1
|
Courts C, Pfaffl MW, Sauer E, Parson W. Pleading for adherence to the MIQE-Guidelines when reporting quantitative PCR data in forensic genetic research. Forensic Sci Int Genet 2019; 42:e21-e24. [PMID: 31270013 DOI: 10.1016/j.fsigen.2019.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Cornelius Courts
- University Hospital of Schleswig-Holstein, Institute of Forensic Medicine, Kiel, Germany.
| | - Michael W Pfaffl
- Technical University of Munich, Animal Physiology and Immunology, Freising, Germany
| | - Eva Sauer
- State Office of Criminal Investigation of Rhineland-Palatinate, Mainz, Germany
| | - Walther Parson
- Innsbruck Medical University, Institute of Legal Medicine, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Forensische Molekularpathologie. Rechtsmedizin (Berl) 2014. [DOI: 10.1007/s00194-014-0975-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Maeda H, Ishikawa T, Michiue T. Forensic molecular pathology: its impacts on routine work, education and training. Leg Med (Tokyo) 2014; 16:61-9. [PMID: 24480586 DOI: 10.1016/j.legalmed.2014.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 01/07/2014] [Indexed: 01/14/2023]
Abstract
The major role of forensic pathology is the investigation of human death in relevance to social risk management to determine the cause and process of death, especially in violent and unexpected sudden deaths, which involve social and medicolegal issues of ultimate, personal and public concerns. In addition to the identification of victims and biological materials, forensic molecular pathology contributes to general explanation of the human death process and assessment of individual death on the basis of biological molecular evidence, visualizing dynamic functional changes involved in the dying process that cannot be detected by morphology (pathophysiological or molecular biological vital reactions); the genetic background (genomics), dynamics of gene expression (up-/down-regulation: transcriptomics) and vital phenomena, involving activated biological mediators and degenerative products (proteomics) as well as metabolic deterioration (metabolomics), are detected by DNA analysis, relative quantification of mRNA transcripts using real-time reverse transcription-PCR (RT-PCR), and immunohisto-/immunocytochemistry combined with biochemistry, respectively. Thus, forensic molecular pathology involves the application of omic medical sciences to investigate the genetic basis, and cause and process of death at the biological molecular level in the context of forensic pathology, that is, 'advanced molecular autopsy'. These procedures can be incorporated into routine death investigations as well as guidance, education and training programs in forensic pathology for 'dynamic assessment of the cause and process of death' on the basis of autopsy and laboratory data. Postmortem human data can also contribute to understanding patients' critical conditions in clinical management.
Collapse
Affiliation(s)
- Hitoshi Maeda
- Department of Legal Medicine, Osaka City University Medical School, Asahi-machi 1-4-3, Abeno, 545-8585 Osaka, Japan; Forensic Autopsy Section, Medico-legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), c/o Osaka City University Medical School, Asahi-machi 1-4-3, Abeno, 545-8585 Osaka, Japan.
| | - Takaki Ishikawa
- Department of Legal Medicine, Osaka City University Medical School, Asahi-machi 1-4-3, Abeno, 545-8585 Osaka, Japan; Forensic Autopsy Section, Medico-legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), c/o Osaka City University Medical School, Asahi-machi 1-4-3, Abeno, 545-8585 Osaka, Japan; Division of Legal Medicine, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, 683-8503 Tottori, Japan
| | - Tomomi Michiue
- Department of Legal Medicine, Osaka City University Medical School, Asahi-machi 1-4-3, Abeno, 545-8585 Osaka, Japan; Forensic Autopsy Section, Medico-legal Consultation and Postmortem Investigation Support Center (MLCPI-SC), c/o Osaka City University Medical School, Asahi-machi 1-4-3, Abeno, 545-8585 Osaka, Japan
| |
Collapse
|
4
|
Prabakaran I, Grau JR, Lewis R, Fraker DL, Guvakova MA. Rap2A Is Upregulated in Invasive Cells Dissected from Follicular Thyroid Cancer. J Thyroid Res 2011; 2011:979840. [PMID: 22046576 PMCID: PMC3199199 DOI: 10.4061/2011/979840] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/03/2011] [Accepted: 08/13/2011] [Indexed: 12/18/2022] Open
Abstract
The development of molecular biomarkers (BMs) of follicular thyroid carcinoma is aimed at advancing diagnosis of follicular neoplasm, as histological examination of those tumors does not lend itself to definitive diagnosis of carcinoma. We assessed the relative levels of expression of 6 genes: CCND2, PCSK2, PLAB, RAP2A, TSHR, and IGF-1R in archived thyroid tissue. The quantitative real-time PCR analysis revealed a significant change in 3 genes: PSCK2 (a 22.4-fold decrease, P = 2.81E − 2), PLAB (an 8.3-fold increase, P = 9.81E − 12), and RAP2A (a 6.3-fold increase, P = 9.13E − 10) in carcinoma compared with adenoma. Expression of PCSK2 was equally low, PLAB was equally high, whereas RAP2A expression was significantly higher (25.9-fold, P = 0.039) in microdissected carcinoma cells that have invaded through the thyroid capsule and entered blood vessels than in thyroid tumor cells growing under the capsule. Thus, RAP2A appeared as a unique and worthy of further evaluation candidate BM associated with invasion of thyroid follicular cells.
