1
|
Laudadio E, Minnelli C, Mobbili G, Sabbatini G, Stipa P, Rusciano D, Galeazzi R. Salt effects on mixed composition membranes containing an antioxidant lipophilic edaravone derivative: a computational-experimental study. Org Biomol Chem 2022; 20:5784-5795. [PMID: 35822625 DOI: 10.1039/d2ob01143c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protection of lipid membranes against oxidation avoids diseases associated with oxidative stress. As a strategy to contrast it, functionalized lipids with antioxidant activity are used to become part of membranes thus protecting them. For this purpose, a lipophilic edaravone derivative has been synthesized, adding a C18 saturated chain to the original structure. The antioxidant activity of C18-Edv has been demonstrated in our previous work. In this study, molecular dynamics simulations have been performed to define the effects of NaCl, MgCl2, KCl, and CaCl2 salts on a palmitoyl-oleoyl-sn-glycero-phosphocholine (POPC) lipid bilayer encapsulating C18-Edv. The results showed how different salts influence POPC lateral diffusion, and the movements of C18-Edv heads, which are antioxidant moieties, were correlated to the ability of C18-Edv molecules to protect membranes. MgCl2 showed a negative impact leading to C18-Edv clusterization and membrane stretching, while KCl and NaCl showed a moderate influence on the mixed lipid membrane structure. CaCl2 increased the exposure of the C18-Edv heads to the lipid-water interface, resulting in the salt with a higher propensity to guarantee protection against radicals in the aqueous phase. Finally, C18-Edv-POPC liposomes have been prepared following the simulation conditions, and then an experimental Oxygen Radical Absorbance Capacity (ORAC) assay has been performed to confirm the in silico predicted results.
Collapse
Affiliation(s)
- Emiliano Laudadio
- Department SIMAU, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Cristina Minnelli
- Department DISVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Giovanna Mobbili
- Department DISVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Giulia Sabbatini
- Department DISVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Pierluigi Stipa
- Department SIMAU, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Dario Rusciano
- Research Center, Sooft Italia SpA, 95100, Catania, Italy
| | - Roberta Galeazzi
- Department DISVA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
2
|
Fernández-Espejo E, Rodríguez de Fonseca F, Gavito AL, Córdoba-Fernández A, Chacón J, Martín de Pablos Á. Myeloperoxidase and Advanced Oxidation Protein Products in the Cerebrospinal Fluid in Women and Men with Parkinson's Disease. Antioxidants (Basel) 2022; 11:1088. [PMID: 35739985 PMCID: PMC9219636 DOI: 10.3390/antiox11061088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Myeloperoxidase (MPO) and advanced oxidation protein products, or AOPP (a type of MPO-derived chlorinated adducts), have been implicated in Parkinson´s disease (PD). Human MPO also show sex-based differences in PD. The objective was to study the relationship of MPO and AOPP in the cerebrospinal fluid (CSF) with motor features of idiopathic PD in male and female patients. Methods: MPO concentration and activity and AOPP content were measured in the CSF and serum in 34 patients and 30 controls. CSF leukocytes and the integrity of the blood-brain barrier were evaluated. Correlations of MPO and AOPP with clinical variables were examined. Results: The blood-brain barrier was intact and CSF leukocyte count was normal in all patients. CSF MPO concentration and activity were similar in the cohort of patients and controls, but CSF MPO content was significantly higher in male patients than in PD women (p = 0.0084). CSF MPO concentration correlated with disease duration in male and female patients (p < 0.01). CSF MPO concentration was significantly higher in men with disease duration ≥12 years versus the remainder of the male subjects (p < 0.01). Changes in CSF MPO in women were not significant. Serum MPO concentration and activity were significantly higher in all PD patients relative to controls (p < 0.0001). CSF MPO was not correlated with serum MPO. Serum AOPP were detected in all patients, but CSF AOPP was undetectable in 53% of patients. AOPP were not quantifiable in controls. Conclusions: CSF MPO is not a good biomarker for PD because mean CSF MPO concentration and activity are not different between the cohort of patients and controls. CSF MPO concentration positively correlated with disease duration in men and women, but CSF MPO is significantly enhanced only in male patients with disease duration longer than 12 years. It can be hypothesized that the MPO-related immune response in early-stage PD might be weak in all patients, but then the MPO-related immune response is progressively enhanced in men, not women. Since the blood-brain barrier is intact, and CSF MPO is not correlated with serum MPO, CSF myeloperoxidase would reflect MPO content in brain cells, not blood-derived cells. Finally, serum AOPP was detected in all patients, but not controls, which is consistent with the occurrence of chlorinative stress in blood serum in PD. The study of CSF AOPP as biomarker could not be assessed because the ELISA assay was hampered by its detection limit in the CSF.
Collapse
Affiliation(s)
- Emilio Fernández-Espejo
- Reial Acadèmia de Medicina de Catalunya, 08001 Barcelona, Spain
- Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain;
| | - Fernando Rodríguez de Fonseca
- Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain;
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, 29010 Málaga, Spain
| | - Ana Luisa Gavito
- Laboratorio de Medicina Regenerativa, Hospital Regional Universitario, 29010 Málaga, Spain;
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario, 29010 Málaga, Spain
| | | | - José Chacón
- Servicio de Neurología, Hospital Quirónsalud Infanta Luisa, 41010 Sevilla, Spain;
| | - Ángel Martín de Pablos
- Departamento de Cirugía, Universidad de Sevilla, 41009 Sevilla, Spain;
- Unidad de Anestesiología y Reanimación, Servicio de Cirugía, Hospital Macarena, 41009 Sevilla, Spain
| |
Collapse
|
3
|
Tripathi A, Harris KD, Elias AL. High surface area nitrogen-functionalized Ni nanozymes for efficient peroxidase-like catalytic activity. PLoS One 2021; 16:e0257777. [PMID: 34637444 PMCID: PMC8509884 DOI: 10.1371/journal.pone.0257777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
Nitrogen-functionalization is an effective means of improving the catalytic performances of nanozymes. In the present work, plasma-assisted nitrogen modification of nanocolumnar Ni GLAD films was performed using an ammonia plasma, resulting in an improvement in the peroxidase-like catalytic performance of the porous, nanostructured Ni films. The plasma-treated nanozymes were characterized by TEM, SEM, XRD, and XPS, revealing a nitrogen-rich surface composition. Increased surface wettability was observed after ammonia plasma treatment, and the resulting nitrogen-functionalized Ni GLAD films presented dramatically enhanced peroxidase-like catalytic activity. The optimal time for plasma treatment was determined to be 120 s; when used to catalyze the oxidation of the colorimetric substrate TMB in the presence of H2O2, Ni films subjected to 120 s of plasma treatment yielded a much higher maximum reaction velocity (3.7⊆10-8 M/s vs. 2.3⊆10-8 M/s) and lower Michaelis-Menten coefficient (0.17 mM vs. 0.23 mM) than pristine Ni films with the same morphology. Additionally, we demonstrate the application of the nanozyme in a gravity-driven, continuous catalytic reaction device. Such a controllable plasma treatment strategy may open a new door toward surface-functionalized nanozymes with improved catalytic performance and potential applications in flow-driven point-of-care devices.
