1
|
Kim B, Kim YS, Ahn HM, Lee HJ, Jung MK, Jeong HY, Choi DK, Lee JH, Lee SR, Kim JM, Lee DS. Peroxiredoxin 5 overexpression enhances tumorigenicity and correlates with poor prognosis in gastric cancer. Int J Oncol 2017; 51:298-306. [PMID: 28535004 DOI: 10.3892/ijo.2017.4013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/07/2017] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer is one of the leading causes of cancer-related deaths worldwide. Despite the advanced surgical resection techniques and anticancer drugs currently available to treat early stage gastric cancer, the prognosis of patients with gastric cancer remains poor. The epithelial to mesenchymal transition (EMT) is an important process for the initiation of tumorigenesis. Recent studies suggested that reactive oxygen species (ROS) can promote cell migration and invasion. Thus, an imbalance of redox homeostasis can result in cancer cells exhibiting EMT properties. PRXs are upregulated in various tumors in the breast, bladder, lung, cervical, ovarian, prostate, esophageal, and hepatocellular. However, PRX expression and its impact on disease prognosis, patient survival rate, and EMT are rarely studied in the context of human gastric cancer. The expression of PRX5 was significantly correlated with tumor size, depth of tumor, lymphatic invasion in patients of gastric cancer. In addition, overexpression of PRX5 enhanced carcinogenicity by increasing the proliferation and invasiveness of gastric cancer cells via upregulation of Snail. Taken together, we suggest that PRX5 may be a potential factor that may contribute to poor prognosis of gastric cancer through enhancing the mesenchymal phenotype. Finally, PRX5 is a putative therapeutic target and clinical strategy for various cancers overexpressing PRX5.
Collapse
Affiliation(s)
- Bokyung Kim
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Yeon Soo Kim
- Department of Internal Medicine, Daejeon St. Mary's Hospital, The Catholic University, Daejeon, Republic of Korea
| | - Hye-Mi Ahn
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Hyo Jin Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Min Kyu Jung
- Department of Pathology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun Yong Jeong
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Dong Kyu Choi
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Jun Hyeog Lee
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Rae Lee
- The National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Republic of Korea
| | - Jin Man Kim
- Department of Pathology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Galabov AS, Mileva M, Simeonova L, Gegova G. Combination activity of neuraminidase inhibitor oseltamivir and α-tocopherol in influenza virus A (H3N2) infection in mice. Antivir Chem Chemother 2016; 24:83-91. [PMID: 27341844 DOI: 10.1177/2040206616656263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Influenza is a highly contagious viral infection of the respiratory system. To attack two processes involved in flu pathogenesis-viral replication in the infected body and oxidative damages, we studied the combination effect of neuraminidase inhibitor oseltamivir and antioxidant α-tocopherol in experimental model of influenza. METHODS After inoculation of albino mice with 10 MLD50 (50% mouse lethal dose) of influenza virus A/Aichi/2/68 (H3N2), oseltamivir was applied orally at three doses, 2.5 mg/kg, 1.25 mg/kg, and 0.625 mg/kg, for five days post infection. α-Tocopherol (120 mg/kg, in sunflower oil) was administered intraperitoneally. Three schemes of α-tocopherol five-day course were tested: onset five or two days before infection, or on the virus inoculation day. RESULTS Strongly dose-dependent augmented antiviral effect of the combination α-tocopherol and 0.625 mg/kg oseltamivir was demonstrated when α-tocopherol was administered simultaneously with oseltamivir: a pronounced decrease in mortality rate (a 78% protection), and a lengthening of mean survival time by 3.2-4 days. Lung parameters showed a substantial decrease in infectious virus content (Δ logs = 3.8/4.1) and a marked diminishment of lung index and pathology. Combination α-tocopherol with 1.25 mg/kg oseltamivir manifested a marked protective effect, but the effect on lung parameters was less. The combination effect of α-tocopherol with 2.5 mg/kg oseltamivir did not surpass the monotherapeutic effect of oseltamivir. When α-tocopherol was applied in courses starting five or two days before infection, its combination with oseltamivir was ineffective. CONCLUSIONS Evidently, α-tocopherol could be considered as prospective component of influenza therapy in combination with oseltamivir.