Collapse
Affiliation(s)
- Indira Prabakaran
- Department of Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
5
|
Maeda H, Zhu BL, Ishikawa T, Michiue T. Forensic molecular pathology of violent deaths. Forensic Sci Int 2010; 203:83-92. [DOI: 10.1016/j.forsciint.2010.07.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
|
7
|
|
8
|
Kuntz-Melcavage KL, Brucklacher RM, Grigson PS, Freeman WM, Vrana KE. Gene expression changes following extinction testing in a heroin behavioral incubation model. BMC Neurosci 2009; 10:95. [PMID: 19664213 PMCID: PMC2733140 DOI: 10.1186/1471-2202-10-95] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 08/07/2009] [Indexed: 01/15/2023] Open
Abstract
Background A number of gene expression studies have investigated changes induced by drug exposure, but few reports describe changes that persist following relapse. In this study, genome-wide analysis of gene expression was conducted following an extinction session (90 min) in rats that expressed behavioral incubation of heroin-seeking and goal-directed behavior. As an important modulator of goal-directed behavior, the medial prefrontal cortex (mPFC) was the target of genomic analysis. Rats were trained to self-administer heroin during 3 h daily sessions for 14 d. Following the self-administration period, rats were reintroduced to the self-administration chambers for a 90-minute extinction session in which they could seek heroin, but received none. Extinction sessions were conducted on groups after either 1 d or 14 d of drug-free enforced abstinence to demonstrate behavioral incubation. Results Behavioral data demonstrated incubation (increased expression) of heroin-seeking and goal-directed behavior after the 14 d abstinent period. That is, following 14 d of enforced abstinence, animals displayed heightened drug-seeking behavior when returned to the environment where they had previously received heroin. This increased drug-seeking took place despite the fact that they received no drug during this extinction session. Whole genome gene expression analysis was performed and results were confirmed by quantitative real-time PCR (RT-qPCR). Microarrays identified 66 genes whose expression was identified as changed by at least 1.4 fold (p < 0.02) following 14 d of abstinence and the 90-minute extinction session compared to the saline treated controls. Orthogonal confirmation by RT-qPCR demonstrated significant alterations in bdnf, calb1, dusp5, dusp6, egr1, npy, rgs2. Conclusion Ontological analysis indicates that several of the genes confirmed to be changed are important for neuroplasticity, and through that role may impact learning and behavior. The importance of drug-seeking behavior and memory of previous drug-taking sessions suggest that such genes may be important for relapse. The global gene expression analysis adds to the knowledge of heroin-induced changes and further highlights similarities between heroin and other drugs of abuse.
Collapse
Affiliation(s)
- Kara L Kuntz-Melcavage
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | | | | | | | | |
Collapse
|
9
|
RNA in forensic science. Forensic Sci Int Genet 2007; 1:69-74. [DOI: 10.1016/j.fsigen.2006.11.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 11/18/2022]
|
10
|
Wu YY, Csako G. Rapid and/or high-throughput genotyping for human red blood cell, platelet and leukocyte antigens, and forensic applications. Clin Chim Acta 2006; 363:165-76. [PMID: 16154123 DOI: 10.1016/j.cccn.2005.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 07/08/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Traditionally, transfusion medicine, platelet and human leukocyte antigen (HLA) typing, and forensic medicine relied on serologic studies. METHODS In recent years, molecular testing on nucleic acids has been increasingly applied to these areas. Although conventional molecular diagnostic methods such as PCR-sequence-specific priming, PCR-restriction fragment-length polymorphism, PCR-single-strand conformation polymorphism, sequence-based typing, and DNA fingerprinting have been shown to perform well, their use is limited by long turnaround times, high cost, labor-intensiveness, the need for special technical skills, and/or the high risk of amplicon contamination. With advance of fast and/or high-throughput methods and platforms that often combine amplification and detection, a new era of molecular genotyping is emerging in these fields dominated by serology for a century. As new targets, short tandem repeats, mitochondrial DNA and Y-chromosome sequences were introduced for forensic applications. This article reviews the current status of the application of rapid and/or high-throughput genotyping methods to these areas. RESULTS The results are already promising with real-time PCR, pyrosequencing, microarrays, and mass spectrometry and show high concordance rates with classic serologic and earlier manual molecular diagnostic methods. Exploration of other emerging methodologies will likely further enhance the diagnostic utility of molecular testing in these areas.
Collapse
Affiliation(s)
- Yan Yun Wu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06510-3202, USA.
| | | |
Collapse
|
11
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|