Collapse
Affiliation(s)
- Anuja Tripathi
- National Research Council Canada, Nanotechnology Research Centre, Edmonton, Edmonton, Canada
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
| | - Kenneth D. Harris
- National Research Council Canada, Nanotechnology Research Centre, Edmonton, Edmonton, Canada
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Anastasia L. Elias
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Jin R, Baumgart T. Asymmetric desorption of lipid oxidation products induces membrane bending. SOFT MATTER 2021; 17:7506-7515. [PMID: 34338699 PMCID: PMC8425771 DOI: 10.1039/d1sm00652e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid oxidation, detected in metabolic processes, is induced in excess when the cellular membrane suffers extra oxidative stress. Lipid oxidation can compromise biomembrane function in part through perturbations of lipid packing, membrane permeability, and morphology. Two major types of oxidation products, one with a partially truncated lipid tail with a hydrophilic group at the tail-end, and secondly, a lysolipid (with one of the chains completely truncated) can disturb the membrane bilayer packing significantly. However, they also have an increased tendency to desorb from the membrane. In this study we investigated desorption kinetics of two characteristic lipid oxidation products (PAzePC and 18 : 1 LysoPC) from a model membrane system, and we evaluated the consequences of this process on membrane shape transitions. Using a microfluidic chamber coupled with micropipette aspiration, we observed the incorporation of the two lipids into the membrane of a giant unilamellar vesicle (GUV) and further determined their desorption rates, association rates and flip-flop rates. For both lipids, the desorption is on the time scale of seconds, one to two orders of magnitude faster than their flipping rates. Dilution of the outer solution of the GUVs allowed asymmetric desorption of these two lipids from the GUVs. This process induced lipid number asymmetry and charge asymmetry, specifically for PAzePC containing GUVs, and caused membrane tubulation. Our results indicate that the desorption of lipid oxidation products can alter the local structure of biomembranes and result in morphological changes that may relate to membrane function.
Collapse
Affiliation(s)
- Rui Jin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
5
|
Effect of magnesium sulfate in oxidized lipid bilayers properties by using molecular dynamics. Biochem Biophys Rep 2021; 26:100998. [PMID: 33997315 PMCID: PMC8102416 DOI: 10.1016/j.bbrep.2021.100998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 01/18/2023] Open
Abstract
Magnesium sulfate (MgSO4) has been used as a protector agent for many diseases related to oxidative stress. The effect of MgSO4 on the oxidized lipid bilayer has not yet been studied using molecular dynamics calculations. In this work, the effects of oxidation were evaluated by using a POPC membrane model at different concentrations of its aldehyde (-CHO) and hydroperoxide (-OOH) derivatives with and without MgSO4. Several quantitative and qualitative properties were evaluated, such as membrane thickness, area per lipid, area compressibility modulus, snapshots after simulation finish, density distributions, time evolutions of oxidized group positions, and radial distributions of oxidized group concerning Mg. Results indicate that in the absence of MgSO4 the mobility of oxidized groups, particularly –CHO, toward the surface interface is high. At a low oxidation level of the bilayer there is an increase in the compressibility modulus as compared to the unoxidized bilayer. MgSO4, at a low oxidation level, tends to lessen the oxidation effects by lowering the dispersion in the distribution of oxidized species toward the membrane surface and the water region. However, MgSO4 does not change the trends of decreasing membrane thickness and area compressibility modulus and increasing area per lipid upon oxidation. In this regard, MgSO4 diminishes the electrostatic long-distance attractive interactions between the oxidized groups and the charged headgroups of the interface, owing to the Mg+2 and SO4-2 screening effects and an electrostatic stabilization of the headgroups, preventing the pore formation, which is well-known to occur in oxidized membranes. MgSO4 in vitro restores oxidized membranes but its molecular mechanism is unclear. MD simulations of oxidized lipid bilayers were performed with and without of MgSO4. A restriction in the mobility of oxidized groups is produced by MgSO4. Mg+2 and SO4= produce screening effects on the oxidized membranes. MgSO4 produce a diminution of electrostatic long-distance attractive interactions.
Collapse
|
6
|
Epileptic brain fluorescent imaging reveals apigenin can relieve the myeloperoxidase-mediated oxidative stress and inhibit ferroptosis. Proc Natl Acad Sci U S A 2020; 117:10155-10164. [PMID: 32327603 DOI: 10.1073/pnas.1917946117] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myeloperoxidase (MPO)-mediated oxidative stress has been suggested to play an important role in the pathological dysfunction of epileptic brains. However, there is currently no robust brain-imaging tool to detect real-time endogenous hypochlorite (HClO) generation by MPO or a fluorescent probe for rapid high-throughput screening of antiepileptic agents that control the MPO-mediated chlorination stress. Herein, we report an efficient two-photon fluorescence probe (named HCP) for the real-time detection of endogenous HClO signals generated by MPO in the brain of kainic acid (KA)-induced epileptic mice, where HClO-dependent chlorination of quinolone fluorophore gives the enhanced fluorescence response. With this probe, we visualized directly the endogenous HClO fluxes generated by the overexpression of MPO activity in vivo and ex vivo in mouse brains with epileptic behaviors. Notably, by using HCP, we have also constructed a high-throughput screening approach to rapidly screen the potential antiepileptic agents to control MPO-mediated oxidative stress. Moreover, from this screen, we identified that the flavonoid compound apigenin can relieve the MPO-mediated oxidative stress and inhibit the ferroptosis of neuronal cells. Overall, this work provides a versatile fluorescence tool for elucidating the role of HClO generation by MPO in the pathology of epileptic seizures and for rapidly discovering additional antiepileptic agents to prevent and treat epilepsy.
Collapse
|
7
|
Pravalika K, Sarmah D, Kaur H, Wanve M, Saraf J, Kalia K, Borah A, Yavagal DR, Dave KR, Bhattacharya P. Myeloperoxidase and Neurological Disorder: A Crosstalk. ACS Chem Neurosci 2018; 9:421-430. [PMID: 29351721 DOI: 10.1021/acschemneuro.7b00462] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Myeloperoxidase (MPO) is a protein present in azurophilic granules, macrophages, and neutrophils that are released into extracellular fluid (ECF) during inflammation. MPO releases hypochlorous acid (HOCl) and other chlorinated species. It is derived from hydrogen peroxide (H2O2) showing response during inflammatory conditions and plays a role in the immune defense against pathogens. MPO may show unwanted effects by indirectly increasing the formation of reactive nitrogen species (RNS), reactive oxygen species (ROS), and tumor necrosis factor alpha (TNF-α) leading to inflammation and oxidative stress. As neuroinflammation is one of the inevitable biological components among most of neurological disorders, MPO and its receptor may be explored as candidates for future clinical interventions. The purpose of this review is to provide an overview of the pathophysiological characteristics of MPO and further explore the possibilities to target it for clinical use. Targeting MPO is promising and may open an avenue to act as a biomarker for diagnosis with defined risk stratification in patients with various neurological disorders.
