1
|
Dutta T, Sengupta S, Adhya S, Saha A, Sengupta D, Mondal R, Naskar S, Bhattacharjee S, Sengupta M. Identification of TNF-α as Major Susceptible Risk Locus for Vitiligo: A Systematic Review and Meta-Analysis Study in the Asian Population. Dermatology 2024; 240:376-386. [PMID: 38377977 DOI: 10.1159/000536480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
INTRODUCTION Vitiligo is a common depigmentation disorder characterized by defined white patches on the skin and affecting around 0.5% to 2% of the general population. Genetic association studies have identified several pre-disposing genes and single nucleotide polymorphisms (SNPs) for vitiligo pathogenesis; nonetheless, the reports are often conflicting and rarely conclusive. This comprehensive meta-analysis study was designed to evaluate the effect of the risk variants on vitiligo aetiology and covariate stratified vitiligo risk in the Asian population, considering all the studies published so far. METHODS We followed a systematic and comprehensive search to identify the relevant vitiligo-related candidate gene association studies in PubMed using specific keywords. After data extraction, we calculated, for the variants involved, the study-level unadjusted odds ratio, standard errors, and 95% confidence intervals by using logistic regression with additive, dominant effect, and recessive models using R software package (R, 3.4.2) "metafor." Subgroup analysis was performed using logistic regression (generalized linear model; "glm") of disease status on subgroup-specific genotype counts. For a better understanding of the likely biological function of vitiligo-associated variant obtained through the meta-analysis, in silico functional analyses, through standard publicly available web tools, were also conducted. RESULTS Thirty-one vitiligo-associated case-control studies on eleven SNPs were analysed in our study. In the fixed-effect meta-analysis, one variant upstream of TNF-α gene: rs1800629 was found to be associated with vitiligo risk in the additive (p = 4.26E-06), dominant (p = 1.65E-7), and recessive (p = 0.000453) models. After Benjamini-Hochberg false discovery rate (FDR) correction, rs1800629/TNF-α was found to be significant at 5% FDR in the dominant (padj = 1.82E-6) and recessive models (padj = 0.0049). In silico characterization revealed the prioritized variant to be regulatory in nature and thus having potential to contribute towards vitiligo pathogenesis. CONCLUSION Our study constitutes the first comprehensive meta-analysis of candidate gene-based association studies reported in the whole of the Asian population, followed by an in silico analysis of the vitiligo-associated variant. According to the findings of our study, TNF-α single nucleotide variant rs1800629G>A has a risk association, potentially contributing to vitiligo pathogenesis in the Asian population.
Collapse
Affiliation(s)
- Tithi Dutta
- Department of Genetics, University of Calcutta, Kolkata, India
| | | | - Suchismita Adhya
- Department of Microbiology, University of Calcutta, Kolkata, India
| | - Arpan Saha
- Department of Genetics, University of Calcutta, Kolkata, India
| | | | - Ritisri Mondal
- Department of Genetics, University of Calcutta, Kolkata, India
| | - Swarnadru Naskar
- Department of Biotechnology, KIIT University, Bhubaneswar, India
| | | | - Mainak Sengupta
- Department of Genetics, University of Calcutta, Kolkata, India
| |
Collapse
|
2
|
Chaudhary A, Patel M, Singh S. Current Debates on Etiopathogenesis and Treatment Strategies for Vitiligo. Curr Drug Targets 2022; 23:1219-1238. [PMID: 35388753 DOI: 10.2174/1389450123666220406125645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/12/2021] [Accepted: 12/31/2021] [Indexed: 01/25/2023]
Abstract
Vitiligo is an acquired, chronic, and progressive depigmentation or hypopigmentation characterized by the destruction of melanocytes and the occurrence of white patches or macules in the skin, mucosal surface of eyes, and ears. Melanocytes are the melanin pigment-producing cells of the skin which are destroyed in pathological conditions called vitiligo. Approximately 0.5 - 2.0% of the population is suffering from vitiligo, and a higher prevalence rate of up to 8.8% has been reported in India. It is caused by various pathogenic factors like genetic predisposition, hyperimmune activation, increased oxidative stress, and alteration in neuropeptides level. Genetic research has revealed a multi- genetic inheritance that exhibits an overlap with other autoimmune disorders. However, melanocytes specific genes are also affected (such as DDR1, XBP1, NLRP1, PTPN22, COMT, FOXP3, ACE, APE, GSTP1, TLR, SOD, and CTLA-4). A number of therapeutic options are employed for the treatment of vitiligo. The topical corticosteroids and immunomodulators are currently in practice for the management of vitiligo. Phototherapies alone and in combinations with other approaches are used in those patients who do not respond to the topical treatment. The main focus of this review is on the etiopathological factors, pharmacological management (phototherapy, topical, systemic, and surgical therapy), and herbal drugs used to treat vitiligo.
