2
|
Sorond FA, Tan CO, LaRose S, Monk AD, Fichorova R, Ryan S, Lipsitz LA. Deferoxamine, Cerebrovascular Hemodynamics, and Vascular Aging: Potential Role for Hypoxia-Inducible Transcription Factor-1-Regulated Pathways. Stroke 2015; 46:2576-83. [PMID: 26304864 DOI: 10.1161/strokeaha.115.009906] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Iron chelation therapy is emerging as a novel neuroprotective strategy. The mechanisms of neuroprotection are diverse and include both neuronal and vascular pathways. We sought to examine the effect of iron chelation on cerebrovascular function in healthy aging and to explore whether hypoxia-inducible transcription factor-1 activation may be temporally correlated with vascular changes. METHODS We assessed cerebrovascular function (autoregulation, vasoreactivity, and neurovascular coupling) and serum concentrations of vascular endothelial growth factor and erythropoietin, as representative measures of hypoxia-inducible transcription factor-1 activation, during 6 hours of deferoxamine infusion in 24 young and 24 older healthy volunteers in a randomized, blinded, placebo-controlled cross-over study design. Cerebrovascular function was assessed using the transcranial Doppler ultrasound. Vascular endothelial growth factor and erythropoietin serum protein assays were conducted using the Meso Scale Discovery platform. RESULTS Deferoxamine elicited a strong age- and time-dependent increase in the plasma concentrations of erythropoietin and vascular endothelial growth factor, which persisted ≤3 hours post infusion (age effect P=0.04; treatment×time P<0.01). Deferoxamine infusion also resulted in a significant time- and age-dependent improvement in cerebral vasoreactivity (treatment×time P<0.01; age P<0.01) and cerebral autoregulation (gain: age×time×treatment P=0.04). CONCLUSIONS Deferoxamine infusion improved cerebrovascular function, particularly in older individuals. The temporal association between improved cerebrovascular function and increased serum vascular endothelial growth factor and erythropoietin concentrations is supportive of shared hypoxia-inducible transcription factor-1-regulated pathways. Therefore, pharmacological activation of hypoxia-inducible transcription factor-1 to enhance cerebrovascular function may be a promising neuroprotective strategy in acute and chronic ischemic syndromes, especially in elderly patients. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT013655104.
Collapse
Affiliation(s)
- Farzaneh A Sorond
- From the Stroke Division, Department of Neurology (F.A.S., S.L.R., A.D.M.) and Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology (R.F., S.R.), Brigham and Women's Hospital, Boston, MA; Cardiovascular Research Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA (C.O.T.); Department of Medicine, Hebrew SeniorLife Institute for Aging Research, Boston, MA (L.A.L.); Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA (L.A.L.); and Department of Neurology, Physical Medicine and Rehabilitation, Obstetrics and Gynecology, and Medicine, Harvard Medical School, Boston, MA (F.A.S., C.O.T., R.F., L.A.L.).
| | - Can Ozan Tan
- From the Stroke Division, Department of Neurology (F.A.S., S.L.R., A.D.M.) and Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology (R.F., S.R.), Brigham and Women's Hospital, Boston, MA; Cardiovascular Research Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA (C.O.T.); Department of Medicine, Hebrew SeniorLife Institute for Aging Research, Boston, MA (L.A.L.); Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA (L.A.L.); and Department of Neurology, Physical Medicine and Rehabilitation, Obstetrics and Gynecology, and Medicine, Harvard Medical School, Boston, MA (F.A.S., C.O.T., R.F., L.A.L.)
| | - Sarah LaRose
- From the Stroke Division, Department of Neurology (F.A.S., S.L.R., A.D.M.) and Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology (R.F., S.R.), Brigham and Women's Hospital, Boston, MA; Cardiovascular Research Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA (C.O.T.); Department of Medicine, Hebrew SeniorLife Institute for Aging Research, Boston, MA (L.A.L.); Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA (L.A.L.); and Department of Neurology, Physical Medicine and Rehabilitation, Obstetrics and Gynecology, and Medicine, Harvard Medical School, Boston, MA (F.A.S., C.O.T., R.F., L.A.L.)
| | - Andrew D Monk
- From the Stroke Division, Department of Neurology (F.A.S., S.L.R., A.D.M.) and Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology (R.F., S.R.), Brigham and Women's Hospital, Boston, MA; Cardiovascular Research Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA (C.O.T.); Department of Medicine, Hebrew SeniorLife Institute for Aging Research, Boston, MA (L.A.L.); Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA (L.A.L.); and Department of Neurology, Physical Medicine and Rehabilitation, Obstetrics and Gynecology, and Medicine, Harvard Medical School, Boston, MA (F.A.S., C.O.T., R.F., L.A.L.)
