1
|
Hashemi B, Fakhri S, Kiani A, Abbaszadeh F, Miraghaee S, Mohammadi M, Echeverría J. Anti-neuropathic effects of astaxanthin in a rat model of chronic constriction injury: passing through opioid/benzodiazepine receptors and relevance to its antioxidant and anti-inflammatory effects. Front Pharmacol 2024; 15:1467788. [PMID: 39654618 PMCID: PMC11625551 DOI: 10.3389/fphar.2024.1467788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Neuropathic pain is a debilitating neurological disorder and is on the rise. Since no effective treatment has been so far approved to combat the complex pathological mechanisms behind neuropathic pain, finding new therapeutic candidates is of great importance. Astaxanthin (AST) is a carotenoid with strong antioxidant, and anti-inflammatory activities. Purpose The present research aimed to evaluate the ameliorative effects of AST on a rat model of neuropathic pain. Methods To induce neuropathic pain, a chronic constriction injury (CCI) model was employed. Accordingly, Wistar rats were divided into nine groups of six including sham, negative control group (CCI), positive control group gabapentin (100 mg/kg), AST (5, 10 mg/kg), flumazenil (0.5 mg/kg), naloxone (0.1 mg/kg), AST (10 mg/kg) + flumazenil (0.5 mg/kg), and AST (10 mg/kg) + naloxone (0.1 mg/kg) were administered intraperitoneally on days 1, 3, 5, 7, 10, and 14. To check the experimental signs of neuropathic pain and motor dysfunction, hot plate, acetone drop, and open field tests were used at the same time points. Additionally, biochemical assay and zymography were done on days 7 and 14 to assess the changes in catalase, glutathione and nitrite, as well as matrix metalloproteinases (MMP-2 and MMP-9). Besides, histological evaluations were performed for tissue damages on days 7 and 14. Results and discussion Results indicated that intraperitoneal injection of AST improved allodynia, hyperalgesia, and locomotor activity after CCI. AST also increased catalase and glutathione while suppressing nitrite, MMP-2, and MMP-9 activity through opioid/benzodiazepine receptors. Conclusion The results highlighted AST as a promising candidate against neuropathic pain with beneficial effects on motor function by suppressing inflammatory mediators, and augmenting antioxidant factors, passing through opioid/benzodiazepine receptors.
Collapse
Affiliation(s)
- Boshra Hashemi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Miraghaee
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mohammadi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
2
|
Zhai M, Hu H, Zheng Y, Wu B, Sun W. PGC1α: an emerging therapeutic target for chemotherapy-induced peripheral neuropathy. Ther Adv Neurol Disord 2023; 16:17562864231163361. [PMID: 36993941 PMCID: PMC10041632 DOI: 10.1177/17562864231163361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/25/2023] [Indexed: 03/29/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN)-mediated paresthesias are a common complication in cancer patients undergoing chemotherapy. There are currently no treatments available to prevent or reverse CIPN. Therefore, new therapeutic targets are urgently needed to develop more effective analgesics. However, the pathogenesis of CIPN remains unclear, and the prevention and treatment strategies of CIPN are still unresolved issues in medicine. More and more studies have demonstrated that mitochondrial dysfunction has become a major factor in promoting the development and maintenance of CIPN, and peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC1α) plays a significant role in maintaining the mitochondrial function, protecting peripheral nerves, and alleviating CIPN. In this review, we highlight the core role of PGC1α in regulating oxidative stress and maintaining normal mitochondrial function and summarize recent advances in its therapeutic effects and mechanisms in CIPN and other forms of peripheral neuropathy. Emerging studies suggest that PGC1α activation may positively impact CIPN mitigation by modulating oxidative stress, mitochondrial dysfunction, and inflammation. Therefore, novel therapeutic strategies targeting PGC1α could be a potential therapeutic target in CIPN.
