1
|
Wang H, Tian Z, Wang L, Wang H, Zhang Y, Shi Z. Advancements, functionalization techniques, and multifunctional applications in biomedical and industrial fields of electrospun pectin nanofibers: A review. Int J Biol Macromol 2025; 307:141964. [PMID: 40074113 DOI: 10.1016/j.ijbiomac.2025.141964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/01/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Electrospun pectin nanofibers have emerged as a transformative advancement in biomaterials, offering remarkable potential across diverse biomedical and industrial applications. This review explores the synthesis, optimization, and versatile applications of electrospun pectin nanofibers, highlighting their unique properties, including biocompatibility, biodegradability, and adaptability for functionalization. Pectin's structural diversity, coupled with its ability to form hydrogels and interact with biological systems, makes it a promising candidate for wound healing, drug delivery, tissue engineering, and smart packaging. Electrospinning has enabled the fabrication of pectin nanofibers with tunable morphology and functionality, overcoming traditional limitations such as poor mechanical strength. Advances in blending pectin with other polymers and incorporating bioactive agents have further enhanced their mechanical, biological, and therapeutic properties. In wound healing, pectin nanofibers mimic the extracellular matrix, promote angiogenesis, and deliver bioactive compounds to accelerate tissue regeneration. Challenges such as scalability, regulatory compliance, and mechanical limitations remain barriers to widespread adoption. This review underscores the need for interdisciplinary research to address these challenges and advance the clinical and commercial translation of pectin nanofibers. By critically analyzing recent advancements and outlining future directions, this review highlights the transformative potential of electrospun pectin nanofibers as sustainable, high-performance biomaterials for modern biomedical and industrial applications.
Collapse
Affiliation(s)
- Haoyu Wang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China; Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Zenan Tian
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Long Wang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China
| | - Haifan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yuxing Zhang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China.
| | - Zhibin Shi
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
2
|
Nicosia C, Licciardello F. Study of the release kinetics of Ethyl Lauroyl Arginate from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) active films. Food Res Int 2025; 200:115345. [PMID: 39779157 DOI: 10.1016/j.foodres.2024.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/30/2025]
Abstract
This study investigates the underexplored area of the release mechanism and kinetics of the antimicrobial Ethyl Lauroyl Arginate (LAE®) from an innovative active packaging system based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). We evaluated the impact of food simulants and temperatures on LAE® release, diffusion, and partition coefficients. Mathematical modeling was used to elucidate LAE® release kinetics, offering understanding of the release behaviour in food matrices. Results highlighted that temperature notably affected LAE® release into simulant A (10% EtOH) unlike the release into simulant D1 (50% EtOH). Although the release was faster in the less polar simulant, a greater partition coefficient demonstrated greater LAE® retention within the polymer matrix at equilibrium. Weibull models ensured robust fits, suggesting their usefulness for future studies on LAE® release kinetic. Finally, the active films were validated in food, showing significant reduction in microbial counts. These findings contribute to the design of effective antimicrobial food packaging and the selection of suitable food applications.
Collapse
Affiliation(s)
- Carola Nicosia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy.
| | - Fabio Licciardello
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy; Interdepartmental Research Centre for the Improvement of Agro-Food Biological Resources (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| |
Collapse
|
3
|
Patiño Vidal C, Muñoz-Shugulí C, Guivier M, Puglia D, Luzi F, Rojas A, Velásquez E, Galotto MJ, López-de-Dicastillo C. PLA- and PHA-Biopolyester-Based Electrospun Materials: Development, Legislation, and Food Packaging Applications. Molecules 2024; 29:5452. [PMID: 39598841 PMCID: PMC11597656 DOI: 10.3390/molecules29225452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The high accumulation of plastic waste in the environment has led to great interest in biodegradable polymers, such as polylactic acid (PLA) or polyhydroxyalkanoates (PHAs). Their benefits, combined with the application of electrospinning technology, represent an innovative proposal for the food packaging industry. This article provides a comprehensive review of the latest developments of PLA- and PHA-biopolyester-based electrospun materials for food packaging applications, summarizing the reported technologies, material properties, applications, and invention patents. In addition, the legislation used to assess their biodegradability is also detailed. Electrospun packaging materials are largely developed through uniaxial, coaxial, emulsion, multiaxial, and needleless techniques. PLA- and PHA-biopolyester-based electrospun materials can be obtained as single and multilayer packaging structures, and the incorporation of natural extracts, organic compounds, and nanoparticles has become a great strategy for designing active food packaging systems. The biodegradability of electrospun materials has mainly been evaluated in soil, compost, and aquatic systems through ASTM and ISO normatives. In this review, the dependence of the biodegradation process on the polymer type, conditions, and test methods is clearly reviewed. Moreover, these biodegradable electrospun materials have shown excellent antioxidant and antimicrobial properties, resulting in a great method for extending the shelf life of fruits, bread, fish, and meat products.