Collapse
Affiliation(s)
- Ankit Chaudhary
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Mayank Patel
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shamsher Singh
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India
| |
Collapse
|
3
|
The Role of Oxidative Stress in the Pathogenesis of Vitiligo: A Culprit for Melanocyte Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8498472. [PMID: 35103096 PMCID: PMC8800607 DOI: 10.1155/2022/8498472] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Vitiligo is a common chronic acquired pigmentation disorder characterized by loss of pigmentation. Among various hypotheses proposed for the pathogenesis of vitiligo, oxidative stress-induced immune response that ultimately leads to melanocyte death remains most widely accepted. Oxidative stress which causes elevated levels of reactive oxygen species (ROS) can lead to dysfunction of molecules and organelles, triggering further immune response, and ultimately melanocyte death. In recent years, a variety of cell death modes have been studied, including apoptosis, autophagy and autophagic cell death, ferroptosis, and other novel modes of death, which will be discussed in this review in detail. Oxidative stress is also strongly linked to these modes of death. Under oxidative stress, ROS could induce autophagy by activating the Nrf2 antioxidant pathway of melanocytes. However, persistent stimulation of ROS might eventually lead to excessive activation of Nrf2 antioxidant pathway, which in turn will inactivate autophagy. Moreover, ferroptosis may be triggered by oxidative-related transcriptional production, including ARE, the positive feedback loop related to p62, and the reduced activity and expression of GPX4. Therefore, it is reasonable to infer that these modes of death are involved in the oxidative stress response, and that oxidative stress also acts as an initiator for various modes of death through some complex mechanisms. In this study, we aim to summarize the role of oxidative stress in vitiligo and discuss the corresponding mechanisms of interaction between various modes of cell death and oxidative stress. These findings may provide new ideas for exploring the pathogenesis and potential therapeutic targets of vitiligo.
Collapse
|
4
|
Li S, Dai W, Wang S, Kang P, Ye Z, Han P, Zeng K, Li C. Clinical Significance of Serum Oxidative Stress Markers to Assess Disease Activity and Severity in Patients With Non-Segmental Vitiligo. Front Cell Dev Biol 2021; 9:739413. [PMID: 34977005 PMCID: PMC8716723 DOI: 10.3389/fcell.2021.739413] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Non-segmental vitiligo (NSV) is a chronic autoimmune disease characterized by progressive depigmentation of the skin. Oxidative stress (OS) has been proposed as one among the main principal causes in the development and establishment of a sustained autoimmune state in patients with NSV. However, the disease-associated OS biomarkers in clinical practice are not well studied. In this study, we found significantly reduced antioxidant enzymes [catalase (CAT) and superoxide dismutase (SOD)], total antioxidant capacity (TAC), and increased levels of lipid oxidation product malondialdehyde (MDA) and oxidative DNA damage byproduct [8-hydroxy-2-deoxyguanosine (8-OHdG)] in serum of NSV patients compared with healthy controls (HC). Serum TAC, MDA, and 8-OHdG levels were correlated with disease activity in all patients with NSV and much lower in patients receiving conventional treatment in the past 1 year compared to that without treatment. In addition, both serum MDA and 8-OHdG levels were significantly correlated with CXCL10 expression in patients with NSV. And the serum TAC, MDA, and 8-OHdG levels were also correlated with affected body surface area and Vitiligo Area Scoring Index score in patients with NSV. This study demonstrates dysregulated OS status in patients with NSV and provides the evidence that the serum TAC, MDA, and 8-OHdG have a capacity to indicate the activity and severity in patients with NSV.
