Chen Z, Zhao Z, Wang W, Ye Q, Xiao J. Simulating the behavior of antioxidant to explore the mechanisms of oxidative stability in Pickering emulsion.
Food Chem 2024;
447:138291. [PMID:
38513478 DOI:
10.1016/j.foodchem.2023.138291]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 03/23/2024]
Abstract
This study explores effective strategies for bolstering emulsion oxidative stability via optimized interfacial distribution of varying hydrophobicity antioxidants (gallic acid, propyl gallate, octyl gallate) in zein nanoparticle (ZP) stabilized Pickering emulsions. Experimental and simulation methods revealed that antioxidant (AO) with higher hydrophobicity or loaded into ZP demonstrated stronger hydrogen bonding and van der Waals interactions with ZP. This increased interfacial loading of antioxidants resulted in improved oxidative stability in Pickering emulsions. The flow, distribution and orientation of AO, as revealed by dissipative dynamics simulations, highlighted the role of hydrophobic interactions during initial AO migration, influenced by varied alkyl chain lengths. Subsequent interface rearrangements arose from conservative force interactions between the AO's phenol hydroxyl ends and ZP. These findings inform effective interfacial engineering to optimize antioxidant efficiency, guiding practical applications in emulsion systems for improved oxidative stability.
Collapse