Collapse
Affiliation(s)
- Angel S Galabov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Milka Mileva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lora Simeonova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Galina Gegova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
3
|
Abdul Rahman Sazli F, Jubri Z, Abdul Rahman M, Karsani SA, Md Top AG, Wan Ngah WZ. Gamma-tocotrienol treatment increased peroxiredoxin-4 expression in HepG2 liver cancer cell line. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:64. [PMID: 25886747 PMCID: PMC4369828 DOI: 10.1186/s12906-015-0590-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/25/2015] [Indexed: 01/25/2023]
Abstract
Background To determine the antiproliferative effect of gamma-tocotrienol (GTT) treatment on differential protein expression in HepG2 cells. Methods HepG2 cells were treated with 70 μM GTT for 48 hours and differentially expressed protein spots were determined by two-dimensional electrophoresis (2DE), identified by MALDI-TOF mass spectrometer (MS) and validated by quantitative real-time polymerase chain reaction (qRT-PCR). Results GTT treatment on HepG2 cells showed a total of five differentially expressed proteins when compared to their respective untreated cells where three proteins were down-regulated and two proteins were up-regulated. One of these upregulated proteins was identified as peroxiredoxin-4 (Prx4). Validation by qRT-PCR however showed decreased expression of Prx4 mRNA in HepG2 cells following GTT treatment. Conclusions GTT might directly influence the expression dynamics of peroxiredoxin-4 to control proliferation in liver cancer.
Collapse
|
4
|
Angiotensin II-induced mitochondrial reactive oxygen species and peroxiredoxin-3 expression in cardiac fibroblasts. J Hypertens 2013; 30:1986-91. [PMID: 22828084 DOI: 10.1097/hjh.0b013e32835726c1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The aim of this study was to determine whether angiotensin II (ANG II) affects the protein and mRNA expression of the mitochondrial antioxidant peroxiredoxin-3 (Prx-3) in cardiac fibroblasts, thereby contributing to the oxidative stress in the myocardium. METHOD Cardiac fibroblasts (passage 2) from normal male adult rats were cultured to confluency and incubated in Dulbecco's modified Eagle's medium for 24 h. The cells were then preincubated with(out) the tested inhibitors for 1 h and further incubated with/without ANG II (1 μmol/l) for 24 h. RESULTS ANG II increased (P < 0.001) the mitochondrial production of reactive oxygen species in cardiac fibroblasts from 187.8 ± 38.6 to 313.8 ± 30.6 a.u./mg mitochondrial protein (n = 15). ANG II decreased (P < 0.01) the mRNA and protein expression of Prx-3 by 36.9 ± 3.0% and 29.7 ± 2.7% (n = 4), respectively. The ANG II-induced decrease in mRNA expression of Prx-3 was prevented by the angiotensin type 1 receptor blocker, losartan but not by the angiotensin type 2 receptor blocker, PD 123 319. CONCLUSION Our data indicate that ANG II-stimulated mitochondrial reactive oxygen species production in rat cardiac fibroblasts is accompanied by a reduction in the expression of the mitochondrial antioxidant Prx-3, and thereby potentially contributing to oxidative stress in the myocard.
Collapse
|
5
|
Santos-González M, López-Miranda J, Pérez-Jiménez F, Navas P, Villalba JM. Dietary oil modifies the plasma proteome during aging in the rat. AGE (DORDRECHT, NETHERLANDS) 2012; 34:341-58. [PMID: 21472381 PMCID: PMC3312633 DOI: 10.1007/s11357-011-9239-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 03/15/2011] [Indexed: 05/05/2023]
Abstract
Fatty acids and other components of the diet may modulate, among others, mechanisms involved in homeostasis, aging, and age-related diseases. Using a proteomic approach, we have studied how dietary oil affected plasma proteins in young (6 months) or old (24 months) rats fed lifelong with two experimental diets enriched in either sunflower or virgin olive oil. After the depletion of the most abundant proteins, levels of less abundant proteins were studied using two-dimensional electrophoresis and mass spectrometry. Our results showed that compared with the sunflower oil diet, the virgin olive oil diet induced significant decreases of plasma levels of acute phase proteins such as inter-alpha inhibitor H4P heavy chain (at 6 months), hemopexin precursor (at 6 and 24 months), preprohaptoglobin precursor (at 6 and 24 months), and α-2-HS glycoprotein (at 6 and 24 months); antioxidant proteins such as type II peroxiredoxin (at 24 months); proteins related with coagulation such as fibrinogen γ-chain precursor (at 24 months), T-kininogen 1 precursor (at 6 and 24 months), and apolipoprotein H (at 6 and 24 months); or with lipid metabolism and transport such as apolipoprotein E (at 6 and 24 months) and apolipoprotein A-IV (at 24 months). The same diet increased the levels of apolipoprotein A-1 (at 6 and 24 months), diminishing in general the changes that occurred with age. Our unbiased analysis reinforces the beneficial role of a diet rich in virgin olive oil compared with a diet rich in sunflower oil, modulating inflammation, homeostasis, oxidative stress, and cardiovascular risk during aging.