Collapse
Affiliation(s)
- Shuli Li
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangdong, China
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wei Dai
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Sijia Wang
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhubiao Ye
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Peng Han
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangdong, China
- Department of Otolaryngology, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Kang Zeng
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Chunying Li,
| |
Collapse
|
5
|
A Dual Face of APE1 in the Maintenance of Genetic Stability in Monocytes: An Overview of the Current Status and Future Perspectives. Genes (Basel) 2020; 11:genes11060643. [PMID: 32545201 PMCID: PMC7349382 DOI: 10.3390/genes11060643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
Monocytes, which play a crucial role in the immune system, are characterized by an enormous sensitivity to oxidative stress. As they lack four key proteins responsible for DNA damage response (DDR) pathways, they are especially prone to reactive oxygen species (ROS) exposure leading to oxidative DNA lesions and, consequently, ROS-driven apoptosis. Although such a phenomenon is of important biological significance in the regulation of monocyte/macrophage/dendritic cells’ balance, it also a challenge for monocytic mechanisms that have to provide and maintain genetic stability of its own DNA. Interestingly, apurinic/apyrimidinic endonuclease 1 (APE1), which is one of the key proteins in two DDR mechanisms, base excision repair (BER) and non-homologous end joining (NHEJ) pathways, operates in monocytic cells, although both BER and NHEJ are impaired in these cells. Thus, on the one hand, APE1 endonucleolytic activity leads to enhanced levels of both single- and double-strand DNA breaks (SSDs and DSBs, respectively) in monocytic DNA that remain unrepaired because of the impaired BER and NHEJ. On the other hand, there is some experimental evidence suggesting that APE1 is a crucial player in monocytic genome maintenance and stability through different molecular mechanisms, including induction of cytoprotective and antioxidant genes. Here, the dual face of APE1 is discussed.
Collapse
|
6
|
Cui T, Zhang W, Li S, Chen X, Chang Y, Yi X, Kang P, Yang Y, Chen J, Liu L, Jian Z, Li K, Wang G, Gao T, Song P, Li C. Oxidative Stress-Induced HMGB1 Release from Melanocytes: A Paracrine Mechanism Underlying the Cutaneous Inflammation in Vitiligo. J Invest Dermatol 2019; 139:2174-2184.e4. [PMID: 30998983 DOI: 10.1016/j.jid.2019.03.1148] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Vitiligo is a cutaneous depigmentation disorder caused by the destruction of epidermal melanocytes. The generation and the skin infiltration of autoreactive CD8+ cytotoxic T cells triggered by oxidative stress play a critical role in vitiligo. High-mobility group protein B1 (HMGB1) is a classic damage-associated molecular pattern molecule with strong proinflammatory effects in inflammatory reactions. A previous study reported an enhanced expression of HMGB1 in vitiligo lesions, but the role of HMGB1 in cutaneous inflammation of vitiligo is still unknown. In the present study, we initially found that HMGB1 was released from the nucleus of melanocytes in vitiligo perilesional skin. Furthermore, cultured normal human melanocytes could release HMGB1 under treatment with hydrogen peroxide. Moreover, HMGB1 facilitated the secretion of CXCL16 and IL-8 from keratinocytes by binding to the receptor for advanced glycation end products and activating NF-κB and extracellular signal-regulated kinase signaling pathways. Subsequently, HMGB1 led to the formation of chemotaxis for the migration of CD8+ T cells from patients with vitiligo by increasing the release of CXCL16 from keratinocytes. Additionally, HMGB1 promoted the maturation of dendritic cells from patients with vitiligo. Altogether, our study demonstrates that HMGB1 released from melanocytes contributes to the formation of oxidative stress-induced autoimmunity in vitiligo.
Collapse
Affiliation(s)
- Tingting Cui
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuguang Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqian Chang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiaxi Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ling Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kai Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Wang Y, Li S, Li C. Perspectives of New Advances in the Pathogenesis of Vitiligo: From Oxidative Stress to Autoimmunity. Med Sci Monit 2019; 25:1017-1023. [PMID: 30723188 PMCID: PMC6373225 DOI: 10.12659/msm.914898] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vitiligo is an autoimmune cutaneous disease in which melanocytes are destroyed by CD8+ T cells resulting in disfiguring white spots. From the very beginning of the disease, oxidative stress plays a significant role in promoting the onset of vitiligo, as noted by many studies. Multiple factors lead to the overproduction of reactive oxygen species (ROS), and collaboratively cause ROS accumulation in vulnerable melanocytes. However, ROS are responsible for melanocyte damage manifested by the level of molecules, organelles, and cells, and the generation of autoantigens, through different pathways related to the dysregulation of melanocytes. Recent studies have shown that presentation of autoantigens is mediated by innate immunity, which bridges the gap between oxidative stress and adaptive immunity. The recruitment of CD8+ T cells induced by cytokines and chemokines guarantees the final destruction of epidermal melanocytes. Moreover, emerging concerns regarding regulatory T cells and resident memory T cells help explain the reinstatement and relapse of vitiligo. Here, we provide new perspectives in the advances in understanding of this disease pathogenesis and we attempt to find more interrelationships between oxidative stress and autoimmunity.
