1
|
Singh S, Narine LL, Willoughby JR, Eckhardt LG. Remote sensing-based detection of brown spot needle blight: a comprehensive review, and future directions. PeerJ 2025; 13:e19407. [PMID: 40416626 PMCID: PMC12103847 DOI: 10.7717/peerj.19407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/10/2025] [Indexed: 05/27/2025] Open
Abstract
Pine forests are increasingly threatened by needle diseases, including Brown Spot Needle Blight (BSNB), caused by Lecanosticta acicola. BSNB leads to needle loss, reduced growth, significant tree mortality, and disruptions in global timber production. Due to its severity, L. acicola is designated as a quarantine pathogen in several countries, requiring effective early detection and control of its spread. Remote sensing (RS) technologies provide scalable and efficient solutions for broad-scale disease surveillance. This study systematically reviews RS-based methods for detecting BSNB symptoms, assessing current research trends and potential applications. A comprehensive bibliometric analysis using the Web of Science database indicated that direct RS applications for BSNB remain scarce. However, studies on other needle diseases demonstrated the effectiveness of multisource RS techniques for symptom detection, spatial mapping, and severity assessment. Advancements in machine learning (ML) and deep learning (DL) have further improved RS capabilities for automated disease classification and predictive modeling in forest health monitoring. Climate-driven factors, such as temperature and precipitation, regulate the distribution and severity of emerging pathogens. Geospatial analyses and species distribution modeling (SDM) have been successfully applied to predict BSNB pathogen's range expansion under changing climatic conditions. Integrating these models with RS-based monitoring enhances early detection and risk assessment. However, despite these advancements, direct RS applications for BSNB detection remain limited. This review identifies key knowledge gaps and highlights the need for further research to optimize RS-based methodologies, refine predictive models, and develop early warning systems for improved forest management.
Collapse
Affiliation(s)
- Swati Singh
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, USA
| | - Lana L. Narine
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, USA
| | - Janna R. Willoughby
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, USA
| | - Lori G. Eckhardt
- College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, USA
| |
Collapse
|
2
|
Sellamuthu G, Chakraborty A, Vetukuri RR, Sarath S, Roy A. RNAi-biofungicides: a quantum leap for tree fungal pathogen management. Crit Rev Biotechnol 2024:1-28. [PMID: 39647992 DOI: 10.1080/07388551.2024.2430478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 12/10/2024]
Abstract
Fungal diseases threaten the forest ecosystem, impacting tree health, productivity, and biodiversity. Conventional approaches to combating diseases, such as biological control or fungicides, often reach limits regarding efficacy, resistance, non-target organisms, and environmental impact, enforcing alternative approaches. From an environmental and ecological standpoint, an RNA interference (RNAi) mediated double-stranded RNA (dsRNA)-based strategy can effectively manage forest fungal pathogens. The RNAi approach explicitly targets and suppresses gene expression through a conserved regulatory mechanism. Recently, it has evolved to be an effective tool in combating fungal diseases and promoting sustainable forest management approaches. RNAi bio-fungicides provide efficient and eco-friendly disease control alternatives using species-specific gene targeting, minimizing the off-target effects. With accessible data on fungal disease outbreaks, genomic resources, and effective delivery systems, RNAi-based biofungicides can be a promising tool for managing fungal pathogens in forests. However, concerns regarding the environmental fate of RNAi molecules and their potential impact on non-target organisms require an extensive investigation on a case-to-case basis. The current review critically evaluates the feasibility of RNAi bio-fungicides against forest pathogens by delving into the accessible delivery methods, environmental persistence, regulatory aspects, cost-effectiveness, community acceptance, and plausible future of RNAi-based forest protection products.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amrita Chakraborty
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Saravanasakthi Sarath
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
3
|
Marcet-Houben M, Cruz F, Gómez-Garrido J, Alioto TS, Nunez-Rodriguez JC, Mesanza N, Gut M, Iturritxa E, Gabaldon T. Genomics of the expanding pine pathogen Lecanosticta acicola reveals patterns of ongoing genetic admixture. mSystems 2024; 9:e0092823. [PMID: 38364101 PMCID: PMC10949461 DOI: 10.1128/msystems.00928-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/09/2024] [Indexed: 02/18/2024] Open
Abstract
Lecanosticta acicola is the causal agent for brown spot needle blight that affects pine trees across the northern hemisphere. Based on marker genes and microsatellite data, two distinct lineages have been identified that were introduced into Europe on two separate occasions. Despite their overall distinct geographic distribution, they have been found to coexist in regions of northern Spain and France. Here, we present the first genome-wide study of Lecanosticta acicola, including assembly of the reference genome and a population genomics analysis of 70 natural isolates from northern Spain. We show that most of the isolates belong to the southern lineage but show signs of introgression with northern lineage isolates, indicating mating between the two lineages. We also identify phenotypic differences between the two lineages based on the activity profiles of 20 enzymes, with introgressed strains being more phenotypically similar to members of the southern lineage. In conclusion, we show undergoing genetic admixture between the two main lineages of L. acicola in a region of recent expansion. IMPORTANCE Lecanosticta acicola is a fungal pathogen causing severe defoliation, growth reduction, and even death in more than 70 conifer species. Despite the increasing incidence of this species, little is known about its population dynamics. Two divergent lineages have been described that have now been found together in regions of France and Spain, but it is unknown how these mixed populations evolve. Here we present the first reference genome for this important plant pathogenic fungi and use it to study the population genomics of 70 isolates from an affected forest in the north of Spain. We find signs of introgression between the two main lineages, indicating that active mating is occurring in this region which could propitiate the appearance of novel traits in this species. We also study the phenotypic differences across this population based on enzymatic activities on 20 compounds.
