1
|
Shein M, Jeschke G. Comparison of Free Radical Levels in the Aerosol from Conventional Cigarettes, Electronic Cigarettes, and Heat-Not-Burn Tobacco Products. Chem Res Toxicol 2019; 32:1289-1298. [PMID: 30932480 PMCID: PMC6584902 DOI: 10.1021/acs.chemrestox.9b00085] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 11/28/2022]
Abstract
Aerosols from electronic cigarettes and heat-not-burn tobacco products have been found to contain lower levels of almost all compounds from the list of Harmful and Potentially Harmful Constituents known to be present in tobacco products and tobacco smoke than smoke from conventional cigarettes. Free radicals, which also pose potential health risks, are not considered in this list, and their levels in the different product types have not yet been compared under standardized conditions. We compared the type and quantity of free radicals in mainstream aerosol of 3R4F research cigarettes, two types of electronic cigarettes, and a heat-not-burn tobacco product. Free radicals and NO in the gas phases were separately spin trapped and quantified by electron paramagnetic resonance (EPR) spectroscopy by using a smoking machine for aerosol generation and a flow-through cell to enhance reproducibility of the quantification. Particulate matter was separated by a Cambridge filter and extracted, and persistent radicals were quantified by EPR spectroscopy. Levels of organic radicals for electronic cigarettes and the heat-not-burn product, as measured with the PBN spin trap, did not exceed 1% of the level observed for conventional cigarettes and were close to the radical level observed in air blanks. The radicals found in the smoke of conventional cigarettes were oxygen centered, most probably alkoxy radicals, whereas a signal for carbon-centered radicals near the detection limit was observed in aerosol from the heat-not-burn product and electronic cigarettes. The NO level in aerosol produced by electronic cigarettes was below our detection limit, whereas for the heat-not-burn product, it reached about 7% of the level observed for whole smoke from 3R4F cigarettes. Persistent radicals in particulate matter could be quantified only for 3R4F cigarettes. Aerosols from vaping and heat-not-burn tobacco products have much lower free radical levels than cigarette smoke, however, the toxicological implications of this finding are as yet unknown.
Collapse
Affiliation(s)
| | - Gunnar Jeschke
- Department of Chemistry and
Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
2
|
García-Vilas JA, Martínez-Poveda B, Quesada AR, Medina MÁ. (+)-Aeroplysinin-1 Modulates the Redox Balance of Endothelial Cells. Mar Drugs 2018; 16:md16090316. [PMID: 30200585 PMCID: PMC6164768 DOI: 10.3390/md16090316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/20/2023] Open
Abstract
The bioactive natural compound from marine origin, (+)-aeroplysinin-1, has been shown to exhibit potent anti-inflammatory and anti-angiogenic effects. The aim of the present study was to identify new targets for (+)-aeroplysinin-1 in endothelial cells. The sequential use of 2D-electrophoresis and MALDI-TOF-TOF/MS allowed us to identify several differentially expressed proteins. Four of these proteins were involved in redox processes and were validated by Western blot. The effects of (+)-aeroplysinin-1 were further studied by testing the effects of the treatment with this compound on the activity of several anti- and pro-oxidant enzymes, as well as on transcription factors involved in redox homeostasis. Finally, changes in the levels of total reactive oxygen species and mitochondrial membrane potential induced by endothelial cell treatments with (+)-aeroplysinin-1 were also determined. Taken altogether, these findings show that (+)-aeroplysinin-1 has multiple targets involved in endothelial cell redox regulation.
Collapse
Affiliation(s)
- Javier A García-Vilas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain.
| | - Beatriz Martínez-Poveda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain.
| | - Ana R Quesada
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain.
- CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain.
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Universidad de Málaga, Andalucía Tech, E-29071 Málaga, Spain.
- CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain.
| |
Collapse
|
3
|
Golabchi K, Abtahi MA, Salehi A, Jahanbani-Ardakani H, Ghaffari S, Farajzadegan Z. The effects of smoking on corneal endothelial cells: a cross-sectional study on a population from Isfahan, Iran. Cutan Ocul Toxicol 2017; 37:9-14. [DOI: 10.1080/15569527.2017.1317783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Khodayar Golabchi
- Isfahan Eye Research Center (IERC), Feiz Eye Hospital, Isfahan University of Medical Sciences, Isfahan, Iran,
- Department of Ophthalmology, Feiz Eye Hospital, Isfahan University of Medical Sciences, Isfahan, Iran,
| | - Mohammad-Ali Abtahi
- Isfahan Eye Research Center (IERC), Feiz Eye Hospital, Isfahan University of Medical Sciences, Isfahan, Iran,
- Department of Ophthalmology, Feiz Eye Hospital, Isfahan University of Medical Sciences, Isfahan, Iran,
| | - Ali Salehi
- Isfahan Eye Research Center (IERC), Feiz Eye Hospital, Isfahan University of Medical Sciences, Isfahan, Iran,
- Department of Ophthalmology, Feiz Eye Hospital, Isfahan University of Medical Sciences, Isfahan, Iran,
| | - Hamidreza Jahanbani-Ardakani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,
- Isfahan Medical Students Research Center (IMSRC), Isfahan University of Medical Sciences, Isfahan, Iran, and
| | - Sara Ghaffari
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,
- Isfahan Medical Students Research Center (IMSRC), Isfahan University of Medical Sciences, Isfahan, Iran, and
| | - Ziba Farajzadegan
- Department of Social Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Goel R, Bitzer Z, Reilly SM, Trushin N, Foulds J, Muscat J, Liao J, Elias RJ, Richie JP. Variation in Free Radical Yields from U.S. Marketed Cigarettes. Chem Res Toxicol 2017; 30:1038-1045. [PMID: 28269983 DOI: 10.1021/acs.chemrestox.6b00359] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Free radicals in tobacco smoke are thought to be an important cause of smoking-induced diseases, yet the variation in free radical exposure to smokers from different brands of commercially available cigarettes is unknown. We measured the levels of highly reactive gas-phase and stable particulate-phase radicals in mainstream cigarette smoke by electron paramagnetic resonance (EPR) spectroscopy with and without the spin-trapping agent phenyl-N-tert-butylnitrone (PBN), respectively, in 27 popular US cigarettes and the 3R4F research cigarette, machine-smoked according to the FTC protocol. We find a 12-fold variation in the levels of gas-phase radicals (1.2 to 14 nmol per cigarette) and a 2-fold variation in the amounts of particulate-phase radicals (44 to 96 pmol per cigarette) across the range of cigarette brands. Gas and particulate-phase radicals were highly correlated across brands (ρ = 0.62, p < 0.001). Both radicals were correlated with TPM (gas-phase: ρ = 0.38, p = 0.04; particulate-phase: ρ = 0.44, p = 0.02) and ventilation (gas- and tar-phase: ρ = -0.58, p = 0.001), with ventilation explaining nearly 30% of the variation in radical levels across brands. Overall, our findings of significant brand variation in free radical delivery under standardized machine-smoked conditions suggest that the use of certain brands of cigarettes may be associated with greater levels of oxidative stress in smokers.
Collapse
Affiliation(s)
- Reema Goel
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| | - Zachary Bitzer
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| | - Samantha M Reilly
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| | - Neil Trushin
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| | - Jonathan Foulds
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| | - Joshua Muscat
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| | - Jason Liao
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| | - Ryan J Elias
- Department of Food Science, Pennsylvania State University, College of Agricultural Sciences , University Park, Pennsylvania 16802, United States
| | - John P Richie
- Department of Public Health Sciences, Pennsylvania State University Tobacco Center of Regulatory Science (TCORS), Pennsylvania State University College of Medicine , Hershey, Pennsylvania 17033, United States
| |
Collapse
|
5
|
Redox Imbalance and Viral Infections in Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6547248. [PMID: 27110325 PMCID: PMC4826696 DOI: 10.1155/2016/6547248] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS).
Collapse
|
6
|
Rodacka A. The effect of radiation-induced reactive oxygen species (ROS) on the structural and functional properties of yeast alcohol dehydrogenase (YADH). Int J Radiat Biol 2015; 92:11-23. [DOI: 10.3109/09553002.2015.1106022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|