Collapse
Affiliation(s)
- Yinghan Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland).,Department of Dermatology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
8
|
Vaseghi H, Houshmand M, Jadali Z. Increased levels of mitochondrial DNA copy number in patients with vitiligo. Clin Exp Dermatol 2017; 42:749-754. [PMID: 28866865 DOI: 10.1111/ced.13185] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Oxidative stress is known to be involved in the pathogenesis of autoimmune diseases such as vitiligo. Evidence suggests that the human mitochondrial DNA copy number (mtDNAcn) is vulnerable to damage mediated by oxidative stress. The purpose of this study was to examine and compare peripheral blood mtDNAcn and oxidative DNA damage byproducts (8-hydroxy-2-deoxyguanosine; 8-OHdG) in patients with vitiligo and healthy controls (HCs). METHODS The relative mtDNAcn and the oxidative damage (formation of 8-OHdG in mtDNA) of each sample were determined by real-time quantitative PCR. Blood samples were obtained from 56 patients with vitiligo and 46 HCs. RESULTS The mean mtDNAcn and the degree of mtDNA damage were higher in patients with vitiligo than in HCs. CONCLUSION These data suggest that increase in mtDNAcn and oxidative DNA damage may be involved in the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- H Vaseghi
- Department of Biology, Faculty of Biological Sciences, Gonbad Kavous University, Gonbad Kavous, Iran
| | - M Houshmand
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Z Jadali
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Aydin AF, Aydıngöz İE, Doğru-Abbasoğlu S, Vural P, Uysal M. Association of Leukotrichia in Vitiligo and Asp148Glu Polymorphism of Apurinic/Apyrimidinic Endonuclease 1. Int J Trichology 2017; 9:171-176. [PMID: 29118522 PMCID: PMC5655626 DOI: 10.4103/ijt.ijt_4_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Oxidative stress and increased DNA damage have been implicated in the etiopathogenesis of vitiligo. Oxidative DNA damage is mainly repaired by the base excision repair (BER) pathway. Aim: We sought to determine whether polymorphisms in DNA repair genes may have a role in the pathogenesis of vitiligo. Materials and Methods: We conducted a study including 100 patients with vitiligo and age- and sex-matched 193 control subjects to examine the role of single-nucleotide polymorphisms of BER genes, human 8-oxoG DNA N-glycosylase 1 (codon 326), apurinic/apyrimidinic endonuclease 1 (APE1) (codon 148), and X-ray repair cross-complementing group 1 (codon 399) as risk factors for vitiligo. These polymorphisms were determined by quantitative real-time polymerase chain reaction and melting curve analysis. Results: No significant association was observed between the variant alleles of studied genes and vitiligo. Conclusion: However, we showed that the presence of APE1 148Glu variant allele is associated with leukotrichia. This preliminary study suggests that APE1 (codon 148) polymorphism may play a role in vitiligo pathogenesis.
Collapse
Affiliation(s)
- A Fatih Aydin
- Department of Biochemistry, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - İkbal Esen Aydıngöz
- Department of Dermatology, School of Medicine, Acıbadem University, Istanbul, Turkey
| | - Semra Doğru-Abbasoğlu
- Department of Biochemistry, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Pervin Vural
- Department of Biochemistry, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Müjdat Uysal
- Department of Biochemistry, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
10
|
Peng M, Zhou X, Ding X, Wei L, Zhao Y, Zhu T, Shi X, Qin D. Association of XRCC1 Arg399Gln and Arg194Trp polymorphisms with susceptibility to multiple autoimmune diseases: a meta-analysis. Rheumatol Int 2016; 37:435-444. [DOI: 10.1007/s00296-016-3585-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/21/2016] [Indexed: 12/19/2022]
|
11
|
Xie H, Zhou F, Liu L, Zhu G, Li Q, Li C, Gao T. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity? J Dermatol Sci 2015; 81:3-9. [PMID: 26387449 DOI: 10.1016/j.jdermsci.2015.09.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/20/2015] [Accepted: 09/02/2015] [Indexed: 12/24/2022]
Abstract
Vitiligo is a common depigmentation disorder characterized by a loss of functional melanocytes and melanin from epidermis, in which the autoantigens and subsequent autoimmunity caused by oxidative stress play significant roles according to hypotheses. Various factors lead to reactive oxygen species (ROS) overproduction in the melanocytes of vitiligo: the exogenous and endogenous stimuli that cause ROS production, low levels of enzymatic and non-enzymatic antioxidants, disturbed antioxidant pathways and polymorphisms of ROS-associated genes. These factors synergistically contribute to the accumulation of ROS in melanocytes, finally leading to melanocyte damage and the production of autoantigens through the following ways: apoptosis, accumulation of misfolded peptides and cytokines induced by endoplasmic reticulum stress as well as the sustained unfolded protein response, and an 'eat me' signal for phagocytic cells triggered by calreticulin. Subsequently, autoantigens presentation and dendritic cells maturation occurred mediated by the release of antigen-containing exosomes, adenosine triphosphate and melanosomal autophagy. With the involvement of inducible heat shock protein 70, cellular immunity targeting autoantigens takes the essential place in the destruction of melanocytes, which eventually results in vitiligo. Several treatments, such as narrow band ultraviolet, quercetin and α-melanophore-stimulating hormone, are reported to be able to lower ROS thereby achieving repigmentation in vitiligo. In therapies targeting autoimmunity, restore of regulatory T cells is absorbing attention, in which narrow band ultraviolet also plays a role.