Collapse
Affiliation(s)
- Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jéssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Tyler S. Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Juan Carlos Nunez-Rodriguez
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nebai Mesanza
- Instituto Vasco de Investigación y Desarrollo Agrario (BRTA), Arkaute, Araba, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eugenia Iturritxa
- Instituto Vasco de Investigación y Desarrollo Agrario (BRTA), Arkaute, Araba, Spain
| | - Toni Gabaldon
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
4
|
Monteiro P, Valledor L, Osorio S, Camisón Á, Vallarino JG, Gómez-Cadenas A, Díez JJ, Pinto G. Physiological, metabolic and hormonal responses of two Pinus spp. with contrasting susceptibility to brown-spot needle blight disease. TREE PHYSIOLOGY 2024; 44:tpae003. [PMID: 38195942 DOI: 10.1093/treephys/tpae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
Needle blights are serious fungal diseases affecting European natural and planted pine forests. Brown-spot needle blight (BSNB) disease, caused by the fungus Lecanosticta acicola, causes canopy defoliation and severe productivity losses, with consequences depending on host susceptibility. To gain new insights into BSNB plant-pathogen interactions, constitutive and pathogen-induced traits were assessed in two host species with differential disease susceptibility. Six-month-old Pinus radiata D. Don (susceptible) and Pinus pinea L. (more resistant) seedlings were needle inoculated with L. acicola under controlled conditions. Eighty days after inoculation, healthy-looking needles from symptomatic plants were assessed for physiological parameters and sampled for biochemical analysis. Disease progression, plant growth, leaf gas-exchanges and biochemical parameters were complemented with hormonal and untargeted primary metabolism analysis and integrated for a holistic analysis. Constitutive differences between pine species were observed. Pinus pinea presented higher stomatal conductance and transpiration rate and higher amino and organic acids, abscisic acid as well as putrescine content than P. radiata. Symptoms from BSNB disease were observed in 54.54% of P. radiata and 45.45% of P. pinea seedlings, being more pronounced and generalized in P. radiata. For both species, plant height, sub-stomatal CO2 concentration and water-use efficiency were impacted by infection. In P. radiata, total soluble sugars, starch and total flavonoids content increased after infection. No differences in hormone content after infection were observed. However, secondary metabolism was induced in P. pinea visible through total phenolics, flavonoids and putrescine accumulation. Overall, the observed results suggest that P. pinea constitutive and induced traits may function as two layers of a defence strategy which contributed to an increased BSNB resistance in comparison with P. radiata. This is the first integrative study linking plant physiological and molecular traits in Pinus-Lecanosticta acicola pathosystem, contributing to a better understanding of the underlying resistance mechanisms to BSNB disease in pines.