Collapse
Affiliation(s)
- Mónica Santos-González
- Departamento de Biología Celular, Fisiología e Inmunología, University of Córdoba, Campus Rabanales Ed. Severo Ochoa, 3a planta, 14014 Córdoba, Spain
| | - José López-Miranda
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Francisco Pérez-Jiménez
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo (CABD), University Pablo de Olavide-CSIC, Seville, Spain
- CIBER Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Sevilla, Spain
| | - José M. Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, University of Córdoba, Campus Rabanales Ed. Severo Ochoa, 3a planta, 14014 Córdoba, Spain
| |
Collapse
|
6
|
Mitogen-activated protein kinase-mediated phosphorylation of peroxiredoxin 6 regulates its phospholipase A(2) activity. Biochem J 2009; 419:669-79. [PMID: 19140803 DOI: 10.1042/bj20082061] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prdx6 (peroxiredoxin 6), a bifunctional protein with both GSH peroxidase and PLA(2) (phospholipase A(2)) [aiPLA(2) (acidic calcium-independent PLA(2))] activities, is responsible for the metabolism of lung surfactant phospholipids. We propose that the aiPLA(2) activity of the enzyme is regulated through phosphorylation. Incubation of isolated rat alveolar type II cells (AECII) with PMA, a PKC (protein kinase C) agonist, had no effect on Prdx6 expression but led to approximately 75% increase in aiPLA(2) activity that was abolished by pretreatment of cells with the MAPK (mitogen-activated protein kinase) inhibitors, SB202190 or PD98059. Prdx6 phosphorylation after incubation of AECII with PMA was demonstrated by autoradiography after immunoprecipitation with either anti-phosphothreonine o-phosphoserine antibodies. in vitro, several active isoforms of ERK (extracellular-signal-regulated kinase) and p38 phosphorylated Prdx6, resulting in an 11-fold increase in aiPLA(2) activity. The increased activity was calcium-independent and was abolished by the aiPLA(2) inhibitors, surfactant protein A and hexadecyl-3-trifluorethylglycero-sn-2-phospho-methanol (MJ33). The peroxidase activity of Prdx6 was unaffected by phosphorylation. Mass spectroscopic analysis of in vitro phosphorylated Prdx6 showed a unique phosphorylation site at Thr-177 and mutation of this residue abolished protein phosphorylation and the increase in MAPK-mediated activity. These results show that the MAPKs can mediate phosphorylation of Prdx6 at Thr-177 with a consequent marked increase in its aiPLA(2) activity.
Collapse
|
7
|
Brixius K, Schwinger RHG, Hoyer F, Napp A, Renner R, Bölck B, Kümin A, Fischer U, Mehlhorn U, Werner S, Bloch W. Isoform-specific downregulation of peroxiredoxin in human failing myocardium. Life Sci 2007; 81:823-31. [PMID: 17727896 DOI: 10.1016/j.lfs.2007.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 06/29/2007] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
Peroxiredoxins (Prx) are a family of antioxidant thioredoxin or glutathione dependent peroxidases. The major functions of Prx comprise modulation of signalling cascades that apply hydrogen peroxide (H(2)O(2)) and cellular protection against oxidative stress. Nothing is known about Prx isoforms in human myocardium. We investigated the protein expression of Prx isoforms 1-6 in human non-failing (NF, donor hearts, n=6, male, age: 53.3+/-2.1 years) and failing myocardium (DCM, orthotopic heart transplantation, dilated cardiomyopathy, n=15, male, 57.0+/-1.7 years). In addition, we performed immunohistochemical stainings and measured Prx 4 mRNA expression levels (RNAse protection assay). The protein expression of Prx 1-2 was similar in NF and DCM. The protein expression of Prx 3-6 and the mRNA-expression of Prx 4 were decreased in DCM. Immunohistochemical analyses provided evidence that all Prx isoforms are present in cardiomyocytes and endothelial cells. Whereas Prx 1-5 staining was more pronounced in endothelial cells, Prx6 staining was more evident in cardiomyocytes. This study provides evidence that Prx are differentially regulated in DCM. The selective downregulation of peroxiredoxin 3-6 isoforms may point towards a subcellular specific dysregulation of the antioxidative defence during the development of DCM.