Collapse
Affiliation(s)
- Kanta Pravalika
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Madhuri Wanve
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Jackson Saraf
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788 011 Assam, India
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Kunjan R Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad Gandhinagar, 382 355 Gujarat, India
| |
Collapse
|
8
|
Raefsky SM, Mattson MP. Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radic Biol Med 2017; 102:203-216. [PMID: 27908782 PMCID: PMC5209274 DOI: 10.1016/j.freeradbiomed.2016.11.045] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/27/2016] [Indexed: 01/04/2023]
Abstract
An important concept in neurobiology is "neurons that fire together, wire together" which means that the formation and maintenance of synapses is promoted by activation of those synapses. Very similar to the effects of the stress of exercise on muscle cells, emerging findings suggest that neurons respond to activity by activating signaling pathways (e.g., Ca2+, CREB, PGC-1α, NF-κB) that stimulate mitochondrial biogenesis and cellular stress resistance. These pathways are also activated by aerobic exercise and food deprivation, two bioenergetic challenges of fundamental importance in the evolution of the brains of all mammals, including humans. The metabolic 'switch' in fuel source from liver glycogen store-derived glucose to adipose cell-derived fatty acids and their ketone metabolites during fasting and sustained exercise, appears to be a pivotal trigger of both brain-intrinsic and peripheral organ-derived signals that enhance learning and memory and underlying synaptic plasticity and neurogenesis. Brain-intrinsic extracellular signals include the excitatory neurotransmitter glutamate and the neurotrophic factor BDNF, and peripheral signals may include the liver-derived ketone 3-hydroxybutyrate and the muscle cell-derived protein irisin. Emerging findings suggest that fasting, exercise and an intellectually challenging lifestyle can protect neurons against the dysfunction and degeneration that they would otherwise suffer in acute brain injuries (stroke and head trauma) and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease. Among the prominent intracellular responses of neurons to these bioenergetic challenges are up-regulation of antioxidant defenses, autophagy/mitophagy and DNA repair. A better understanding of such fundamental hormesis-based adaptive neuronal response mechanisms is expected to result in the development and implementation of novel interventions to promote optimal brain function and healthy brain aging.
Collapse
Affiliation(s)
- Sophia M Raefsky
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, United States
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, United States; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
9
|
Herraiz T. N-methyltetrahydropyridines and pyridinium cations as toxins and comparison with naturally-occurring alkaloids. Food Chem Toxicol 2016; 97:23-39. [DOI: 10.1016/j.fct.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/22/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
|
10
|
Del-Bel E, Bortolanza M, Dos-Santos-Pereira M, Bariotto K, Raisman-Vozari R. l-DOPA-induced dyskinesia in Parkinson's disease: Are neuroinflammation and astrocytes key elements? Synapse 2016; 70:479-500. [DOI: 10.1002/syn.21941] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Elaine Del-Bel
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
- Department of Physiology; FMRP; São Paulo Brazil
- Department of Neurology and Behavioral Neuroscience; FMRP, Campus USP, University of São Paulo; Av. Bandeirantes 13400 Ribeirão Preto SP 14049-900 Brazil
| | - Mariza Bortolanza
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
| | - Maurício Dos-Santos-Pereira
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
- Department of Physiology; FMRP; São Paulo Brazil
| | - Keila Bariotto
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
- Department of Neurology and Behavioral Neuroscience; FMRP, Campus USP, University of São Paulo; Av. Bandeirantes 13400 Ribeirão Preto SP 14049-900 Brazil
| | - Rita Raisman-Vozari
- INSERM UMR 1127, CNRS UMR 7225, UPMC; Thérapeutique Expérimentale de la Neurodégénérescence, Hôpital de la Salpetrière-ICM (Institut du cerveau et de la moelle épinière); Paris France
| |
Collapse
|
11
|
Hyun TK, Kim HC, Kim JS. In vitro Screening for Antioxidant, Antimicrobial, and Antidiabetic Properties of Some Korean Native Plants on Mt. Halla, Jeju Island. Indian J Pharm Sci 2016; 77:668-74. [PMID: 26997693 PMCID: PMC4778225 DOI: 10.4103/0250-474x.174984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In this study, Prunus padus, Lonicera caerulea, Berberis amurensis, and Ribes maximowiczianum, which are mainly distributed on Mt. Halla, Jeju Island, have been investigated for their antioxidant, antimicrobial, and antidiabetic activities. The methanol extracts of R. maximowiczianum leaves and P. padus branches exhibited significant and dose-dependent antioxidant activity including electron-donation ability and reducing power. To analyze the antimicrobial activity, each extract was tested by a serial two-fold dilution method against five selected gram-positive bacteria and four gram-negative bacteria, and this suggested that P. padus branches possessed the maximum antimicrobial activity against most of the gram-positive bacteria tested. In addition, the methanol extracts of P. padus branches exhibited the highest α-glucosidase inhibitory activity with an IC50 value of 1.0±0.1 μg/ml, indicating that P. padus is a promising source as a herbal medicine.
Collapse
Affiliation(s)
- T K Hyun
- College of Agricultural, Life and Environmental Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - H C Kim
- Research Institute for Hallasan, Jeju 690-816, Republic of Korea
| | - J S Kim
- College of Applied Life Sciences, The Research Institute for Subtropical Agriculture and Biotechnology, Jeju National University, Jeju 690-756, Republic of Korea
| |
Collapse
|
12
|
Deepa SS, Bhaskaran S, Ranjit R, Qaisar R, Nair BC, Liu Y, Walsh ME, Fok WC, Van Remmen H. Down-regulation of the mitochondrial matrix peptidase ClpP in muscle cells causes mitochondrial dysfunction and decreases cell proliferation. Free Radic Biol Med 2016; 91:281-92. [PMID: 26721594 PMCID: PMC5584630 DOI: 10.1016/j.freeradbiomed.2015.12.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 12/14/2015] [Accepted: 12/19/2015] [Indexed: 12/22/2022]
Abstract
The caseinolytic peptidase P (ClpP) is the endopeptidase component of the mitochondrial matrix ATP-dependent ClpXP protease. ClpP degrades unfolded proteins to maintain mitochondrial protein homeostasis and is involved in the initiation of the mitochondrial unfolded protein response (UPR(mt)). Outside of an integral role in the UPR(mt), the cellular function of ClpP is not well characterized in mammalian cells. To investigate the role of ClpP in mitochondrial function, we generated C2C12 muscle cells that are deficient in ClpP using siRNA or stable knockdown using lentiviral transduction. Reduction of ClpP levels by ~70% in C2C12 muscle cells resulted in a number of mitochondrial alterations including reduced mitochondrial respiration and reduced oxygen consumption rate in response to electron transport chain (ETC) complex I and II substrates. The reduction in ClpP altered mitochondrial morphology, changed the expression level of mitochondrial fission protein Drp1 and blunted UPR(mt) induction. In addition, ClpP deficient cells showed increased generation of reactive oxygen species (ROS) and decreased membrane potential. At the cellular level, reduction of ClpP impaired myoblast differentiation, cell proliferation and elevated phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) suggesting an inhibition of translation. Our study is the first to define the effects of ClpP deficiency on mitochondrial function in muscle cells in vitro. In addition, we have uncovered novel effects of ClpP on mitochondrial morphology, cell proliferation and protein translation pathways in muscle cells.
