, the combination of different methodological techniques in real-life situations holds promise for consumer sensory science in the field of food research.
Collapse
Affiliation(s)
- Qian Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Zhiyue Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Yong Deng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
| | - Jin Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Cheng Huan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Research Center of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| |
Collapse
|
7
|
Yang T, Zhang P, Xing L, Hu J, Feng R, Zhong J, Li W, Zhang Y, Zhu Q, Yang Y, Gao F, Qian Z. Insights into brain perceptions of the different taste qualities and hedonic valence of food via scalp electroencephalogram. Food Res Int 2023; 173:113311. [PMID: 37803622 DOI: 10.1016/j.foodres.2023.113311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 10/08/2023]
Abstract
Investigating brain activity is essential for exploring taste-experience related cues. The paper aimed to explore implicit (unconscious) emotional or physiological responses related to taste experiences using scalp electroencephalogram (EEG). We performed implicit measures of tastants of differing perceptual types (bitter, salty, sour and sweet) and intensities (low, medium, and high). The results showed that subjects were partially sensitive to different sensory intensities, i.e., for high intensities, taste stimuli could induce activation of different rhythm signals in the brain, with α and θ bands possibly being more sensitive to different taste types. Furthermore, the neural representations and corresponding sensory qualities (e.g., "sweet: pleasant" or "bitter: unpleasant") of different tastes could be discriminated at 250-1,500 ms after stimulus onset, and different tastes exhibited distinct temporal dynamic differences. Source localization indicated that different taste types activate brain areas associated with emotional eating, reward processing, and motivated tendencies, etc. Overall, our findings reveal a larger sophisticated taste map that accounted for the diversity of taste types in the human brain and assesses the emotion, reward, and motivated behavior represented by different tastes. This study provided basic insights and a perceptual foundation for the relationship between taste experience-related decisions and the prediction of brain activity.
Collapse
Affiliation(s)
- Tianyi Yang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Peng Zhang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Lidong Xing
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, Shanghai 200040, PR China
| | - Rui Feng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, Shanghai 200040, PR China
| | - Junjie Zhong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, Shanghai 200040, PR China
| | - Weitao Li
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Yizhi Zhang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Qiaoqiao Zhu
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Yamin Yang
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Fan Gao
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China.
| | - Zhiyu Qian
- Department of Biomedical Engineering, Key Laboratory of Multi-modal Brain-Computer Precision Drive Ministry of Industry and Information Technology, Key Laboratory of Digital Medical Equipment and Technology of Jiangsu Province, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China.
| |
Collapse
|
8
|
Spiech C, Endestad T, Laeng B, Danielsen A, Haghish EF. Beat alignment ability is associated with formal musical training not current music playing. Front Psychol 2023; 14:1034561. [PMID: 36794086 PMCID: PMC9922839 DOI: 10.3389/fpsyg.2023.1034561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
The ability to perceive the beat in music is crucial for both music listeners and players with expert musicians being notably skilled at noticing fine deviations in the beat. However, it is unclear whether this beat perception ability is enhanced in trained musicians who continue to practice relative to musicians who no longer play. Thus, we investigated this by comparing active musicians', inactive musicians', and nonmusicians' beat alignment ability scores on the Computerized Adaptive Beat Alignment Test (CA-BAT). 97 adults with diverse musical experience participated in the study, reporting their years of formal musical training, number of instruments played, hours of weekly music playing, and hours of weekly music listening, in addition to their demographic information. While initial tests between groups indicated active musicians outperformed inactive musicians and nonmusicians on the CA-BAT, a generalized linear regression analysis showed that there was no significant difference once differences in musical training had been accounted for. To ensure that our results were not impacted by multicollinearity between music-related variables, nonparametric and nonlinear machine learning regressions were employed and confirmed that years of formal musical training was the only significant predictor of beat alignment ability. These results suggest that expertly perceiving fine differences in the beat is not a use-dependent ability that degrades without regular maintenance through practice or musical engagement. Instead, better beat alignment appears to be associated with more musical training regardless of continued use.