Collapse
Affiliation(s)
- Mingzhu Zhai
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
- Yantian Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Haibei Hu
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Yi Zheng
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Benqing Wu
- Center for Medical Experiments (CME), University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen 518016, China
| | | |
Collapse
|
3
|
Micheli L, Maggini V, Ciampi C, Gallo E, Bogani P, Fani R, Pistelli L, Ghelardini C, Di Cesare Mannelli L, De Leo M, Firenzuoli F. Echinacea purpurea against neuropathic pain: Alkamides versus polyphenols efficacy. Phytother Res 2022; 37:1911-1923. [PMID: 36578266 DOI: 10.1002/ptr.7709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022]
Abstract
Chemotherapy-induced neuropathy represents the main dose-limiting toxicity of several anticancer drugs, such as oxaliplatin, leading to chronic pain and an impairment of the quality of life. Echinacea purpurea n-hexane extract (EP4 -RE ; rich in alkamides) and butanolic extract (EP4 -RBU ; rich in polyphenols) have been characterized and tested in an in vivo model of oxaliplatin-induced neuropathic pain, addressing the endocannabinoid system with alkamides and counteracting the redox imbalance with polyphenols. Thermal hypersensitivity was evaluated by the Cold Plate test. EP4 -RE showed a dose-dependent anti-hyperalgesic profile. The extract was more effective than its main constituent, dodeca-2 E,4 E,8Z,10 E/Z-tetraenoic acid isobutylamide (18 mg kg-1 , twofold to equimolar EP4 -RE 30 mg kg-1 ), suggesting a synergy with other extract constituents. Administration of cannabinoid type 2 (CB2) receptor-selective antagonist completely blocked the anti-allodynic effect of EP4 -RE , differently from the antagonism of CB1 receptors. EP4 -RBU (30 mg kg-1 ) exhibited anti-neuropathic properties too. The effect was mainly exerted by chicoric acid, which administered alone (123 μg kg-1 , equimolar to EP4 -RBU 30 mg kg-1 ) completely reverted oxaliplatin-induced allodynia. A synergy between different polyphenols in the extract had not been highlighted. Echinacea extracts have therapeutic potential in the treatment of neuropathic pain, through both alkamides CB2-selective activity and polyphenols protective properties.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Valentina Maggini
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy
| | - Clara Ciampi
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Eugenia Gallo
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy
| | - Patrizia Bogani
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Pisa, Italy
| | - Carla Ghelardini
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Marinella De Leo
- Department of Pharmacy, University of Pisa, Pisa, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Pisa, Italy
| | - Fabio Firenzuoli
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy
| |
Collapse
|
4
|
Lv X, Mao Y, Cao S, Feng Y. Animal models of chemotherapy-induced peripheral neuropathy for hematological malignancies: A review. IBRAIN 2022; 9:72-89. [PMID: 37786517 PMCID: PMC10529012 DOI: 10.1002/ibra.12086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 10/04/2023]
Abstract
Chemotherapy is one of the main treatments for hematologic malignancies. However, chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common long-term toxic reactions in chemotherapy, and the occurrence of CIPN affects patients' quality of life and can cause interruption of chemotherapy in severe cases, thus reducing the efficacy of chemotherapy. We currently summarize the existing CIPN animal models, including the characteristics of several common animal models such as bortezomib-induced peripheral neuropathy, vincristine-induced peripheral neuropathy, and oxaliplatin-induced peripheral neuropathy. It was found that CIPN may lead to behavioral, histopathological, and neurophysiological changes inducing peripheral neuropathy. However, the mechanism of CIPN has not been fully elucidated, especially the prevention and treatment protocols need to be improved. Therefore, this review article summarizes the progress of research on CIPN animal models and the possible mechanisms and treatment of CIPN.