Collapse
Affiliation(s)
- Sathyaseelan S Deepa
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Shylesh Bhaskaran
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Rojina Ranjit
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Rizwan Qaisar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Binoj C Nair
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuhong Liu
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Michael E Walsh
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Wilson C Fok
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Oklahoma City VA Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
13
|
Shejawale DD, Hymavathi TV, Manorama K, Zabeen F. Effect of processing on nutraceutical properties of foxtail millet (Setaria italica) varieties grown in India. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2015. [DOI: 10.1007/s11694-015-9271-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Herraiz T, Galisteo J. Naturally-occurring tetrahydro-β-carboline alkaloids derived from tryptophan are oxidized to bioactive β-carboline alkaloids by heme peroxidases. Biochem Biophys Res Commun 2014; 451:42-7. [PMID: 25035927 DOI: 10.1016/j.bbrc.2014.07.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/09/2014] [Indexed: 12/13/2022]
Abstract
β-Carbolines are indole alkaloids that occur in plants, foods, and endogenously in mammals and humans, and which exhibit potent biological, psychopharmacological and toxicological activities. They form from naturally-occurring tetrahydro-β-carboline alkaloids arising from tryptophan by still unknown way and mechanism. Results in this research show that heme peroxidases catalyzed the oxidation of tetrahydro-β-carbolines (i.e. 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid and 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid) into aromatic β-carbolines (i.e. norharman and harman, respectively). This oxidation followed a typical catalytic cycle of peroxidases through redox intermediates I, II, and ferric enzyme. Both, plant peroxidases (horseradish peroxidase, HRP) and mammalian peroxidases (myeloperoxidase, MPO and lactoperoxidase, LPO) catalyzed the oxidation in an efficient manner as determined by kinetic parameters (VMAX and KM). Oxidation of tetrahydro-β-carbolines was inhibited by peroxidase inhibitors such as sodium azide, ascorbic acid, hydroxylamine and excess of H2O2. The formation of aromatic β-carbolines by heme peroxidases can help to explain the presence and activity of these compounds in biological systems.
Collapse
Affiliation(s)
- Tomás Herraiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Spanish National Research Council (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Juan Galisteo
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), Spanish National Research Council (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
15
|
Khan AA, Rahmani AH, Aldebasi YH, Aly SM. Biochemical and pathological studies on peroxidases -an updated review. Glob J Health Sci 2014; 6:87-98. [PMID: 25168993 PMCID: PMC4825458 DOI: 10.5539/gjhs.v6n5p87] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/17/2014] [Indexed: 12/31/2022] Open
Abstract
Peroxidases represent a family of isoenzymes actively involved in oxidizing reactive oxygen species, innate immunity, hormone biosynthesis and pathogenesis of several diseases. Different types of peroxidases have organ, tissues, cellular and sub-cellular level of specificities in their function. Different diseases lead to varied expressions of peroxidases based on several mechanisms proposed. Several researches are going on to understand its deficiency, over-expression and malfunction in relation with different diseases. Some common diseases of mankind like cancer, cardiovascular diseases and diabetes directly or indirectly involve the role of peroxidases. So the status of peroxidase levels may also function as a marker of different diseases. Although many types of diseases in human beings have a strong correlation with tissue specific peroxidases, the clear role of these oxido-reductases is not yet fully understood. Here we are focusing on the role of peroxidases in relations with different diseases occurring due to oxidative stress.
Collapse
Affiliation(s)
- Amjad A Khan
- Dept. of Basic Health Sciences, College of Applied Medical Science, Qassim University, Saudi Arabia.
| | | | | | | |
Collapse
|
16
|
Herraiz T, Guillén H, Galisteo J. Metabolite profile resulting from the activation/inactivation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 2-methyltetrahydro-β-carboline by oxidative enzymes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:248608. [PMID: 23984327 PMCID: PMC3745933 DOI: 10.1155/2013/248608] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/03/2013] [Indexed: 11/18/2022]
Abstract
Metabolic enzymes are involved in the activation/deactivation of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyiridine (MPTP) neurotoxin and its naturally occurring analogs 2-methyltetrahydro-β-carbolines. The metabolic profile and biotransformation of these protoxins by three enzymes, monoamine oxidase (MAO), cytochrome P450, and heme peroxidases (myeloperoxidase and lactoperoxidase), were investigated and compared. The metabolite profile differed among the enzymes investigated. MAO and heme peroxidases activated these substances to toxic pyridinium and β-carbolinium species. MAO catalyzed the oxidation of MPTP to 1-methyl-4-phenyl-2,3-dihydropyridinium cation (MPDP(+)), whereas heme peroxidases catalyzed the oxidation of MPDP(+) to 1-methyl-4-phenylpyridinium (MPP(+)) and of 2-methyltetrahydro-β-carboline to 2-methyl-3,4-dihydro-β-carbolinium cation (2-Me-3,4-DH β C(+)). These substances were inactivated by cytochrome P450 2D6 through N-demethylation and aromatic hydroxylation (MPTP) and aromatic hydroxylation (2-methyltetrahydro-β-carboline). In conclusion, the toxicological effects of these protoxins might result from a balance between the rate of their activation to toxic products (i.e., N-methylpyridinium-MPP(+) and MPDP(+)- and N-methyl--β--carbolinium- βC(+)-) by MAO and heme peroxidases and the rate of inactivation (i.e., N-demethylation, aromatic hydroxylation) by cytochrome P450 2D6.
Collapse
Affiliation(s)
- Tomás Herraiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | | |
Collapse
|
17
|
Jarerattanachat V, Karttunen M, Wong-ekkabut J. Molecular Dynamics Study of Oxidized Lipid Bilayers in NaCl Solution. J Phys Chem B 2013; 117:8490-501. [DOI: 10.1021/jp4040612] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Viwan Jarerattanachat
- Department of Physics, Faculty
of Science, Kasetsart University, 50 Phahon
Yothin Rd, Chatuchak, Bangkok, Thailand
| | - Mikko Karttunen
- Department of Chemistry and
Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario,
Canada
| | - Jirasak Wong-ekkabut
- Department of Physics, Faculty
of Science, Kasetsart University, 50 Phahon
Yothin Rd, Chatuchak, Bangkok, Thailand
| |
Collapse
|
18
|
Bangoura ML, Nsor-Atindana J, Ming ZH. Solvent optimization extraction of antioxidants from foxtail millet species' insoluble fibers and their free radical scavenging properties. Food Chem 2013; 141:736-44. [PMID: 23790842 DOI: 10.1016/j.foodchem.2013.03.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 03/07/2013] [Accepted: 03/09/2013] [Indexed: 12/26/2022]
Abstract
In this study, water and 80% of four organic solvents were employed to optimize the extraction of antioxidants from two species of foxtail millet's insoluble fibers under the same temperature, time, and solid/solvent ratio. The results showed that the acetone was able to extract the maximum amount of antioxidants (2.32 mg/g fiber for white specie and 3.86 mg/g fiber for yellow specie) followed by methanol and propanol from both samples. The neutral and the ethanol on the other hand extracted small amount of the antioxidants from the two fiber materials. While considerable level of Total Polyphenols Content (TPC) was recorded in both the water and the organic solvents' extracts, only traces of Total Flavonoid content (TFC) were observed in water, methanol and ethanol extracts. Propanol and acetone extracts was negative to the TFC test. The potency of both white and yellow foxtail millets' insoluble fibers antioxidant extracts was investigated using five different in vitro tests. It was realized that there was a variation in their capacities to quench DPPH and ABTS(+) radicals for the time running of 0-60 min. The samples from the yellow cereal exhibited high inhibition capacity against ABTS(+). No correlation was observed between TPC and radical scavenging capacities for DPPH and ABTS(+). In general, the yellow species contained more antioxidants in comparison with the white one and this accounted for its high antioxidant activity.