Collapse
Affiliation(s)
- Connor Spiech
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway,Department of Psychology, University of Oslo, Oslo, Norway,*Correspondence: Connor Spiech, ✉
| | - Tor Endestad
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway,Department of Psychology, University of Oslo, Oslo, Norway
| | - Bruno Laeng
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway,Department of Psychology, University of Oslo, Oslo, Norway
| | - Anne Danielsen
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway,Department of Musicology, University of Oslo, Oslo, Norway
| | - E. F. Haghish
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Consumer Studies: Beyond Acceptability—A Case Study with Beer. BEVERAGES 2022. [DOI: 10.3390/beverages8040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Beer is one of the most consumed alcoholic beverages in the world; its consumption and preference are evolving from traditional industrial beers of low complexity to novel craft beers with diverse flavour profiles. In such a competitive industry and considering the complexity of consumer behaviour, improvement and innovation become necessary. Consequently, consumer science, which is responsible for identifying the motivation behind customer preferences through their attitudes, perception and behaviour, has implemented strategies ranging from simple hedonic measurements to several innovative and emerging methodologies for a deeper understanding of the variables that affect the product experience: sensory, affective and cognitive. In this context, we offer a review inspired by previous research that explores some of the quantitative and qualitative methods used in consumer studies related to beer consumption, ranging from traditional approaches (acceptability, purchase intention, preference, etc.) to techniques that go beyond acceptability and allow a different understanding of aspects of consumer perception and behaviour (segmentation, expectations, emotions, representation, etc.). Also, innovative applications (contexts, immersive technologies and virtual reality, implicit measures, etc.) and current trends related to consumer science (Internet, social media, pairing, product experience, etc.) are addressed.
Collapse
|
10
|
Larrañaga‐Ayastuy E, Mora M, Romeo‐Arroyo E, Esteban E, Vázquez‐Araújo L. Electrodermal response and its relationship with explicit response in controlled and real contexts: A case study with different beer styles. J SENS STUD 2022. [DOI: 10.1111/joss.12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eneko Larrañaga‐Ayastuy
- Basque Culinary Center, Faculty of Gastronomic Sciences Mondragon Unibertsitatea Donostia‐San Sebastián Spain
| | - María Mora
- Basque Culinary Center, Faculty of Gastronomic Sciences Mondragon Unibertsitatea Donostia‐San Sebastián Spain
- BCC Innovation, Technology Center in Gastronomy Basque Culinary Center Donostia‐San Sebastián Spain
| | - Elena Romeo‐Arroyo
- Basque Culinary Center, Faculty of Gastronomic Sciences Mondragon Unibertsitatea Donostia‐San Sebastián Spain
- BCC Innovation, Technology Center in Gastronomy Basque Culinary Center Donostia‐San Sebastián Spain
| | - Ekaitz Esteban
- Basque Culinary Center, Faculty of Gastronomic Sciences Mondragon Unibertsitatea Donostia‐San Sebastián Spain
| | - Laura Vázquez‐Araújo
- Basque Culinary Center, Faculty of Gastronomic Sciences Mondragon Unibertsitatea Donostia‐San Sebastián Spain
- BCC Innovation, Technology Center in Gastronomy Basque Culinary Center Donostia‐San Sebastián Spain
| |
Collapse
|
11
|
McSweeney MB. The effect of health-related claims on consumers’ sensory perception. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
E-Senses, Panel Tests and Wearable Sensors: A Teamwork for Food Quality Assessment and Prediction of Consumer’s Choices. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070244] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
At present, food quality is of utmost importance, not only to comply with commercial regulations, but also to meet the expectations of consumers; this aspect includes sensory features capable of triggering emotions through the citizen’s perception. To date, key parameters for food quality assessment have been sought through analytical methods alone or in combination with a panel test, but the evaluation of panelists’ reactions via psychophysiological markers is now becoming increasingly popular. As such, the present review investigates recent applications of traditional and novel methods to the specific field. These include electronic senses (e-nose, e-tongue, and e-eye), sensory analysis, and wearables for emotion recognition. Given the advantages and limitations highlighted throughout the review for each approach (both traditional and innovative ones), it was possible to conclude that a synergy between traditional and innovative approaches could be the best way to optimally manage the trade-off between the accuracy of the information and feasibility of the investigation. This evidence could help in better planning future investigations in the field of food sciences, providing more reliable, objective, and unbiased results, but it also has important implications in the field of neuromarketing related to edible compounds.
Collapse
|