1
|
Manjiao C, Qianxi J, Jinlong Y, Zhoujun L, Xinjun H, Jianping T. Effect of metal ions in Baijiu on cluster formation of water, ethanol, acetic acid and ethyl acetate molecules: Molecular dynamics and density functional theory studies. J Mol Graph Model 2025; 137:109020. [PMID: 40112532 DOI: 10.1016/j.jmgm.2025.109020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 02/24/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Metal ions in Baijiu play an important role in the formation of liquor flavor, but their molecular mechanism has not been studied yet. In this study, molecular dynamics was used to calculate the radial distribution function (RDF), coordination number, and mean square displacement (MSD) of K+, Ca2+, and Fe2+ in water, ethanol, acetic acid, and ethyl acetate systems. Density functional theory was used to determine the binding energy, geometric configuration, and charge distribution of different clusters. The results of the MSD and RDF indicate that Ca2+ and Fe2+ are easily encapsulated by water or ethanol molecules in the system, resulting in weaker diffusion ability than K+. The interaction energy between K+, Ca2+, and Fe2+ and each molecule in the system increases sequentially, especially for Fe2+, which significantly changes the charge of molecules in the cluster. There are hydrogen bonds between molecules in clusters formed with K+ as the core, but there are no hydrogen bonds between molecules in clusters formed with Ca2+ and Fe2+ as the core. The cohesion of clusters formed with K+, Ca2+, and Fe2+ as the core increased in that order. The results of this study lay a theoretical foundation for understanding the molecular mechanism of metal ions in Baijiu.
Collapse
Affiliation(s)
- Chen Manjiao
- School of Mechanical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China; Sichuan University of Science & Engineering, Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, 644000, China.
| | - Jiang Qianxi
- School of Mechanical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Yu Jinlong
- Organic Fluorine Material Key Laboratory of Sichuan Province, Zhonghao Chenguang Chemical Industry Research Institute Co., Ltd, Zigong, 643201, China
| | - Lin Zhoujun
- Organic Fluorine Material Key Laboratory of Sichuan Province, Zhonghao Chenguang Chemical Industry Research Institute Co., Ltd, Zigong, 643201, China
| | - Hu Xinjun
- School of Mechanical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| | - Tian Jianping
- School of Mechanical Engineering, Sichuan University of Science & Engineering, Zigong, 643000, China
| |
Collapse
|
2
|
Zhang Z, Zhang ZH, He R, Zhao G, Yu Y, Zhang R, Gao X. Research advances in technologies and mechanisms to regulate vinegar flavor. Food Chem 2024; 460:140783. [PMID: 39137579 DOI: 10.1016/j.foodchem.2024.140783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
New vinegar needs a long maturing time to improve its poor flavor before sale, which greatly increases its production cost. Therefore, it is urgent to explore regulation technologies to accelerate vinegar flavor maturation. Based on literature and our research, this review introduces the latest advances in flavor regulation technologies of vinegar including microbial fortification/multi starters fermentation, key production processes optimization and novel physical processing technologies. Microbial fortification or multi starters fermentation accelerates vinegar flavor maturation via enhancing total acids, esters and aroma precursors content in vinegar. Adjusting raw materials composition, fermentation temperature, and oxygen flow reasonably increase alcohols, organic acids, polyphenols and esters levels via generating more corresponding precursors in vinegar, thereby improving its flavor. Furthermore, novel processing technologies greatly promote conversion of alcohols into acids and esters in vinegar, shortening flavor maturation time for over six months. Meanwhile, the corresponding mechanisms are discussed and future research directions are addressed.