Collapse
Affiliation(s)
- Mohamed Lamine Bangoura
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi-214122, Jiangsu Province, PR China.
| | | | | |
Collapse
|
19
|
Udvardy A, Gyulai Z, Sipos A. Extensive study of the autooxidation products of apomorphine and its pharmacologically active derivatives. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2011.06.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Everse J, Liu CJJ, Coates PW. Physical and catalytic properties of a peroxidase derived from cytochrome c. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1138-45. [PMID: 21620967 DOI: 10.1016/j.bbadis.2011.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/18/2011] [Accepted: 05/06/2011] [Indexed: 01/04/2023]
Abstract
Except for its redox properties, cytochrome c is an inert protein. However, dissociation of the bond between methionine-80 and the heme iron converts the cytochrome into a peroxidase. Dissociation is accomplished by subjecting the cytochrome to various conditions, including proteolysis and hydrogen peroxide (H(2)O(2))-mediated oxidation. In affected cells of various neurological diseases, including Parkinson's disease, cytochrome c is released from the mitochondrial membrane and enters the cytosol. In the cytosol cytochrome c is exposed to cellular proteases and to H(2)O(2) produced by dysfunctional mitochondria and activated microglial cells. These could promote the formation of the peroxidase form of cytochrome c. In this study we investigated the catalytic and cytolytic properties of the peroxidase form of cytochrome c. These properties are qualitatively similar to those of other heme-containing peroxidases. Dopamine as well as sulfhydryl group-containing metabolites, including reduced glutathione and coenzyme A, are readily oxidized in the presence of H(2)O(2). This peroxidase also has cytolytic properties similar to myeloperoxidase, lactoperoxidase, and horseradish peroxidase. Cytolysis is inhibited by various reducing agents, including dopamine. Our data show that the peroxidase form of cytochrome c has catalytic and cytolytic properties that could account for at least some of the damage that leads to neuronal death in the parkinsonian brain.
Collapse
Affiliation(s)
- Johannes Everse
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | | | |
Collapse
|
21
|
Mazzio EA, Close F, Soliman KFA. The biochemical and cellular basis for nutraceutical strategies to attenuate neurodegeneration in Parkinson's disease. Int J Mol Sci 2011; 12:506-69. [PMID: 21340000 PMCID: PMC3039966 DOI: 10.3390/ijms12010506] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/05/2011] [Accepted: 01/14/2011] [Indexed: 12/19/2022] Open
Abstract
Future therapeutic intervention that could effectively decelerate the rate of degeneration within the substantia nigra pars compacta (SNc) could add years of mobility and reduce morbidity associated with Parkinson’s disease (PD). Neurodegenerative decline associated with PD is distinguished by extensive damage to SNc dopaminergic (DAergic) neurons and decay of the striatal tract. While genetic mutations or environmental toxins can precipitate pathology, progressive degenerative succession involves a gradual decline in DA neurotransmission/synaptic uptake, impaired oxidative glucose consumption, a rise in striatal lactate and chronic inflammation. Nutraceuticals play a fundamental role in energy metabolism and signaling transduction pathways that control neurotransmission and inflammation. However, the use of nutritional supplements to slow the progression of PD has met with considerable challenge and has thus far proven unsuccessful. This review re-examines precipitating factors and insults involved in PD and how nutraceuticals can affect each of these biological targets. Discussed are disease dynamics (Sections 1 and 2) and natural substances, vitamins and minerals that could impact disease processes (Section 3). Topics include nutritional influences on α-synuclein aggregation, ubiquitin proteasome function, mTOR signaling/lysosomal-autophagy, energy failure, faulty catecholamine trafficking, DA oxidation, synthesis of toxic DA-quinones, o-semiquinones, benzothiazolines, hyperhomocyseinemia, methylation, inflammation and irreversible oxidation of neuromelanin. In summary, it is clear that future research will be required to consider the multi-faceted nature of this disease and re-examine how and why the use of nutritional multi-vitamin-mineral and plant-based combinations could be used to slow the progression of PD, if possible.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA; E-Mails: (E.A.M.); (F.C.)
| | | | | |
Collapse
|
22
|
Yang LX, Huang KX, Li HB, Gong JX, Wang F, Feng YB, Tao QF, Wu YH, Li XK, Wu XM, Zeng S, Spencer S, Zhao Y, Qu J. Design, synthesis, and examination of neuron protective properties of alkenylated and amidated dehydro-silybin derivatives. J Med Chem 2009; 52:7732-52. [PMID: 19673490 DOI: 10.1021/jm900735p] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A series of C7-O- and C20-O-amidated 2,3-dehydrosilybin (DHS) derivatives ((+/-)-1a-f and (+/-)-2), as well as a set of alkenylated DHS analogues ((+/-)-4a-f), were designed and de novo synthesized. A diesteric derivative of DHS ((+/-)-3) and two C23 esterified DHS analogues ((+/-)-5a and (+/-)-5b) were also prepared for comparison. The cell viability of PC12 cells, Fe(2+) chelation, lipid peroxidation (LPO), free radical scavenging, and xanthine oxidase inhibition models were utilized to evaluate their antioxidative and neuron protective properties. The study revealed that the diether at C7-OH and C20-OH as well as the monoether at C7-OH, which possess aliphatic substituted acetamides, demonstrated more potent LPO inhibition and Fe(2+) chelation compared to DHS and quercetin. Conversely, the diallyl ether at C7-OH and C20-OH was more potent in protection of PC12 cells against H(2)O(2)-induced injury than DHS and quercetin. Overall, the more lipophilic alkenylated DHS analogues were better performing neuroprotective agents than the acetamidated derivatives. The results in this study would be beneficial for optimizing the therapeutic potential of lignoflavonoids, especially in neurodegenerative disorders such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Lei Xiang Yang
- Key Laboratory of Southern Zhejiang TCM R&D, Pharmacy School of Wenzhou Medical College, Wenzhou 325035, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Evaluation of lipid peroxidation inhibition and free radical scavenging abilities of 5,6,7-trimethoxy dihydroflavonols. CHINESE CHEM LETT 2009. [DOI: 10.1016/j.cclet.2009.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Shibui Y, He XJ, Uchida K, Nakayama H. MPTP-induced neuroblast apoptosis in the subventricular zone is not regulated by dopamine or other monoamine transporters. Neurotoxicology 2009; 30:1036-44. [PMID: 19616025 DOI: 10.1016/j.neuro.2009.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 07/05/2009] [Accepted: 07/07/2009] [Indexed: 11/29/2022]
Abstract
For 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to exert neurotoxicity on dopaminergic neurons, 1-methyl-4-phenylpyridinium (MPP+), a metabolite of MPTP, must be taken up into the dopaminergic neuron via the dopamine transporter (DAT). Previous reports have shown that MPTP also causes neuroblast apoptosis in the subventricular zone (SVZ) of adult mice. The aim of this study is to elucidate the role of DAT and other monoamine transporters including vesicular monoamine transporter 2 (VMAT2), the serotonin transporter (SERT), and the norepinephrine transporter (NET) on the neuroblast apoptosis induced by MPTP administration. There were no DAT-positive neuroblasts in the SVZ, whereas some neuroblasts were immunopositive for VMAT2 and SERT. To examine whether these transporters are involved in MPTP-induced neuroblast apoptosis in the SVZ, terminal deoxynucleotidyl transferase-mediated dUTP endlabeling (TUNEL)-positive cells were semiquantitatively analyzed after the injection of GBR12909 (GBR), a DAT inhibitor; tetrabenazine (TBZ), a VMAT2 inhibitor; fluoxetine (FLU), a SERT inhibitor, or desipramine (DES), a NET inhibitor, prior to MPTP injection. However, the injection of these transporter inhibitors had no influence on the MPTP-induced neuroblast apoptosis in the SVZ. It is likely that neither DAT nor other monoamine transporters are involved in MPTP-induced neuroblast apoptosis. The present findings suggest that the neurotoxicity of MPTP to neuroblasts in the SVZ does not require DAT or other monoamine transporters, and the apoptosis it induces may be executed through other unknown pathways.