| | - Raina Fichorova
- From the Stroke Division, Department of Neurology (F.A.S., S.L.R., A.D.M.) and Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology (R.F., S.R.), Brigham and Women's Hospital, Boston, MA; Cardiovascular Research Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA (C.O.T.); Department of Medicine, Hebrew SeniorLife Institute for Aging Research, Boston, MA (L.A.L.); Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA (L.A.L.); and Department of Neurology, Physical Medicine and Rehabilitation, Obstetrics and Gynecology, and Medicine, Harvard Medical School, Boston, MA (F.A.S., C.O.T., R.F., L.A.L.)
| | - Stanthia Ryan
- From the Stroke Division, Department of Neurology (F.A.S., S.L.R., A.D.M.) and Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology (R.F., S.R.), Brigham and Women's Hospital, Boston, MA; Cardiovascular Research Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA (C.O.T.); Department of Medicine, Hebrew SeniorLife Institute for Aging Research, Boston, MA (L.A.L.); Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA (L.A.L.); and Department of Neurology, Physical Medicine and Rehabilitation, Obstetrics and Gynecology, and Medicine, Harvard Medical School, Boston, MA (F.A.S., C.O.T., R.F., L.A.L.)
| | - Lewis A Lipsitz
- From the Stroke Division, Department of Neurology (F.A.S., S.L.R., A.D.M.) and Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology (R.F., S.R.), Brigham and Women's Hospital, Boston, MA; Cardiovascular Research Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA (C.O.T.); Department of Medicine, Hebrew SeniorLife Institute for Aging Research, Boston, MA (L.A.L.); Division of Gerontology, Beth Israel Deaconess Medical Center, Boston, MA (L.A.L.); and Department of Neurology, Physical Medicine and Rehabilitation, Obstetrics and Gynecology, and Medicine, Harvard Medical School, Boston, MA (F.A.S., C.O.T., R.F., L.A.L.)
| |
Collapse
|
4
|
Lederman M, Hagbi-Levi S, Grunin M, Obolensky A, Berenshtein E, Banin E, Chevion M, Chowers I. Degeneration modulates retinal response to transient exogenous oxidative injury. PLoS One 2014; 9:e87751. [PMID: 24586289 PMCID: PMC3931611 DOI: 10.1371/journal.pone.0087751] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 01/02/2014] [Indexed: 11/23/2022] Open
Abstract
Purpose Oxidative injury is involved in retinal and macular degeneration. We aim to assess if retinal degeneration associated with genetic defect modulates the retinal threshold for encountering additional oxidative challenges. Methods Retinal oxidative injury was induced in degenerating retinas (rd10) and in control mice (WT) by intravitreal injections of paraquat (PQ). Retinal function and structure was evaluated by electroretinogram (ERG) and histology, respectively. Oxidative injury was assessed by immunohistochemistry for 4-Hydroxy-2-nonenal (HNE), and by Thiobarbituric Acid Reactive Substances (TBARS) and protein carbonyl content (PCC) assays. Anti-oxidant mechanism was assessed by quantitative real time PCR (QPCR) for mRNA of antioxidant genes and genes related to iron metabolism, and by catalase activity assay. Results Three days following PQ injections (1 µl of 0.25, 0.75, and 2 mM) the average ERG amplitudes decreased more in the WT mice compared with the rd10 mice. For example, following 2 mM PQ injection, ERG amplitudes reduced 1.84-fold more in WT compared with rd10 mice (p = 0.02). Injection of 4 mM PQ resulted in retinal destruction. Altered retina morphology associated with PQ was substantially more severe in WT eyes compared with rd10 eyes. Oxidative injury according to HNE staining and TBARS assay increased 1.3-fold and 2.1-fold more, respectively, in WT compared with rd10 mice. At baseline, prior to PQ injection, mRNA levels of antioxidant genes (Superoxide Dismutase1, Glutathione Peroxidase1, Catalase) and of Transferrin measured by quantitative PCR were 2.1–7.8-fold higher in rd10 compared with WT mice (p<0.01 each), and catalase activity was 1.7-fold higher in rd10 (p = 0.0006). Conclusions This data suggests that degenerating rd10 retinas encounter a relatively lower degree of damage in response to oxidative injury compared with normal retinas. Constitutive up-regulation of the oxidative defense mechanism in degenerating retinas may confer such relative protection from oxidative injury.
Collapse
Affiliation(s)
- Michal Lederman
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Hebrew University-Hadassah School of Medicine, Jerusalem, Israel ; Department of Cellular Biochemistry and Human Genetics, Hadassah-Hebrew University Medical Center, and the Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | - Shira Hagbi-Levi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | - Michelle Grunin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Hebrew University-Hadassah School of Medicine, Jerusalem, Israel ; Department of Cellular Biochemistry and Human Genetics, Hadassah-Hebrew University Medical Center, and the Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | - Eduard Berenshtein
- Department of Cellular Biochemistry and Human Genetics, Hadassah-Hebrew University Medical Center, and the Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | - Mordechai Chevion
- Department of Cellular Biochemistry and Human Genetics, Hadassah-Hebrew University Medical Center, and the Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| |
Collapse
|