Collapse
Affiliation(s)
- Cristian Patiño Vidal
- Safety and Resources Valorization Research Group (INVAGRO), Faculty of Engineering, Universidad Nacional de Chimborazo (UNACH), Av. Antonio José de Sucre Km 1 1/2, Riobamba 060108, Ecuador
- Group for Research and Innovation in Food Packaging, Riobamba 060107, Ecuador;
| | - Cristina Muñoz-Shugulí
- Group for Research and Innovation in Food Packaging, Riobamba 060107, Ecuador;
- Faculty of Sciences, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba 060106, Ecuador
| | - Manon Guivier
- Polymer Chemistry and Materials, Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland;
| | - Débora Puglia
- Materials Science and Technology Laboratory, Civil and Environmental Engineering Department, University of Perugia (UNIPG), 05100 Terni, Italy;
| | - Francesca Luzi
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Polytechnic University of Marche (UNIVPM), 60131 Ancona, Italy;
| | - Adrián Rojas
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago 9170201, Chile; (A.R.); (E.V.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago 9170201, Chile
| | - Eliezer Velásquez
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago 9170201, Chile; (A.R.); (E.V.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago 9170201, Chile
| | - María José Galotto
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago 9170201, Chile; (A.R.); (E.V.); (M.J.G.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago 9170201, Chile
| | - Carol López-de-Dicastillo
- Packaging Laboratory, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain
| |
Collapse
|
4
|
Wang Y, Xu T, Qi J, Liu K, Zhang M, Si C. Nano/micro flexible fiber and paper-based advanced functional packaging materials. Food Chem 2024; 458:140329. [PMID: 38991239 DOI: 10.1016/j.foodchem.2024.140329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/19/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Recently, fiber-based and functional paper food packaging has garnered significant attention for its versatility, excellent performance, and potential to provide sustainable solutions to the food packaging industry. Fiber-based food packaging is characterized by its large surface area, adjustable porosity and customizability, while functional paper-based food packaging typically exhibits good mechanical strength and barrier properties. This review summarizes the latest research progress on food packaging based on fibers and functional paper. Firstly, the raw materials used for preparing fiber and functional paper, along with their physical and chemical properties and roles in food packaging, were discussed. Subsequently, the latest advancements in the application of fiber and paper materials in food packaging were introduced. This paper also discusses future research directions and potential areas for improvement in fiber and functional paper food packaging to further enhance their effectiveness in ensuring food safety, quality, and sustainability.
Collapse
Affiliation(s)
- Yaxuan Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Robustnique Co. Ltd. Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin 300384, China.
| | - Junjie Qi
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kun Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Meng Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China; Robustnique Co. Ltd. Block C, Phase II, Pioneer Park, Lanyuan Road, Tianjin 300384, China.
| |
Collapse
|
5
|
Ouyang C, Zhang H, Zhu Y, Zhao J, Ren H, Zhai H. Lignin-containing cellulose nanocrystals enhanced electrospun polylactic acid-based nanofibrous mats: Strengthen and toughen. Int J Biol Macromol 2024; 280:135617. [PMID: 39278433 DOI: 10.1016/j.ijbiomac.2024.135617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Biodegradable polylactic acid (PLA) nanofibrous mats prepared by electrospinning serve as suitable packaging materials. However, their practical applications are limited by their weak mechanical properties, poor thermal stability, and high cost. In this study, green and low-cost lignin-containing cellulose nanocrystals (LCNCs) with different lignin contents were developed and employed as reinforced materials to synergistically enhance the thermal, mechanical, and hydrophobic properties of PLA electrospun nanofibrous mats. The presence of moderate lignin improved the interfacial compatibility between the LCNCs and PLA, resulting in excellent mechanical properties of the nanofibrous mats. Compared to pure PLA mats, the tensile strength of the composites reached up to 21.0 MPa, representing a 6.6-fold increase. Its toughness was synchronously enhanced by 16 times, reaching a maximum of 3.6 MJ/m3. The maximum decomposition temperature of PLA/LCNCs electrospun nanofibrous mats increased from 339 °C to 365 °C. Furthermore, the increase in lignin in the LCNCs positively contributed to improving the hydrophobicity of the PLA/LCNCs electrospun nanofibrous mats. This bio-based strategy of LCNCs employed in the enhancement of fully bio-based PLA nanofibrous mats offers a viable approach for the advancement of packaging films.
