1
|
Kuzmyn AR, Stokvisch I, Linker GJ, Paulusse JMJ, de Beer S. Exploring Scent Distinction with Polymer Brush Arrays. ACS APPLIED POLYMER MATERIALS 2025; 7:3842-3852. [PMID: 40177398 PMCID: PMC11959526 DOI: 10.1021/acsapm.5c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
The ability to distinguish scents, volatile organic compounds (VOCs), and their mixtures is critical in agriculture, food safety, and public health. This study introduces a proof-of-concept approach for VOC and scent distinction, leveraging polymer brush arrays with diverse chemical compositions designed to interact with various VOCs and scents. When VOCs or scents are exposed to the brush array, they produce distinct mass absorption patterns for different polymer brushes, effectively creating "fingerprints". Scents can be recognized without having to know the absorption of their individual components. This allows for a scent distinction technique, mimicking scent recognition within a mammalian olfactory system. To demonstrate the scent distinction, we synthesized different polymer brushes, zwitterionic, hydrophobic, and hydrophilic, using surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization with eosin Y and triethanolamine as catalysts. The polymer brushes were then exposed to vapors of different single-compound VOCs and complex scents consisting of many VOCs, such as the water-ethanol mixture, rosemary oil, lavender oil, and whiskey scents. Quartz crystal microbalance measurements with dissipation monitoring (QCM-D) show a clear difference in brush absorption for these diverse VOC vapors such that distinct fingerprints can be identified. Our proof-of-concept study aims to pave the way for universal electronic nose sensors that distinguish scents by combining mass absorption patterns from polymer brush-coated surfaces.
Collapse
Affiliation(s)
- Andriy R. Kuzmyn
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, Enschede 7500AE, The Netherlands
| | - Ivar Stokvisch
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, Enschede 7500AE, The Netherlands
| | - Gerrit-Jan Linker
- MESA+
Institute for Nanotechnology, University
of Twente, Enschede 7522 NB, The Netherlands
| | - Jos M. J. Paulusse
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, Enschede 7500AE, The Netherlands
| | - Sissi de Beer
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, Enschede 7500AE, The Netherlands
| |
Collapse
|
2
|
Choi HR, Choi SS. Ionization behaviors of nitrotoluenes and dinitrotoluenes by reactions with acetone-related reactant ion. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4983. [PMID: 37950649 DOI: 10.1002/jms.4983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023]
Abstract
Dinitrotoluenes (DNTs) and nitrotoluenes (NTs) are found in the environment as metabolites of trinitrotoluene (TNT). When acetone is used as the solvent/eluent in atmospheric pressure chemical ionization-mass spectrometry (APCI-MS), the reactant ion is [2Acetone + O2 ]•- for the negative ion mode. The reactant ion reacts with an analyte to produce M•- and/or [M - H]- under atmospheric pressure. In this study, ionization behaviors of NT (2-, 3-, and 4-NTs) and DNT isomers (2,3-, 2,4-, and 2,6-DNTs) by reactions with [2Acetone + O2 ]•- were investigated. The energy-minimized structures of the product ions and their energies were calculated to explain the differences in the ionization behaviors. Typical NT- and DNT-related ions were produced by reactions with [2Acetone + O2 ]•- ; NT•- , [NT - H]- , DNT•- , [DNT - H]- , and [DNT - NO]- ions. The ionization efficiencies of NT- and DNT-related ions increased by increasing the source fragmentor voltage, and those of DNT-related ions were higher than those of the NT-related ions owing to the presence of an additional nitro group. The ionization efficiency of 3-NT•- was higher than that of [NT - H]- , while that of [DNT - H]- was higher than those of DNT•- and [DNT - NO]- . The ionization efficiency order of NT•- was 3-NT > 4-NT > 2-NT, while that of [DNT - H]- was 2,4-DNT > 2,6-DNT > 2,3-DNT. The [NT - H]- and [DNT - H]- ions were stabilized by resonance structures containing nitro groups. The [DNT - NO]- ions were formed through the transition state.