Collapse
Affiliation(s)
- Xiaoli Lv
- Department of HematologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yingwei Mao
- Department of BiologyPenn State UniversityUniversity ParkPennsylvaniaUSA
| | - Song Cao
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Department of Pain MedicineAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yonghuai Feng
- Department of HematologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
5
|
Ali M, Aziz T. The Combination of Zinc and Melatonin Enhanced Neuroprotection and Attenuated Neuropathy in Oxaliplatin-Induced Neurotoxicity. Drug Des Devel Ther 2022; 16:3447-3463. [PMID: 36217449 PMCID: PMC9547652 DOI: 10.2147/dddt.s385914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The present study was designed to investigate the possible synergistic effects of melatonin with zinc in the prevention and treatment of oxaliplatin-induced neurotoxicity in rats. Methodology Forty-eight male Wistar albino rats were used and randomly allocated into six groups: The negative control group, oxaliplatin group, zinc + oxaliplatin group, melatonin + oxaliplatin group, zinc + melatonin + oxaliplatin prevention-approach group, and zinc + melatonin + oxaliplatin treatment-approach group. The thermal nociceptive/hyperalgesia tests were performed. Brain tissue homogenate was used for measuring GFAP, NCAM, TNF α, MAPK 14, NF-kB, GPX, and SOD. Brain tissue was sent for histopathological and immunohistochemistry studies. Results The combination therapies showed improvement in the behavioral tests. A significant increase in GPX and SOD with a significant decrease in GFAP levels resulted in the prevention approach. TNF α decreased significantly in the treatment approach. No significant changes were seen in NCAM, NFkB, and MAPK-14. The histopathological findings support the biochemical results. Additionally, immunohistochemistry revealed a significant attenuation of p53 and a non-significant decrease in Bcl2 levels in the combination groups. Conclusion The combination of zinc with melatonin for the prevention approach was effective in attenuating neurotoxicity induced by oxaliplatin. The proposed mechanisms are boosting the antioxidant system and attenuating the expression of p53, GFAP, and TNF-α.
Collapse
Affiliation(s)
- Mayyadah Ali
- Hiwa Cancer Hospital, Sulaimani, Kurdistan Region, Iraq
| | - Tavga Aziz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq,Correspondence: Tavga Aziz, Tel +9647701523544, Email
| |
Collapse
|
6
|
Efficacy of Traditional Chinese Medicine Injection in Preventing Oxaliplatin-Induced Peripheral Neurotoxicity: An Analysis of Evidence from 3598 Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6875253. [PMID: 35911148 PMCID: PMC9337932 DOI: 10.1155/2022/6875253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
Background Oxaliplatin is an effective chemotherapeutic agent for the treatment of malignant tumors. However, severe oxaliplatin-induced peripheral neurotoxicity (OIPN) has been well documented. Traditional Chinese medicine injections (TCMIs) have shown significant efficacy in preventing OIPN. However, it is difficult for clinicians to determine the differences in the efficacy of various TCMIs in preventing OIPN. The aim of this study was to compare the efficacy of various TCMIs in preventing OIPN through a network meta-analysis (NMA) to further inform clinical decision-making. Methods The Chinese Journal Full Text Database, Chinese Biomedical Literature Database, Wanfang Data Knowledge Service Platform, Chinese Science and Technology Journal Full Text Database, the Cochrane Library, Web of Science, PubMed, and Embase databases were searched for randomized controlled trials (RCTs) of TCMIs for OIPN prevention. The retrieval time was from the establishment of the database to April 12, 2021. NMA was performed using Stata 14.0 software after 2 evaluators independently screened the literature, extracted information, and evaluated the risk of bias of the included studies. Results A total of 45 eligible RCTs involving 3598 cancer patients and 13 TCMIs were included. The 13 TCMIs included Xiaoaiping injection (XAPI), compound kushen injection (CKSI), Aidi injection (ADI), Brucea javanica oil emulsion injection (BJOEI), Shenmai injection (SMI), Kangai injection (KAI), Astragalus injection (AI), elemene emulsion injection (EEI), Shenfu injection (SFI), Shenqi Fuzheng injection (SIFZI), Kanglaite injection (KLEI), Huachansu injection (HCSI), and lentinan injection (LI). NMA results showed that AI was superior to AD and SIFZI was superior to ADI in reducing the incidence of grade I neurotoxicity. SIFZI was superior to EEI and ADI, and BJOEI was superior to chemotherapy alone in reducing the incidence of grade II neurotoxicity. SMI was superior to LI and CKSI in reducing the incidence of grade III neurotoxicity. SIFZI was superior to LI, BJOEI, XAPI, EEI, SMI, chemotherapy alone, HCSI, KLEI, and ADI in reducing the total incidence of grade I–IV neurotoxicity. SFI was superior to ADI. Based on the SUCRA values, AI was the most likely intervention to reduce the incidence of grade I neurotoxicity, SIFZI was the most likely intervention to reduce the total incidence of grade II and I–IV neurotoxicity, and SMI was the most likely intervention to reduce the incidence of grade III and IV neurotoxicity. Conclusion TCMIs can prevent OIPN to some extent, among which SIFZI, SMI, and AI may be the most promising TCMIs. However, given the limitations of current studies, more well-designed, high-quality clinical trials will be needed in the future to validate the benefits of TCMIs.
