1
|
Chocholova E, Roudnicky P, Potesil D, Fialova D, Krystofova K, Drozdova E, Zdrahal Z. Extraction Protocol for Parallel Analysis of Proteins and DNA from Ancient Teeth and Dental Calculus. J Proteome Res 2023; 22:3311-3319. [PMID: 37699853 PMCID: PMC10563166 DOI: 10.1021/acs.jproteome.3c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Dental calculus is becoming a crucial material in the study of past populations with increasing interest in its proteomic and genomic content. Here, we suggest further development of a protocol for analysis of ancient proteins and a combined approach for subsequent ancient DNA extraction. We tested the protocol on recent teeth, and the optimized protocol was applied to ancient tooth to limit the destruction of calculus as it is a precious and irreplaceable source of dietary, microbiological, and ecological information in the archeological context. Finally, the applicability of the protocol was demonstrated on samples of the ancient calculus.
Collapse
Affiliation(s)
- Eva Chocholova
- Laboratory of Biological and Molecular Anthropology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Pavel Roudnicky
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - David Potesil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Dana Fialova
- Laboratory of Biological and Molecular Anthropology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Karolina Krystofova
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Eva Drozdova
- Laboratory of Biological and Molecular Anthropology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Zbynek Zdrahal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
2
|
Hernández CL. Mitochondrial DNA in Human Diversity and Health: From the Golden Age to the Omics Era. Genes (Basel) 2023; 14:1534. [PMID: 37628587 PMCID: PMC10453943 DOI: 10.3390/genes14081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a small fraction of our hereditary material. However, this molecule has had an overwhelming presence in scientific research for decades until the arrival of high-throughput studies. Several appealing properties justify the application of mtDNA to understand how human populations are-from a genetic perspective-and how individuals exhibit phenotypes of biomedical importance. Here, I review the basics of mitochondrial studies with a focus on the dawn of the field, analysis methods and the connection between two sides of mitochondrial genetics: anthropological and biomedical. The particularities of mtDNA, with respect to inheritance pattern, evolutionary rate and dependence on the nuclear genome, explain the challenges of associating mtDNA composition and diseases. Finally, I consider the relevance of this single locus in the context of omics research. The present work may serve as a tribute to a tool that has provided important insights into the past and present of humankind.
Collapse
Affiliation(s)
- Candela L Hernández
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Liu Z, Simayijiang H, Wang Q, Yang J, Sun H, Wu R, Yan J. DNA and protein analyses of hair in forensic genetics. Int J Legal Med 2023; 137:613-633. [PMID: 36732435 DOI: 10.1007/s00414-023-02955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
Hair is one of the most common pieces of biological evidence found at a crime scene and plays an essential role in forensic investigation. Hairs, especially non-follicular hairs, are usually found at various crime scenes, either by natural shedding or by forcible shedding. However, the genetic material in hairs is usually highly degraded, which makes forensic analysis difficult. As a result, the value of hair has not been fully exploited in forensic investigations and trials. In recent years, with advances in molecular biology, forensic analysis of hair has achieved remarkable strides and provided crucial clues in numerous cases. This article reviews recent developments in DNA and protein analysis of hair and attempts to provide a comprehensive solution to improve forensic hair analysis.
Collapse
Affiliation(s)
- Zhiyong Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Halimureti Simayijiang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, People's Republic of China
| | - Qiangwei Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jingyi Yang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China. .,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, 030600, People's Republic of China.
| |
Collapse
|
4
|
Development and validation of a novel 133-plex forensic STR panel (52 STRs and 81 Y-STRs) using single-end 400 bp massive parallel sequencing. Int J Legal Med 2021; 136:447-464. [PMID: 34741666 DOI: 10.1007/s00414-021-02738-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Short tandem repeats (STRs) are the preferred genetic markers in forensic DNA analysis, routinely measured by capillary electrophoresis (CE) method based on the fragment length features. While, the massive parallel sequencing (MPS) technology could simultaneously target a large number of intriguing forensic STRs, bypassing the intrinsic limitations of amplicon size separation and accessible fluorophores in CE, which is efficient and promising for enabling the identification of forensic biological evidence. Here, we developed a novel MPS-based Forensic Analysis System Multiplecues SetB Kit of 133-plex forensic STR markers (52 STRs and 81 Y-STRs) and one Y-InDel (M175) based on multiplex PCR and single-end 400 bp sequencing strategy. This panel was subjected to developmental validation studies according to the SWGDAM Validation Guidelines. Approximately 2185 MPS-based reactions using 6 human DNA standards and 8 male donors were conducted for substrate studies (filter paper, gauze, cotton swab, four different types of FTA cards, peripheral venous blood, saliva, and exfoliated cells), sensitivity studies (from 2 ng down to 0.0625 ng), mixture studies (two-person DNA mixtures), PCR inhibitor studies (seven commonly encountered PCR inhibitors), species specificity studies (11 non-human species), and repeatability studies. Results of concordance studies (413 Han males and 6 human DNA standards) generated by STRait Razor and in-house Python scripts indicated 99.98% concordance rate in STR calling relative to CE for STRs between 41,900 genotypes at 100 STR markers. Moreover, the limitations of present studies, the nomenclature rules and forensic MPS applications were also described. In conclusion, the validation studies based on ~ 2200 MPS-based and ~ 2500 CE-based DNA profiles demonstrated that the novel MPS-based panel meets forensic DNA quality assurance guidelines with robust, reliable, and reproducible performance on samples of various quantities and qualities, and the STR nomenclature rules should be further regulated to integrate the inconformity between MPS-based and CE-based methods.
Collapse
|