Collapse
Affiliation(s)
- Heng Xie
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Fubo Zhou
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Ling Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Guannan Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Qiang Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
12
|
Kemp E. The
CC
genotype of the
ERCC
1
C118T single‐nucleotide polymorphism impacts positively on the efficacy of narrowband ultraviolet B therapy for vitiligo. Br J Dermatol 2015; 173:324-5. [DOI: 10.1111/bjd.13977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- E.H. Kemp
- Department of Human Metabolism University of Sheffield Sheffield S10 2RX U.K
| |
Collapse
|
13
|
Dai W, Zhou FB, Wei C, Wang XW, Guo S, Yi XL, Li K, Gao TW, Liu L, Li CY. A functional single-nucleotide polymorphism in the ERCC1 gene alters the efficacy of narrowband ultraviolet B therapy in patients with active vitiligo in a Chinese population. Br J Dermatol 2015; 173:457-63. [PMID: 25965418 DOI: 10.1111/bjd.13892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND T lymphocytes have been shown to cause the destruction of melanocytes in vitiligo pathogenesis. Narrowband ultraviolet B (NB-UVB), as an effective therapeutic strategy in vitiligo, can lead to the formation of DNA photoproducts such as cyclobutane pyrimidine dimers (CPDs) in perilesional lymphocytes and thus induce skin immunosuppression. The repair of DNA photoproducts is performed mainly through the nucleotide excision repair (NER) pathway. We hypothesized that single-nucleotide polymorphisms (SNPs) in NER genes might influence the repair capacity of CPDs and thus contribute to variations in phototherapy efficiency. OBJECTIVES To detect genetic polymorphisms in NER genes and their relationship with the efficacy of NB-UVB therapy in patients with active vitiligo. METHODS We investigated the association of NER SNPs (XPA A23G, XPC Ci11A, XPC C2919A and ERCC1 C118T) with phototherapy efficacy in 86 patients with vitiligo who received NB-UVB treatment. Furthermore, we examined the impact of ERCC1 C118T on the apoptosis of T lymphocytes and CPD accumulation after NB-UVB irradiation. RESULTS We found that patients with vitiligo with the ERCC1 codon 118 CC genotype showed better efficacy after NB-UVB irradiation than those with the ERCC1 118 TT and CT genotypes, whereas no such association was documented among the genotypes of XPA A23G, XPC Ci11A or XPC C2919A. Additionally, the apoptosis rates and CPD levels of lymphocytes after NB-UVB irradiation in patients with the ERCC1 118 CC genotype were significantly higher than those in patients with the ERCC1 118 TT and CT genotypes. CONCLUSIONS The ERCC1 118 CC genotype confers better efficacy of NB-UVB therapy in patients with active vitiligo.
Collapse
Affiliation(s)
- W Dai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, Shaanxi, 710032, China
| | - F-B Zhou
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, Shaanxi, 710032, China
| | - C Wei
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, Shaanxi, 710032, China
| | - X-W Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, Shaanxi, 710032, China
| | - S Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, Shaanxi, 710032, China
| | - X-L Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, Shaanxi, 710032, China
| | - K Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, Shaanxi, 710032, China
| | - T-W Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, Shaanxi, 710032, China
| | - L Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, Shaanxi, 710032, China
| | - C-Y Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changlexi Road, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
14
|
The effects of calcipotriol on the dendritic morphology of human melanocytes under oxidative stress and a possible mechanism: Is it a mitochondrial protector? J Dermatol Sci 2015; 77:117-24. [DOI: 10.1016/j.jdermsci.2014.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 10/27/2014] [Accepted: 12/23/2014] [Indexed: 01/14/2023]
|