Collapse
Affiliation(s)
- Chen Ouyang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Haonan Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON M5S 3E5, Canada
| | - Yanchen Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Jin Zhao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Ren
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| | - Huamin Zhai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Hemraz UD, Lam E, Sunasee R. Recent advances in cellulose nanocrystals-based antimicrobial agents. Carbohydr Polym 2023; 315:120987. [PMID: 37230623 DOI: 10.1016/j.carbpol.2023.120987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/02/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
Over the past five years, there has been growing interest in the design of modified cellulose nanocrystals (CNCs) as nanoscale antimicrobial agents in potential end-user applications such as food preservation/packaging, additive manufacturing, biomedical and water purification. The interest of applying CNCs-based antimicrobial agents arise due to their abilities to be derived from renewable bioresources and their excellent physicochemical properties including rod-like morphologies, large specific surface area, low toxicity, biocompatibility, biodegradability and sustainability. The presence of ample surface hydroxyl groups further allows easy chemical surface modifications for the design of advanced functional CNCs-based antimicrobial materials. Furthermore, CNCs are used to support antimicrobial agents that are subjected to instability issues. The current review summarizes recent progress in CNC-inorganic hybrid-based materials (Ag and Zn nanoparticles, other metal/metal oxide) and CNC-organic hybrid-based materials (polymers, chitosan, simple organic molecules). It focuses on their design, syntheses and applications with a brief discussion on their probable modes of antimicrobial action whereby the roles of CNCs and/or the antimicrobial agents are highlighted.
Collapse
Affiliation(s)
- Usha D Hemraz
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Montreal, Quebec H4P 2R2, Canada.
| | - Edmond Lam
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Montreal, Quebec H4P 2R2, Canada; Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada.
| | - Rajesh Sunasee
- Department of Chemistry and Biochemistry, State University of New York at Plattsburgh, Plattsburgh, NY 12901, USA.
| |
Collapse
|
7
|
Zhang M, Ahmed A, Xu L. Electrospun Nanofibers for Functional Food Packaging Application. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5937. [PMID: 37687628 PMCID: PMC10488873 DOI: 10.3390/ma16175937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
With the strengthening of the public awareness of food safety and environmental protection, functional food packaging materials have received widespread attention. Nanofibers are considered as promising packaging materials due to their unique one-dimensional structure (high aspect ratio, large specific surface area) and functional advantages. Electrospinning, as a commonly used simple and efficient method for preparing nanofibers, can obtain nanofibers with different structures such as aligned, core-shell, and porous structures by modifying the devices and adjusting the process parameters. The selection of raw materials and structural design of nanofibers can endow food packaging with different functions, including antimicrobial activity, antioxidation, ultraviolet protection, and response to pH. This paper aims to provide a comprehensive review of the application of electrospun nanofibers in functional food packaging. Advances in electrospinning technology and electrospun materials used for food packaging are introduced. Moreover, the progress and development prospects of electrospun nanofibers in functional food packaging are highlighted. Meanwhile, the application of functional packaging based on nanofibers in different foods is discussed in detail.
Collapse
Affiliation(s)
- Meng Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (M.Z.); (A.A.)
| | - Adnan Ahmed
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (M.Z.); (A.A.)
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (M.Z.); (A.A.)