Collapse
Affiliation(s)
- Pedro Monteiro
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Campus de El Cristo, Calle Catedrático Rodrigo Uría, 33071 Oviedo, Asturias, Spain
| | - Sonia Osorio
- Department of Molecular Biology and Biochemistry, Institute of Subtropical and Mediterranean Horticulture "La Mayora" (IHSM), University of Málaga-Superior Council of Scientific Research, Campus de Teatinos, Avenida Louis Pasteur 49, Málaga 29071, Spain
| | - Álvaro Camisón
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
- Department of Agricultural and Forestry Engineering, Instituto de Investigación de la Dehesa (INDEHESA), Centro Universitario de Plasencia, Universidad de Extremadura. Avenida Virgen del Puerto 2, Plasencia 10600, Spain
| | - José Gabriel Vallarino
- Department of Molecular Biology and Biochemistry, Institute of Subtropical and Mediterranean Horticulture "La Mayora" (IHSM), University of Málaga-Superior Council of Scientific Research, Campus de Teatinos, Avenida Louis Pasteur 49, Málaga 29071, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Avenida Vicent Sos Baynat, Castelló de la Plana 12071, Spain
| | - Julio Javier Díez
- Department of Plant Production and Forest Resources, University of Valladolid, Avenida de Madrid 44, Palencia 34071, Spain
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| |
Collapse
|
5
|
Tubby K, Forster J, Mullett M, Needham R, Smith O, Snowden J, McCartan S. Can the Seed Trade Provide a Potential Pathway for the Global Distribution of Foliar Pathogens? An Investigation into the Use of Heat Treatments to Reduce Risk of Dothistroma septosporum Transmission via Seed Stock. J Fungi (Basel) 2023; 9:1190. [PMID: 38132790 PMCID: PMC10744699 DOI: 10.3390/jof9121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The international plant trade results in the accidental movement of invasive pests and pathogens, and has contributed significantly to recent range expansion of pathogens including Dothistroma septosporum. Seeds are usually thought to present a lower biosecurity risk than plants, but the importation of Pinus contorta seeds from North America to Britain in the mid-1900s, and similarities between British and Canadian D. septosporum populations suggests seeds could be a pathway. Dothistroma septosporum has not been isolated from seeds, but inadequately cleaned seed material could contain infected needle fragments. This case study investigated whether cone kilning, and wet and dry heat treatments could reduce D. septosporum transmission without damaging seed viability. Pinus needles infected with D. septosporum were incubated alongside cones undergoing three commercial seed extraction processes. Additional needles were exposed to temperatures ranging from 10 to 67 °C dry heat for up to 48 h, or incubated in water heated to between 20 and 60 °C for up to one hour. Pinus sylvestris seeds were exposed to 60 and 65 dry heat °C for 48 h, and further seed samples incubated in water heated to between 20 and 60 °C for up to one hour. Dothistroma septosporum survived the three kilning processes and while seeds were not damaged by dry heat exceeding 63.5 °C, at this temperature no D. septosporum survived. Wet heat treatments resulted in less than 10% pathogen survival following incubation at 40 °C, while at this temperature the seeds suffered no significant impacts, even when submerged for one hour. Thus, commercial seed kilning could allow D. septosporum transmission, but elevated wet and dry heat treatments could be applied to seed stock to minimise pathogen risk without significantly damaging seed viability.
Collapse
Affiliation(s)
- Katherine Tubby
- Forest Research, Forestry Commission, Alice Holt Lodge, Farnham GU10 4LH, UK (M.M.); (O.S.); (J.S.); (S.M.)
| | - Jack Forster
- Forest Research, Forestry Commission, Alice Holt Lodge, Farnham GU10 4LH, UK (M.M.); (O.S.); (J.S.); (S.M.)
| | - Martin Mullett
- Forest Research, Forestry Commission, Alice Holt Lodge, Farnham GU10 4LH, UK (M.M.); (O.S.); (J.S.); (S.M.)
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Phytophthora Research Centre, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Robert Needham
- Forest Research, Forestry Commission, Alice Holt Lodge, Farnham GU10 4LH, UK (M.M.); (O.S.); (J.S.); (S.M.)
| | - Olivia Smith
- Forest Research, Forestry Commission, Alice Holt Lodge, Farnham GU10 4LH, UK (M.M.); (O.S.); (J.S.); (S.M.)
| | - James Snowden
- Forest Research, Forestry Commission, Alice Holt Lodge, Farnham GU10 4LH, UK (M.M.); (O.S.); (J.S.); (S.M.)
| | - Shelagh McCartan
- Forest Research, Forestry Commission, Alice Holt Lodge, Farnham GU10 4LH, UK (M.M.); (O.S.); (J.S.); (S.M.)