Collapse
|
7
|
Bignucolo A, Scarabel L, Toffoli G, Cecchin E, De Mattia E. Predicting drug response and toxicity in metastatic colorectal cancer: the role of germline markers. Expert Rev Clin Pharmacol 2022; 15:689-713. [PMID: 35829762 DOI: 10.1080/17512433.2022.2101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite the introduction of targeted agents leading to therapeutic advances, clinical management of patients with metastatic colorectal cancer (mCRC) is still challenged by significant interindividual variability in treatment outcomes, both in terms of toxicity and therapy efficacy. The study of germline genetic variants could help to personalize and optimize therapeutic approaches in mCRC. AREAS COVERED A systematic review of pharmacogenetic studies in mCRC patients published on PubMed between 2011 and 2021, evaluating the role of germline variants as predictive markers of toxicity and efficacy of drugs currently approved for treatment of mCRC, was perfomed. EXPERT OPINION Despite the large amount of pharmacogenetic data published to date, only a few genetic markers (i.e., DPYD and UGT1A1 variants) reached the clinical practice, mainly to prevent the toxic effects of chemotherapy. The large heterogeneity of available studies represents the major limitation in comparing results and identifying potential markers for clinical use, the role of which remains exploratory in most cases. However, the available published findings are an important starting point for future investigations. They highlighted new promising pharmacogenetic markers within the network of inflammatory and immune response signaling. In addition, the emerging role of previously overlooked rare variants has been pointed out.
Collapse
Affiliation(s)
- Alessia Bignucolo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Lucia Scarabel
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| |
Collapse
|
8
|
Squillace S, Salvemini D. Nitroxidative stress in pain and opioid-induced adverse effects: therapeutic opportunities. Pain 2022; 163:205-213. [PMID: 34145168 DOI: 10.1097/j.pain.0000000000002347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
9
|
Phenylalanine-Based AMPA Receptor Antagonist as the Anticonvulsant Agent with Neuroprotective Activity-In Vitro and In Vivo Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030875. [PMID: 35164136 PMCID: PMC8840081 DOI: 10.3390/molecules27030875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022]
Abstract
Trying to meet the multitarget-directed ligands strategy, a series of previously described aryl-substituted phenylalanine derivatives, reported as competitive antagonists of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, were screened in vitro for their free-radical scavenging and antioxidant capacity in two different assays: ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity fluorescent (ORAC-FL) assays. The most active antioxidants 1 and 8 were further examined to evaluate their neuroprotective properties in vitro. In this study, compound 1 showed a significant neuroprotective effect against the neurotoxin 6-hydroxydopamine in neuroblastoma SH-SY5Y and IMR-32 cell lines. Both compounds also showed prevention from high levels of reactive oxygen species (ROS) in SH-SY5Y cells. Furthermore, the desired monoamine oxidase B (MAO-B) inhibition effect (IC50 = 278 ± 29 nM) for 1 was determined. No toxic effects up to 100 µM of 1 and 8 against neuroblastoma cells were observed. Furthermore, in vivo studies showed that compound 1 demonstrated significant anticonvulsant potential in 6-Hz test, but in neuropathic pain models its antiallodynic and antihyperalgesic properties were not observed. Concluding, the compound 1 seems to be of higher importance as a new phenylalanine-based lead candidate due to its confirmed promise in in vitro and in vivo anticonvulsant activity.