Collapse
Affiliation(s)
- Yusuke Shibui
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan.
| | | | | | | |
Collapse
|
25
|
Preparation of two sets of 5,6,7-trioxygenated dihydroflavonol derivatives as free radical scavengers and neuronal cell protectors to oxidative damage. Bioorg Med Chem 2009; 17:3414-25. [DOI: 10.1016/j.bmc.2009.03.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/15/2009] [Accepted: 03/18/2009] [Indexed: 01/03/2023]
|
26
|
Chae SW, Kang BY, Hwang O, Choi HJ. Cyclooxygenase-2 is involved in oxidative damage and alpha-synuclein accumulation in dopaminergic cells. Neurosci Lett 2008; 436:205-9. [PMID: 18403118 DOI: 10.1016/j.neulet.2008.03.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Revised: 02/05/2008] [Accepted: 03/11/2008] [Indexed: 11/25/2022]
Abstract
Cyclooxygenase (COX) is the rate-limiting enzyme that catalyzes the formation of prostaglandins from arachidonic acid. The inducible isoform COX-2 is upregulated in the dopaminergic neurons of the substantia nigra of postmortem Parkinson's disease (PD) patients and in neurotoxin-induced Parkinsonism models. COX-2 has attracted significant attention as an important source of oxidative stress in dopaminergic neurons due to its potential to oxidize catechols including dopamine. However, the role of COX-2 in the pathogenesis of PD has not been fully evaluated. Here, we show that COX-2 induces dopamine oxidation, as evidenced by the findings that COX-2 can facilitate dopamine oxidation in a cell-free system and in COX-2-overexpressing SH-SY5Y cells, and that this can be completely abolished by the selective COX-2 inhibitor meloxicam. Increased COX-2 expression causes oxidative protein modification and alpha-synuclein accumulation in dopaminergic cells. These data suggest that an abnormal increase in COX-2 expression causes dopamine oxidation and contributes to the preferential vulnerability of dopaminergic cells as in PD.
Collapse
Affiliation(s)
- Sung-Wook Chae
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, South Korea
| | | | | | | |
Collapse
|
27
|
Goldsteins G, Keksa-Goldsteine V, Ahtoniemi T, Jaronen M, Arens E, Akerman K, Chan PH, Koistinaho J. Deleterious role of superoxide dismutase in the mitochondrial intermembrane space. J Biol Chem 2008; 283:8446-52. [PMID: 18171673 DOI: 10.1074/jbc.m706111200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This work demonstrates how increased activity of copper-zinc superoxide dismutase (SOD1) paradoxically boosts production of toxic reactive oxygen species (ROS) in the intermembrane space (IMS) of mitochondria. Even though SOD1 is a cytosolic enzyme, a fraction of it is found in the IMS, where it is thought to provide protection against oxidative damage. We found that SOD1 controls cytochrome c-catalyzed peroxidation in vitro when superoxide is available. The presence of SOD1 significantly increased the rate of ROS production in mitoplasts, which are devoid of outer membrane and IMS. In response to inhibition of respiration with antimycin A, isolated mouse wild-type mitochondria increased ROS production, but the mitochondria from mice lacking SOD1 (SOD1(-/-)) did not. Also, lymphocytes isolated from SOD1(-/-) mice produced significantly less ROS than did wild-type cells and were more resistant to apoptosis induced by inhibition of respiration. Moreover, an increased amount of the toxic mutant G93A SOD1 in the IMS increased ROS production. The mitochondrial dysfunction and cell damage paradoxically induced by SOD1-mediated ROS production may be implicated in chronic degenerative diseases.
Collapse
Affiliation(s)
- Gundars Goldsteins
- Department of Neurobiology, A I Virtanen Institute for Molecular Sciences, University of Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Shahabi HN, Andersson D, Nissbrandt H. Cytochrome P450 2E1 in the substantia nigra: Relevance for dopaminergic neurotransmission and free radical production. Synapse 2008; 62:379-88. [DOI: 10.1002/syn.20505] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Lee KS, Raymond LD, Schoen B, Raymond GJ, Kett L, Moore RA, Johnson LM, Taubner L, Speare JO, Onwubiko HA, Baron GS, Caughey WS, Caughey B. Hemin Interactions and Alterations of the Subcellular Localization of Prion Protein. J Biol Chem 2007; 282:36525-33. [DOI: 10.1074/jbc.m705620200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
30
|
Everse J, Coates PW. Neurodegeneration and peroxidases. Neurobiol Aging 2007; 30:1011-25. [PMID: 18053617 DOI: 10.1016/j.neurobiolaging.2007.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/21/2007] [Accepted: 10/13/2007] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases that affect different parts of the central nervous system. However, a review of the literature indicates that certain biochemical reactions involved in neurodegeneration in these three diseases are quite similar and could be partly identical. This article critically examines the similarities and, based on data from our own and other laboratories, proposes a novel explanation for neurodegeneration in these three diseases. We identified about 20 commonalities that exist in the neurodegenerative process of each disease. We hypothesize that there are two enzyme-catalyzed pathways that operate in affected neurons: an oxidative pathway leading to destruction of various neuronal proteins and lipids, and an apoptotic pathway which the body normally uses to remove unwanted and dysfunctional cells. Data from many laboratories indicate that oxidative reactions are primarily responsible for neurodegeneration, whereas apoptosis may well be a secondary response to the presence of neurons that have already been severely damaged by oxidative reactions. Attempts to inhibit apoptosis for the purpose of attenuating progression of these diseases may therefore be only of marginal benefit. Specific oxidative reactions within affected neurons led us to propose that one or more heme peroxidases may be the catalyst(s) involved in oxidation of proteins and lipids. Support for this proposal is provided by the recent finding that amyloi-beta peptide may act as a peroxidase in AD. Possible participation of the peroxidase activity of cytochrome c, herein designated as cytochrome c(px) to distinguish it from yeast cytochrome c peroxidase, is discussed. Of special interest is our recent finding that many compounds that cause attenuation of neurodegeneration are inhibitors of the peroxidase activity of cytochrome c. Several inhibitors were subsequently identified as suicide substrates. Such inhibitors could be ideally suited for targeted clinical approaches aimed at arresting progression of neurodegeneration. Finally, it is possible that immobilized yet still active peroxidase(s) may be present in protein aggregates in AD, PD, and ALS. This activity could be the catalyst for the slow, self-perpetuating and irreversible degeneration of affected neurons that occurs over long periods of time in these neurodegenerative diseases.