| |
Collapse
|
6
|
Riit T, Cleary M, Adamson K, Blomquist M, Burokienė D, Marčiulynienė D, Oliva J, Poimala A, Redondo MA, Strømeng GM, Talgø V, Tedersoo L, Thomsen IM, Uimari A, Witzell J, Drenkhan R. Oomycete Soil Diversity Associated with Betula and Alnus in Forests and Urban Settings in the Nordic-Baltic Region. J Fungi (Basel) 2023; 9:926. [PMID: 37755034 PMCID: PMC10532727 DOI: 10.3390/jof9090926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
This study aimed to determine the differences and drivers of oomycete diversity and community composition in alder- and birch-dominated park and natural forest soils of the Fennoscandian and Baltic countries of Estonia, Finland, Lithuania, Norway, and Sweden. For this, we sequenced libraries of PCR products generated from the DNA of 111 soil samples collected across a climate gradient using oomycete-specific primers on a PacBio high-throughput sequencing platform. We found that oomycete communities are most affected by temperature seasonality, annual mean temperature, and mean temperature of the warmest quarter. Differences in composition were partly explained by the higher diversity of Saprolegniales in Sweden and Norway, as both total oomycete and Saprolegniales richness decreased significantly at higher longitudes, potentially indicating the preference of this group of oomycetes for a more temperate maritime climate. None of the evaluated climatic variables significantly affected the richness of Pythiales or Peronosporales. Interestingly, the relative abundance and richness of Pythiales was higher at urban sites compared to forest sites, whereas the opposite was true for Saprolegniales. Additionally, this is the first report of Phytophthora gallica and P. plurivora in Estonia. Our results indicate that the composition of oomycetes in soils is strongly influenced by climatic factors, and, therefore, changes in climate conditions associated with global warming may have the potential to significantly alter the distribution range of these microbes, which comprise many important pathogens of plants.
Collapse
Affiliation(s)
- Taavi Riit
- Institute of Forestry and Engineering, Estonian University of Life Sciences, F. R. Kreutzwaldi 5, 51006 Tartu, Estonia; (T.R.)
| | - Michelle Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
| | - Kalev Adamson
- Institute of Forestry and Engineering, Estonian University of Life Sciences, F. R. Kreutzwaldi 5, 51006 Tartu, Estonia; (T.R.)
| | - Mimmi Blomquist
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
| | - Daiva Burokienė
- Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Diana Marčiulynienė
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, LT-53101 Girionys, Lithuania
| | - Jonàs Oliva
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, 25198 Lleida, Spain
- Joint Research Unit CTFC–Agrotecnio, 25198 Lleida, Spain
| | - Anna Poimala
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Miguel Angel Redondo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, 750 07 Uppsala, Sweden
| | - Gunn Mari Strømeng
- Norwegian Institute of Bioeconomy Research, NIBIO, Høgskoleveien 7, 1433 Ås, Norway
| | - Venche Talgø
- Norwegian Institute of Bioeconomy Research, NIBIO, Høgskoleveien 7, 1433 Ås, Norway
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Iben Margrete Thomsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Anne Uimari
- Natural Resources Institute Finland (LUKE), Juntintie 154, 77600 Suonenjoki, Finland
| | - Johanna Witzell
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
- Department of Forestry and Wood Technology, Linnaeus University, 351 95 Växjö, Sweden
| | - Rein Drenkhan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, F. R. Kreutzwaldi 5, 51006 Tartu, Estonia; (T.R.)
| |
Collapse
|
7
|
Mesanza N, Barnes I, van der Nest A, Raposo R, Berbegal M, Iturritxa E. Genetic Diversity of Lecanosticta acicola in Pinus Ecosystems in Northern Spain. J Fungi (Basel) 2023; 9:651. [PMID: 37367587 DOI: 10.3390/jof9060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Lecanosticta acicola is one of the most damaging species affecting Pinus radiata plantations in Spain. Favourable climatic conditions and unknown endogenous factors of the pathogen and host led to a situation of high incidence and severity of the disease in these ecosystems. With the main aim of understanding the factors intrinsic to this pathogenic species, a study of the population structure in new established plantations with respect to older plantations was implemented. The genetic diversity, population structure and the ability of the pathogen to spread was determined in Northern Spain (Basque Country), where two thirds of the total Pinus radiata plantations of Spain are located. From a total of 153 Lecanosticta acicola isolates analysed, two lineages were present; the southern lineage, which was prevalent, and the northern lineage, which was scarce. A total of 22 multilocus genotypes were detected with a balanced composition of both mating types and evidence for sexual reproduction. In addition to the changing environmental conditions enhancing disease expression, the complexity and diversity of the pathogen will make it difficult to control and to maintain the wood productive system fundamentally based on this forest species.
Collapse
Affiliation(s)
- Nebai Mesanza
- Neiker-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, Granja Modelo s/n, Antigua Carretera Nacional 1, Km. 355, 01192 Arkaute, Spain
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0083, South Africa
| | - Ariska van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0083, South Africa
| | - Rosa Raposo
- ICIFOR, INIA-CSIC, Carretera La Coruña Km 7.5, 28040 Madrid, Spain
| | - Mónica Berbegal
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Eugenia Iturritxa
- Neiker-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, Granja Modelo s/n, Antigua Carretera Nacional 1, Km. 355, 01192 Arkaute, Spain
| |
Collapse
|