Collapse
Affiliation(s)
- Klara Brixius
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiology and Sport Medicine, German Sport University, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Beattie JR, Maguire C, Gilchrist S, Barrett LJ, Cross CE, Possmayer F, Ennis M, Elborn JS, Curry WJ, McGarvey JJ, Schock BC. The use of Raman microscopy to determine and localize vitamin E in biological samples. FASEB J 2007; 21:766-76. [PMID: 17209128 DOI: 10.1096/fj.06-7028com] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alpha-tocopherol (aT), the predominant form of vitamin E in mammals, is thought to prevent oxidation of polyunsaturated fatty acids. In the lung, aT is perceived to be accumulated in alveolar type II cells and secreted together with surfactant into the epithelial lining fluid. Conventionally, determination of aT and related compounds requires extraction with organic solvents. This study describes a new method to determine and image the distribution of aT and related compounds within cells and tissue sections using the light-scattering technique of Raman microscopy to enable high spatial as well as spectral resolution. This study compared the nondestructive analysis by Raman microscopy of vitamin E, in particular aT, in biological samples with data obtained using conventional HPLC analysis. Raman spectra were acquired at spatial resolutions of 2-0.8 microm. Multivariate analysis techniques were used for analyses and construction of corresponding maps showing the distribution of aT, alpha-tocopherol quinone (aTQ), and other constituents (hemes, proteins, DNA, and surfactant lipids). A combination of images enabled identification of colocalized constituents (heme/aTQ and aT/surfactant lipids). Our data demonstrate the ability of Raman microscopy to discriminate between different tocopherols and oxidation products in biological specimens without sample destruction. By enabling the visualization of lipid-protein interactions, Raman microscopy offers a novel method of investigating biological characterization of lipid-soluble compounds, including those that may be embedded in biological membranes such as aT.
Collapse
Affiliation(s)
- J Renwick Beattie
- Queen's University Belfast, School of Chemistry and Chemical Engineering, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Schremmer B, Manevich Y, Feinstein SI, Fisher AB. Peroxiredoxins in the lung with emphasis on peroxiredoxin VI. Subcell Biochem 2007; 44:317-44. [PMID: 18084901 DOI: 10.1007/978-1-4020-6051-9_15] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
All six mammalian peroxiredoxins are expressed in the lung. Peroxiredoxin (Prx) VI is the isoform expressed at the highest level and its lung expression exceeds that for other organs. The predominant location of Prx VI is the cytosol and acidic organelles of Clara cells of the conducting airways and type II epithelial cells and macrophages in the alveoli. Prx I and VI show developmental induction of transcription at birth. PrxVI shares structural homology with other peroxiredoxins exhibiting a thioredoxin fold and a conserved catalytic Cys residue in the N-terminus of the protein. This enzyme is highly inducible by oxidative stress in both the neonatal and adult lung consistent with a role in antioxidant defense. Prx VI has several properties that distinguish its peroxidase activity from other peroxiredoxins: it can reduce phospholipid hydroperoxides in addition to other organic hydroperoxides and H2O2; the electron donor that serves to reduce the oxidized peroxidatic cysteine is not thioredoxin but GSH; instead of homodimerization, heterodimerization with pi-glutathione S-transferase is required for regeneration of the active enzyme. Prx VI also expresses a phospholipase A2 activity that is Ca2+-independent, maximal at acidic pH, and dependent on a serine-based catalytic triad and nucleophilic elbow at the surface of the protein. Models of altered Prx VI expression at the cellular, organ and whole animal levels have demonstrated that Prx VI functions as an important anti-oxidant enzyme with levels of protection that exceed those ascribed to GSH peroxidase (GPx1). The phospholipase A2 activity plays an important role in lung surfactant homeostasis and is responsible for the bulk of the degradation of internalized phosphatidylcholine and its resynthesis by the reacylation pathway. Expression of peroxiredoxins is elevated in several lung diseases including lung cancer, mesothelioma and sarcoidosis, although the mechanism for these alterations is not known. The unique properties of Prx VI enable it to play an important role in lung cell function.
Collapse
Affiliation(s)
- Bruno Schremmer
- Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|