Collapse
Affiliation(s)
- Johannes Everse
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | |
Collapse
|
31
|
Velayutham M, Muthukumaran RB, Sostaric JZ, McCraken J, Fishbein JC, Zweier JL. Interactions of the major metabolite of the cancer chemopreventive drug oltipraz with cytochrome c: a novel pathway for cancer chemoprevention. Free Radic Biol Med 2007; 43:1076-85. [PMID: 17761303 PMCID: PMC4073605 DOI: 10.1016/j.freeradbiomed.2007.06.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/08/2007] [Accepted: 06/19/2007] [Indexed: 11/28/2022]
Abstract
The major metabolite of the cancer chemopreventive agent oltipraz, a pyrrolopyrazine thione (PPD), has been shown to be a phase 2 enzyme inducer, an activity thought to be key to the cancer chemopreventive action of the parent compound. In cells, mitochondria are the major source of reactive oxygen species (ROS) and cytochrome c (cyt c) is known to participate in mitochondrial electron transport and confer antioxidant and peroxidase activities. To understand possible mechanisms by which PPD acts as a phase 2 enzyme inducer, a study of its interaction with cyt c was undertaken. UV-visible spectroscopic results demonstrate that PPD is capable of reducing oxidized cyt c. The reduced cyt c is stable for a long period of time in the absence of an oxidizing agent. In the presence of ferricyanide, the reduced cyt c is rapidly oxidized back to its oxidized form. Further, UV-visible spectroscopic studies show that during the reduction process the coordination environment and redox state of iron in cyt c are changed. Low-temperature EPR studies show that during the reduction process, the heme iron changes from a low-spin state of s = 1/2 to a low-spin state of s = 0. Room-temperature EPR studies demonstrate that PPD inhibits the peroxidase activity of cyt c. EPR spin trapping experiments using DMPO show that PPD inhibits the superoxide radical scavenging activity of oxidized cyt c. From these results, we propose that PPD interacts with cyt c, binding to and then reducing the heme, and this may enhance ROS levels in mitochondria. This in turn could contribute to the mechanism by which the parent compound, oltipraz, might trigger the cancer chemopreventive increase in transcription of phase 2 enzymes. The modifications of cyt c function by the oltipraz metabolite may have implications for the regulation of apoptotic cell death.
Collapse
Affiliation(s)
- Murugesan Velayutham
- Center for Biomedical EPR Spectroscopy and Imaging, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210
- Address correspondence to: Jay L. Zweier, MD, Director, Davis Heart and Lung Research Institute, 473 W. 12 Ave, Room 110G, The Ohio State University, Columbus, OH 43210, Phone: 614–247–7857, Fax: 614–247–7845, E-mail: and Murugesan Velayutham, Ph.D, TMRF, Room 130, 420, W. 12 Avenue, The Ohio State University, Columbus, OH - 43210, Phone: 614–292–9082, Fax: 614–292–8454, E-mail:
| | | | - Joe Z. Sostaric
- Center for Biomedical EPR Spectroscopy and Imaging, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - John McCraken
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - James C. Fishbein
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250
| | - Jay L. Zweier
- Center for Biomedical EPR Spectroscopy and Imaging, the Davis Heart and Lung Research Institute, and the Division of Cardiovascular Medicine, the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210
- Address correspondence to: Jay L. Zweier, MD, Director, Davis Heart and Lung Research Institute, 473 W. 12 Ave, Room 110G, The Ohio State University, Columbus, OH 43210, Phone: 614–247–7857, Fax: 614–247–7845, E-mail: and Murugesan Velayutham, Ph.D, TMRF, Room 130, 420, W. 12 Avenue, The Ohio State University, Columbus, OH - 43210, Phone: 614–292–9082, Fax: 614–292–8454, E-mail:
| |
Collapse
|
32
|
Wong-Ekkabut J, Xu Z, Triampo W, Tang IM, Tieleman DP, Monticelli L. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J 2007; 93:4225-36. [PMID: 17766354 PMCID: PMC2098729 DOI: 10.1529/biophysj.107.112565] [Citation(s) in RCA: 439] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lipid peroxidation plays an important role in cell membrane damage. We investigated the effect of lipid peroxidation on the properties of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) lipid bilayers using molecular dynamics simulations. We focused on four main oxidation products of linoleic acid with either a hydroperoxide or an aldehyde group: 9-trans, cis-hydroperoxide linoleic acid, 13-trans, cis-hydroperoxide linoleic acid, 9-oxo-nonanoic acid, and 12-oxo-9-dodecenoic acid. These oxidized chains replaced the sn-2 linoleate chain. The properties of PLPC lipid bilayers were characterized as a function of the concentration of oxidized lipids, with concentrations from 2.8% to 50% for each oxidation product. The introduction of oxidized functional groups in the lipid tail leads to an important conformational change in the lipids: the oxidized tails bend toward the water phase and the oxygen atoms form hydrogen bonds with water and the polar lipid headgroup. This conformational change leads to an increase in the average area per lipid and, correspondingly, to a decrease of the bilayer thickness and the deuterium order parameters for the lipid tails, especially evident at high concentrations of oxidized lipid. Water defects are observed in the bilayers more frequently as the concentration of the oxidized lipids is increased. The changes in the structural properties of the bilayer and the water permeability are associated with the tendency of the oxidized lipid tails to bend toward the water interface. Our results suggest that one mechanism of cell membrane damage is the increase in membrane permeability due to the presence of oxidized lipids.
Collapse
Affiliation(s)
- Jirasak Wong-Ekkabut
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Chae SW, Bang YJ, Kim KM, Lee KY, Kang BY, Kim EM, Inoue H, Hwang O, Choi HJ. Role of cyclooxygenase-2 in tetrahydrobiopterin-induced dopamine oxidation. Biochem Biophys Res Commun 2007; 359:735-41. [PMID: 17560944 DOI: 10.1016/j.bbrc.2007.05.190] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 05/26/2007] [Indexed: 01/09/2023]
Abstract
Dopamine is considered one of the main contributing factors in the induction of oxidative stress and selective dopaminergic neurodegeneration in Parkinson's disease. We have previously reported that tetrahydrobiopterin (BH4) leads to dopamine oxidation and renders dopamine-producing cells vulnerable. In the present study, we found that BH4 selectively upregulates cyclooxygenase-2 (COX-2) expression in dopaminergic cells. BH4 caused an induction of COX-2 mRNA, and a critical regulatory motif for BH4-induced transcriptional activation of COX-2 is CRE/AP-1. COX-2 can oxidize dopamine and cause oxidative stress, which is evidenced by the findings that significant increase in dopamine-chrome formation and protein carbonyl contents by BH4-induced COX-2 up-regulation, and the increases are abolished by COX-2 selective inhibitor meloxicam. Increased COX-2 promotes dopaminergic neurodegeneration in both SH-SY5Y cells and rat mesencephalic neurons. These data suggest that BH4-induced COX-2 expression is responsible for dopamine oxidation, leading to the preferential vulnerability of dopaminergic cells in Parkinson's disease.