Collapse
Affiliation(s)
- Zhankai Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhi-Hong Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Guozhong Zhao
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yongjian Yu
- School of Grain, Jiangsu University of Science & Technology, 666 Changxiang Avenue, Zhenjiang 212000, China
| | - Rong Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Qu S, Jia X, An Q, Zhang N, Fan G, Li Z, Hu Z. Effects of irradiation on the aging and sensory quality of navel orange distilled spirits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:979-992. [PMID: 37715570 DOI: 10.1002/jsfa.12985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND 60 Co-γ irradiation can simulate the effects of aging and enhance the flavor of distilled spirits. The present study aimed to investigate the effects of 0, 2, 4, 6, 8 and 10 kGy 60 Co-γ irradiation doses on the key aroma components in newly produced navel orange distilled spirits and thus determine the mechanism of their aging distilled spirits. RESULTS The identification of aroma compounds demonstrated that ethyl hexanoate, d-limonene, ethyl octanoate, 3-methyl-1-butanol and linalool are the key aroma compounds in navel orange distilled spirits, which were increased except for linalool with irradiation doses of 2-6 kGy. Irradiation treatment simulated the effects of the aging of navel orange distilled spirits by promoting the content of total acids, total esters and aldehydes. Irradiation doses of 2-6 kGy increased the aroma intensity of navel orange distilled spirits, reaching an optimum at 6 kGy. However, irradiation doses as high as 8 and 10 kGy decreased the content of esters in navel orange distilled spirits, which led to a deterioration of the spirit flavor. CONCLUSION Low doses of 60 Co-γ irradiation can simulate the effects of the aging by increasing the content of key aromatic compounds in navel orange distilled spirits. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shasha Qu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao Jia
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qi An
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nawei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenglun Li
- Zigui County Qugu Food Co. Ltd, Yichang, China
| | - Zhaoxing Hu
- Zigui County Qugu Food Co. Ltd, Yichang, China
| |
Collapse
|
4
|
Revelation for the Influence Mechanism of Long-Chain Fatty Acid Ethyl Esters on the Baijiu Quality by Multicomponent Chemometrics Combined with Modern Flavor Sensomics. Foods 2023; 12:foods12061267. [PMID: 36981194 PMCID: PMC10048143 DOI: 10.3390/foods12061267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/02/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Long-chain fatty acid ethyl ester (LCFAEEs) is colorless and has a weak wax and cream aroma. It can be used as an intermediate for the synthesis of emulsifiers, and stabilizers and be applied in the production of flavor essence. It is also an important trace component in Baijiu and is attributed to making a contribution to the quality of Baijiu, but its distribution in Baijiu has not been clear, and its influence mechanisms on Baijiu quality have not been systematically studied. Therefore, the distribution of LCFAEEs for Baijiu in different years (2014, 2015, 2018, and 2022), different grades (premium, excellent, and level 1; note: here Baijiu grade classification was based on Chinese standard (GB/T 10781) and enterprise classification standard), and different sun exposure times (0, 6, 12, 20, 30, and 50 days) was uncovered. Thus, in this study, the effect of LCFAEEs on the quality of Baijiu was comprehensively and objectively proven by combining modern flavor sensomics and multicomponent chemometrics. The results showed that with the increase in Baijiu storage time, the concentration of LCFAEEs increased significantly in Baijiu (4.38–196.95 mg/L, p < 0.05). The concentration of LCFAEEs in level 1 Baijiu was significantly higher than that in excellent and premium Baijiu (the concentration ranges of ET, EP, EO, E9, E912, and E91215 were: 0.27–2.31 mg/L, 0.75–47.41 mg/L, 0.93–1.80 mg/L, 0.98–12.87 mg/L, 1.01–27.08 mg/L, and 1.00–1.75 mg/L, respectively, p < 0.05). With the increase in sun exposure time, the concentration of LCFAEEs in the Baijiu first increased significantly and then decreased significantly (4.38–5.95 mg/L, p < 0.05). As the flavor sensomics showed, the concentrations of LCFAEEs in Baijiu bodies were significantly correlated with the Baijiu taste sense (inlet taste, aroma sensation in the mouth), as well as with the evaluation after drinking (maintaining taste) (p < 0.05, r > 0.7). Based on the above, LCFAEEs are critical factors for Baijiu flavor thus, it is essential to explore a suitable concentration of LCFAEEs in Baijiu to make Baijiu’s quality more ideal.
Collapse
|
5
|
Synergy of physicochemical reactions occurred during aging for harmonizing and improving flavor. Food Chem X 2022; 17:100554. [PMID: 36845494 PMCID: PMC9944979 DOI: 10.1016/j.fochx.2022.100554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
Numerous counterfeit vintage Baijiu are widely distributed in the market driven by economic interest which disturb the market economic rules and damage the reputation of particular Baijiu brand. Found on the situation, the Baijiu system variation during aging period, aging mechanisms and discrimination strategies for vintage Baijiu are systematically illuminated. The aging mechanisms of Baijiu cover volatilization, oxidation, association, esterification, hydrolysis, formation of colloid molecules and catalysis by metal elements or other raw materials dissolved from storage vessels. The discrimination of aged Baijiu has been performed by electrochemical method, colorimetric sensor array or component characterization coupled with multivariate analysis. Nevertheless, the characterization of non-volatile compounds in aged Baijiu is deficient. Further research on the aging principles, more easy-operation and low-cost discrimination strategies for aged Baijiu are imperative. The above information is favorable to better understand the aging process and mechanisms of Baijiu, and promote the development of artificial aging techniques.
Collapse
|
6
|
Fan Z, Jia W, Du A, Shi L. Pseudo-targeted metabolomics analysis of the therapeutic effect of phenolics-rich extract from Se-enriched green tea (Camellia sinensis) on LPS-stimulated murine macrophage (RAW264.7). Food Res Int 2022; 159:111666. [DOI: 10.1016/j.foodres.2022.111666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
|