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| |
Collapse
|
8
|
Patiño Vidal C, Luzi F, Puglia D, López-Carballo G, Rojas A, Galotto MJ, López de Dicastillo C. Development of a sustainable and antibacterial food packaging material based in a biopolymeric multilayer system composed by polylactic acid, chitosan, cellulose nanocrystals and ethyl lauroyl arginate. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Vidal CP, Velásquez E, Gavara R, Hernández-Muñoz P, Muñoz-Shugulí C, José Galotto M, de Dicastillo CL. Modeling the release of an antimicrobial agent from multilayer film containing coaxial electrospun polylactic acid nanofibers. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
10
|
López de Dicastillo C, Velásquez E, Rojas A, Garrido L, Moreno MC, Guarda A, Galotto MJ. Developing Core/Shell Capsules Based on Hydroxypropyl Methylcellulose and Gelatin through Electrodynamic Atomization for Betalain Encapsulation. Polymers (Basel) 2023; 15:polym15020361. [PMID: 36679242 PMCID: PMC9866801 DOI: 10.3390/polym15020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/13/2023] Open
Abstract
Betalains are bioactive compounds with remarkable functional and nutritional activities for health and food preservation and attractiveness. Nevertheless, they are highly sensitive to external factors, such as oxygen presence, light, and high temperatures. Therefore, the search for new structures, polymeric matrices, and efficient methods of encapsulation of these compounds is of great interest to increase their addition to food products. In this work, betalains were extracted from red beetroot. Betacyanin and betaxanthin contents were quantified. Subsequently, these compounds were successfully encapsulated into the core of coaxial electrosprayed capsules composed of hydroxypropyl methylcellulose (HPMC) and gelatin (G). The effect of incorporating the carbohydrate and the protein both in the core or shell structures was studied to elucidate the best composition for betalain protection. Morphological, optical, and structural properties were analyzed to understand the effect of the incorporation of the bioactive compounds in the morphology, color, and chemical interactions between components of resulting electrosprayed capsules. The results of the thermogravimetric and encapsulation efficiency analysis coincided that the incorporation of beetroot extract in G in the core and HPMC in the shell resulted in the structure with greater betalain protection. The effectiveness of the core/shell structure was confirmed for future food applications.
Collapse
Affiliation(s)
- Carol López de Dicastillo
- Packaging Laboratory, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - Eliezer Velásquez
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
- CEDENNA (Center for the Development of Nanoscience and Nanotechnology), Santiago 9170124, Chile
| | - Adrián Rojas
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
- CEDENNA (Center for the Development of Nanoscience and Nanotechnology), Santiago 9170124, Chile
| | - Luan Garrido
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
- CEDENNA (Center for the Development of Nanoscience and Nanotechnology), Santiago 9170124, Chile
| | - María Carolina Moreno
- Department of Chemical and Bioprocess Engineering, Faculty of Engineering, Pontificia Universidad Católica de Chile, Macul 6904411, Chile
| | - Abel Guarda
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
- CEDENNA (Center for the Development of Nanoscience and Nanotechnology), Santiago 9170124, Chile
| | - María José Galotto
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
- CEDENNA (Center for the Development of Nanoscience and Nanotechnology), Santiago 9170124, Chile
- Correspondence:
| |
Collapse
|
11
|
Aman Mohammadi M, Dakhili S, Mirza Alizadeh A, Kooki S, Hassanzadazar H, Alizadeh-Sani M, McClements DJ. New perspectives on electrospun nanofiber applications in smart and active food packaging materials. Crit Rev Food Sci Nutr 2022; 64:2601-2617. [PMID: 36123813 DOI: 10.1080/10408398.2022.2124506] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Packaging plays a critical role in determining the quality, safety, and shelf-life of many food products. There have been several innovations in the development of more effective food packaging materials recently. Polymer nanofibers are finding increasing attention as additives in packaging materials because of their ability to control their pore size, surface energy, barrier properties, antimicrobial activity, and mechanical strength. Electrospinning is a widely used processing method for fabricating nanofibers from food grade polymers. This review describes recent advances in the development of electrospun nanofibers for application in active and smart packaging materials. Moreover, it highlights the impact of these nanofibers on the physicochemical properties of packaging materials, as well as the application of nanofiber-loaded packaging materials to foods, such as dairy, meat, fruit, and vegetable products.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Dakhili
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Kooki
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Hassanzadazar
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmood Alizadeh-Sani
- Division of Food safety and hygiene, Department of Environmental Health Engineering, School of public health, Tehran University of medical sciences, Tehran, Iran
| | | |
Collapse
|
12
|
Jiang W, Zhao P, Song W, Wang M, Yu DG. Electrospun Zein/Polyoxyethylene Core-Sheath Ultrathin Fibers and Their Antibacterial Food Packaging Applications. Biomolecules 2022; 12:1110. [PMID: 36009003 PMCID: PMC9405609 DOI: 10.3390/biom12081110] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 02/06/2023] Open
Abstract
The purpose of this work is to develop a novel ultrathin fibrous membrane with a core-sheath structure as antibacterial food packaging film. Coaxial electrospinning was exploited to create the core-sheath structure, by which the delivery regulation of the active substance was achieved. Resveratrol (RE) and silver nanoparticles (AgNPs) were loaded into electrospun zein/polyethylene oxide ultrathin fibers to ensure a synergistic antibacterial performance. Under the assessments of a scanning electron microscope and transmission electron microscope, the ultrathin fiber was demonstrated to have a fine linear morphology, smooth surface and obvious core-sheath structure. X-ray diffraction and Fourier transform infrared analyses showed that RE and AgNPs coexisted in the ultrathin fibers and had good compatibility with the polymeric matrices. The water contact angle experiments were conducted to evaluate the hydrophilicity and hygroscopicity of the fibers. In vitro dissolution tests revealed that RE was released in a sustained manner. In the antibacterial experiments against Staphylococcus aureus and Escherichia coli, the diameters of the inhibition zone of the fiber were 8.89 ± 0.09 mm and 7.26 ± 0.10 mm, respectively. Finally, cherry tomatoes were selected as the packaging object and packed with fiber films. In a practical application, the fiber films effectively reduced the bacteria and decreased the quality loss of cherry tomatoes, thereby prolonging the fresh-keeping period of cherry tomatoes to 12 days. Following the protocols reported here, many new food packaging films can be similarly developed in the future.