Collapse
Affiliation(s)
- He-Ryun Choi
- Department of Chemistry, Sejong University, Seoul, Republic of Korea
| | - Sung-Seen Choi
- Department of Chemistry, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Wang L, Cheng Y, Wu C, Luo F, Lin Z, Naidu R. Rapid on-site detection of underground petroleum pipeline leaks and risk assessment using portable gas chromatography-mass spectrometry and solid phase microextraction. J Chromatogr A 2023; 1696:463980. [PMID: 37060855 DOI: 10.1016/j.chroma.2023.463980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Locating underground pipeline leaks can be challenging due to their hidden nature and variable terrain conditions. To sample soil gas, solid-phase microextraction (SPME) was employed, and a portable gas chromatography/mass spectrometry (GC/MS) was used to detect the presence and concentrations of petroleum hydrocarbon volatile organic compounds (pH-VOCs), including benzene, toluene, ethylbenzene, and xylene (BTEX). We optimized the extraction method through benchtop studies using SPME. The appropriate fibre materials and exposure time were selected for each BTEX compound. Before applying SPME, we preconditioned the soil vapour samples by keeping the temperature at around 4 °C and using ethanol as a desorbing agent and moisture filters to minimize the impact of moisture. To conduct this optimisation, airbags were applied to condition the soil vapour samples and SPME sampling. By conditioning the samples using this method, we were able to improve analytical efficiency and accuracy while minimizing environmental impacts, resulting in more reliable research data in the field. The study employed portable GC/MS data to assess the concentration distribution of BTEX in soil vapour samples obtained from 1.5 m below the ground surface at 10 subsurface vapour monitoring locations at the leak site. After optimization, the detection limits of BTEX were almost 100 µg/m3, and the measurement repeatabilities were approximately 5% and 15% for BTEX standards in the laboratory and soil vapour samples in the field, respectively. The soil vapour samples showed a hotspot region with high BTEX concentrations, reaching 30 mg/m3, indicating a diesel return pipeline leak caused by a gasket failure in a flange. The prompt detection of the leak source was critical in minimizing environmental impact and worker safety hazards.
Collapse
Affiliation(s)
- Liang Wang
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment, ATC, University Drive, Callaghan, NSW 2308, Australia.
| | - Ying Cheng
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment, ATC, University Drive, Callaghan, NSW 2308, Australia
| | - Cuiqin Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fjian 350108, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fjian 350108, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment, ATC, University Drive, Callaghan, NSW 2308, Australia
| |
Collapse
|
4
|
Gallegos SF, Aviles-Rosa EO, DeChant MT, Hall NJ, Prada-Tiedemann PA. Explosive Odor Signature Profiling: A Review of recent advances in technical analysis and detection. Forensic Sci Int 2023; 347:111652. [PMID: 37019070 DOI: 10.1016/j.forsciint.2023.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
With the ever-increasing threat of improvised explosive devices (IEDs) and homemade explosives (HME) both domestically and abroad, detection of explosives and explosive related materials is an area of urgent importance for preventing terrorist activities around the globe. Canines are a common biological detector used in explosive detection due to their enhanced olfactory abilities, high mobility, efficient standoff sampling, and optimal identification of vapor sources. While other sensors based on different principles have emerged, an important concept for the rapid field detection of explosives is understanding key volatile organic compounds (VOCs) associated with these materials. Explosive detection technology needs to be on par with a large number of threats including an array of explosive materials as well as novel chemicals used in the manufacture of IEDs. Within this much needed area of research for law enforcement and homeland security applications, several studies have sought to understand the explosive odor profile from a range of materials. This review aims to provide a foundational overview of these studies to provide a summary of instrumental analysis to date on the various types of explosive odor profiles evaluated focusing on the experimental approaches and laboratory techniques utilized in the chemical characterization of explosive vapors and mixtures. By expanding upon these concepts, a greater understanding of the explosive vapor signature can be achieved, providing for enhanced chemical and biological sensing of explosive threats as well as expanding upon existing laboratory-based models for continued sensor development.
Collapse
|
5
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of the analysis and detection of explosives and explosives residues. Forensic Sci Int Synerg 2023; 6:100298. [PMID: 36685733 PMCID: PMC9845958 DOI: 10.1016/j.fsisyn.2022.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Douglas J. Klapec
- Arson and Explosives Section I, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- Forensic Services, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
6
|
Wang J, Pursell ME, DeVor A, Awoyemi O, Valentine SJ, Li P. Portable mass spectrometry system: instrumentation, applications, and path to 'omics analysis. Proteomics 2022; 22:e2200112. [PMID: 36349734 PMCID: PMC10278091 DOI: 10.1002/pmic.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
Mass spectrometry (MS) is an information rich analytical technique and plays a key role in various 'omics studies. Standard mass spectrometers are bulky and operate at high vacuum, which hinder their adoption by the broader community and utility in field applications. Developing portable mass spectrometers can significantly expand the application scope and user groups of MS analysis. This review discusses the basics and recent advancements in the development of key components of portable mass spectrometers including ionization source, mass analyzer, detector, and vacuum system. Further, major areas where portable mass spectrometers are applied are also discussed. Finally, a perspective on the further development of portable mass spectrometers including the potential benefits for 'omics analysis is provided.
Collapse
Affiliation(s)
- Jing Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Madison E. Pursell
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Amanda DeVor
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Olanrewaju Awoyemi
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Stephen J. Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
7
|
Dynamic vapor microextraction of ignitable liquid from casework containers. Forensic Sci Int 2022; 336:111315. [DOI: 10.1016/j.forsciint.2022.111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
|