Collapse
Affiliation(s)
- Sung-Wook Chae
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Herraiz T, Guillén H, Galisteo J. N-methyltetrahydro-beta-carboline analogs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin are oxidized to neurotoxic beta-carbolinium cations by heme peroxidases. Biochem Biophys Res Commun 2007; 356:118-23. [PMID: 17346675 DOI: 10.1016/j.bbrc.2007.02.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 02/19/2007] [Indexed: 11/22/2022]
Abstract
2-Methyl-1,2,3,4-tetrahydro-beta-carboline (2-Me-THbetaC) and 2,9-dimethyl-1,2,3,4-tetrahydro-beta-carboline (2,9-diMe-THbetaC) are naturally occurring analogs of the Parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), whereas their corresponding aromatic 2-methyl-beta-carbolinium cations resemble 1-methyl-4-phenylpyridinium (MPP(+)) and are considered potential toxins involved in Parkinson's disease (PD). To become toxicants, 2-methyltetrahydro-beta-carbolines need to be oxidized (aromatized) by human metabolic enzymes to pyridinium-like (beta-carbolinium) cations as occur with MPTP/MPP(+) model. In contrast to MPTP, human MAO-A or -B were not able to oxidize 2-Me-THbetaC to pyridinium-like cations. Neither, cytochrome P-450 2D6 or a mixture of six P450 enzymes carried out this oxidation in a significant manner. However, 2-Me-THbetaC and 2,9-diMe-THbetaC were efficiently oxidized by horseradish peroxidase (HRP), lactoperoxidase (LPO), and myeloperoxidase (MPO) to 2-methyl-3,4-dihydro-beta-carbolinium cations (2-Me-DHbetaC(+), 2,9-diMe-DHbetaC(+)) as the main products, and detectable amount of 2-methyl-beta-carbolinium cations (2-Me-betaC(+), 2,9-diMe-betaC(+)). The apparent kinetic parameters (k(cat), k(4)) were similar for HRP and LPO and higher for MPO. Peroxidase inhibitors (hydroxylamine, sodium azide, and ascorbic acid) highly reduced or abolished this oxidation. Although MPTP was not oxidized by peroxidases; its intermediate metabolite 1-methyl-4-phenyl-2,3-dihydropyridinium cation (MPDP(+)) was efficiently oxidized to MPP(+) by heme peroxidases. It is concluded that heme peroxidases could be key catalysts responsible for the aromatization (bioactivation) of endogenous and naturally occurring N-methyltetrahydro-beta-carbolines and related protoxins to toxic pyridinium-like cations resembling MPP(+), suggesting a role for these enzymes in toxicological and neurotoxicological processes.
Collapse
Affiliation(s)
- Tomás Herraiz
- Spanish Council for Scientific Research, CSIC, Instituto de Fermentaciones Industriales, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | |
Collapse
|
35
|
Kagan V, Tyurina Y, Bayir H, Chu C, Kapralov A, Vlasova I, Belikova N, Tyurin V, Amoscato A, Epperly M, Greenberger J, DeKosky S, Shvedova A, Jiang J. The “pro-apoptotic genies” get out of mitochondria: Oxidative lipidomics and redox activity of cytochrome c/cardiolipin complexes. Chem Biol Interact 2006; 163:15-28. [DOI: 10.1016/j.cbi.2006.04.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/26/2006] [Accepted: 04/28/2006] [Indexed: 01/13/2023]
|
36
|
Tyurina YY, Kapralov AA, Jiang J, Borisenko GG, Potapovich AI, Sorokin A, Kochanek PM, Graham SH, Schor NF, Kagan VE. Oxidation and cytotoxicity of 6-OHDA are mediated by reactive intermediates of COX-2 overexpressed in PC12 cells. Brain Res 2006; 1093:71-82. [PMID: 16712820 DOI: 10.1016/j.brainres.2005.10.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 10/19/2005] [Accepted: 10/20/2005] [Indexed: 11/29/2022]
Abstract
Parkinson's disease is characterized by a progressive loss of dopaminergic neurons, likely associated with dysregulation of oxidation of catechols, such as dopamine (DA) and 6-hydroxydopamine (6-OHDA), and resulting in oxidative stress. The involvement of cyclooxygenase-2 (COX-2) in pathogenesis of Parkinson's disease has been suggested. However, specific COX-2 triggered mechanisms participating in catalysis of DA oxidation and enhanced catechol-induced cytotoxicity remain poorly characterized. Here, we demonstrate that in a model biochemical system, recombinant heme-reconstituted COX-2 induced oxidation of 6-OHDA in the course of its peroxidase (H(2)O(2)-dependent) and cyclooxygenase (arachidonic acid (AA)-dependent) catalytic half-cycles. Similarly, COX-2 was able to stimulate 6-OHDA oxidation during its peroxidase- and cyclooxygenase half-cycles and caused oxidative stress in homogenates of PC12 cells stably overexpressing the enzyme (but not in mock-transfected cells). In addition, the increased levels of COX-2 were associated with enhanced cytotoxicity of 6-OHDA in stably transfected PC12 cells. Finally, co-oxidation of 6-OHDA by COX-2 triggered production of superoxide radicals critical for both propagation of 6-OHDA oxidation and induction of oxidative stress in COX-2 overexpressing cells. Thus, we conclude that both peroxidase and cyclooxygenase half-cycles of COX-2-catalyzed reactions are essential for COX-2-dependent activation of 6-OHDA oxidation, oxygen radical production, oxidative stress, and cytotoxicity.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sabatini K, Mattila JP, Megli FM, Kinnunen PKJ. Characterization of two oxidatively modified phospholipids in mixed monolayers with DPPC. Biophys J 2006; 90:4488-99. [PMID: 16581831 PMCID: PMC1471873 DOI: 10.1529/biophysj.105.080176] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The properties of two oxidatively modified phospholipids viz. 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC) and 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), were investigated using a Langmuir balance, recording force-area (pi-A) isotherms and surface potential psi. In mixed monolayers with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) a progressive disappearance of the liquid expanded-liquid condensed transition and film expansion was observed with increasing content of the oxidized phospholipids. The above is in agreement with fluorescence microscopy of the monolayers, which revealed an increase in the liquid expanded region of DPPC monolayers. At a critical pressure pi(s) approximately 42 mN/m both Poxo- and PazePC induced a deflection in the pi-A isotherms, which could be rationalized in terms of reorientation of the oxidatively modified acyl chains into aqueous phase (adaptation of the so-called extended conformation), followed upon further film compression by solubilization of the oxidized phospholipids into the aqueous phase. Surface potential displayed a discontinuity at the same value of area/molecule, corresponding to the loss of the oxidized phospholipids from the monolayers. Our data support the view that lipid oxidation modifies both the small-scale structural dynamics of biological membranes as well as their more macroscopic lateral organization. Accordingly, oxidatively modified lipids can be expected to influence the organization and functions of membrane associated proteins.
Collapse
Affiliation(s)
- Karen Sabatini
- Dipartimento di Biochimica e Biologia Molecolare, Università di Bari, Centro di Studio sui Mitocondri e Metabolismo Energetico--CNR, Bari, Italy
| | | | | | | |
Collapse
|
38
|
Parada C, Gato A, Bueno D. Mammalian embryonic cerebrospinal fluid proteome has greater apolipoprotein and enzyme pattern complexity than the avian proteome. J Proteome Res 2006; 4:2420-8. [PMID: 16335996 DOI: 10.1021/pr050213t] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During early stages of embryo development, the brain cavity is filled with Embryonic Cerebro-Spinal Fluid, which has an essential role in the survival, proliferation and neurogenesis of the neuroectodermal stem cells. We identified and analyzed the proteome of Embryonic Cerebro-Spinal Fluid from rat embryos (Rattus norvegicus), which includes proteins involved in the regulation of Central Nervous System development. The comparison between mammalian and avian Embryonic Cerebro-Spinal Fluid proteomes reveals great similarity, but also greater complexity in some protein groups. The pattern of apolipoproteins and enzymes in CSF is more complex in the mammals than in birds. This difference may underlie the greater neural complexity and synaptic plasticity found in mammals. Fourteen Embryonic Cerebro-Spinal Fluid gene products were previously identified in adult human Cerebro-Spinal Fluid proteome, and interestingly they are altered in patients with neurodegenerative diseases and/or neurological disorders. Understanding these molecules and the mechanisms they control during embryonic neurogenesis may contribute to our understanding of Central Nervous System development and evolution, and these human diseases.
Collapse
Affiliation(s)
- Carolina Parada
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain
| | | | | |
Collapse
|