Collapse
Affiliation(s)
- Wenlai Jiang
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Ping Zhao
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Wenliang Song
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Menglong Wang
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
13
|
Gruppuso M, Guagnini B, Musciacchio L, Bellemo F, Turco G, Porrelli D. Tuning the Drug Release from Antibacterial Polycaprolactone/Rifampicin-Based Core-Shell Electrospun Membranes: A Proof of Concept. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27599-27612. [PMID: 35671365 PMCID: PMC9946292 DOI: 10.1021/acsami.2c04849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The employment of coaxial fibers for guided tissue regeneration can be extremely advantageous since they allow the functionalization with bioactive compounds to be preserved and released with a long-term efficacy. Antibacterial coaxial membranes based on poly-ε-caprolactone (PCL) and rifampicin (Rif) were synthesized here, by analyzing the effects of loading the drug within the core or on the shell layer with respect to non-coaxial matrices. The membranes were, therefore, characterized for their surface properties in addition to analyzing drug release, antibacterial efficacy, and biocompatibility. The results showed that the lower drug surface density in coaxial fibers hinders the interaction with serum proteins, resulting in a hydrophobic behavior compared to non-coaxial mats. The air-plasma treatment increased their hydrophilicity, although it induced rifampicin degradation. Moreover, the substantially lower release of coaxial fibers influenced the antibacterial efficacy, tested against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Indeed, the coaxial matrices were inhibitory and bactericidal only against S. aureus, while the higher release from non-coaxial mats rendered them active even against E. coli. The biocompatibility of the released rifampicin was assessed too on murine fibroblasts, revealing no cytotoxic effects. Hence, the presented coaxial system should be further optimized to tune the drug release according to the antibacterial effectiveness.
Collapse
Affiliation(s)
- Martina Gruppuso
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Benedetta Guagnini
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Luigi Musciacchio
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Francesca Bellemo
- Department
of Engineering and Architecture, University
of Trieste, Via Alfonso
Valerio 6/1, 34127 Trieste, Italy
| | - Gianluca Turco
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| | - Davide Porrelli
- Department
of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, 34129 Trieste, Italy
| |
Collapse
|
14
|
Zhang Y, Wang Y. Electrospun Cellulose-Acetate/Chitosan Fibers for Humic-Acid Removal: Improved Efficiency and Robustness with a Core-Sheath Design. NANOMATERIALS 2022; 12:nano12081284. [PMID: 35457992 PMCID: PMC9026307 DOI: 10.3390/nano12081284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023]
Abstract
Recycling biomass waste into functional materials has attracted much attention, and a rational structural design can make more effective use of each component. In our previous work, the fabrication of electrospun cellulose-acetate (CA)/chitosan (CS) adsorbents for humic-acid (HA) removal guided by the intermolecular interaction mechanism was demonstrated. Herein, a core-sheath structure was designed via one-step co-axial electrospinning, where a mixture of CS and CA was employed as the sheath layer to efficiently adsorb HA, and cellulose nanocrystals (CNCs) derived from waste cotton fabrics were incorporated into the CA core as load-bearing components. Compared to the non-layered electrospun CS/CA fibers, all the CS/CA–CNC fibers with a core-sheath structure exhibited smaller diameters, greater homogeneity, and significantly improved mechanical strength. Meanwhile, their maximum adsorption capacities towards HA had no significant differences. Even after the complete hydrolysis of CA into cellulose, the electrospun fibers maintained the fibrous structures and showed a higher tensile strength while exhibiting an acceptable adsorption capacity towards HA. Therefore, this work demonstrates the importance of rational design in the efficient preparation of functional materials and the feasibility of using electrospun core-sheath fibers derived from biomass wastes for the removal of water contaminants.
Collapse
|