Collapse
|
10
|
Burgess J, Ferdousi M, Gosal D, Boon C, Matsumoto K, Marshall A, Mak T, Marshall A, Frank B, Malik RA, Alam U. Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment. Oncol Ther 2021; 9:385-450. [PMID: 34655433 PMCID: PMC8593126 DOI: 10.1007/s40487-021-00168-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This review provides an update on the current clinical, epidemiological and pathophysiological evidence alongside the diagnostic, prevention and treatment approach to chemotherapy-induced peripheral neuropathy (CIPN). FINDINGS The incidence of cancer and long-term survival after treatment is increasing. CIPN affects sensory, motor and autonomic nerves and is one of the most common adverse events caused by chemotherapeutic agents, which in severe cases leads to dose reduction or treatment cessation, with increased mortality. The primary classes of chemotherapeutic agents associated with CIPN are platinum-based drugs, taxanes, vinca alkaloids, bortezomib and thalidomide. Platinum agents are the most neurotoxic, with oxaliplatin causing the highest prevalence of CIPN. CIPN can progress from acute to chronic, may deteriorate even after treatment cessation (a phenomenon known as coasting) or only partially attenuate. Different chemotherapeutic agents share both similarities and key differences in pathophysiology and clinical presentation. The diagnosis of CIPN relies heavily on identifying symptoms, with limited objective diagnostic approaches targeting the class of affected nerve fibres. Studies have consistently failed to identify at-risk cohorts, and there are no proven strategies or interventions to prevent or limit the development of CIPN. Furthermore, multiple treatments developed to relieve symptoms and to modify the underlying disease in CIPN have failed. IMPLICATIONS The increasing prevalence of CIPN demands an objective approach to identify at-risk patients in order to prevent or limit progression and effectively alleviate the symptoms associated with CIPN. An evidence base for novel targets and both pharmacological and non-pharmacological treatments is beginning to emerge and has been recognised recently in publications by the American Society of Clinical Oncology and analgesic trial design expert groups such as ACTTION.
Collapse
Affiliation(s)
- Jamie Burgess
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| | - Maryam Ferdousi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, NIHR/Wellcome Trust Clinical Research Facility, Manchester, UK
| | - David Gosal
- Department of Neurology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Cheng Boon
- Department of Clinical Oncology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | - Kohei Matsumoto
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Anne Marshall
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK
| | - Tony Mak
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Andrew Marshall
- Faculty of Health and Life Sciences, Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- Faculty of Health and Life Sciences, The Pain Research Institute, University of Liverpool, Liverpool, L9 7AL, UK
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Bernhard Frank
- Department of Pain Medicine, The Walton Centre, Liverpool, L9 7LJ, UK
| | - Rayaz A Malik
- Research Division, Qatar Foundation, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, The Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool University Hospital NHS Trust, Liverpool, UK.
- Division of Endocrinology, Diabetes and Gastroenterology, University of Manchester, Manchester, M13 9PT, UK.
- Clinical Sciences Centre, Aintree University Hospital, Longmoor Lane, Liverpool, L9 7AL, UK.
| |
Collapse
|
11
|
Saxena P, Selvaraj K, Khare SK, Chaudhary N. Superoxide dismutase as multipotent therapeutic antioxidant enzyme: Role in human diseases. Biotechnol Lett 2021; 44:1-22. [PMID: 34734354 DOI: 10.1007/s10529-021-03200-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) is consistently recognized as a threat to living organisms, especially for human beings. For proper working of cellular signaling, functioning, and survival, a strict and balanced level of ROS is necessary. Superoxide dismutase (SOD); a group of metalloenzymes provides an important antioxidant defense mechanism, required to preserve the level of ROS in the body. The enzyme reveals the therapeutic potential against various diseases due to a deficiency in the ROS level. The review illustrates the numerous clinical aspects of SOD in various physiological and pathological conditions such as cancer, diabetes, arthritis, cardiovascular, neurodegenerative diseases, etc., with the mechanism of action. Despite limitations, the SOD enzyme has proved as a powerful tool against diseases, and various forms of conjugates and mimetics have been developed and reported to make it more efficient. Extensive studies need in this direction for use of natural SOD-based therapeutics for the prevention and cure of diseases.
Collapse
Affiliation(s)
- Priyanka Saxena
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Kanagarethinam Selvaraj
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Sunil Kumar Khare
- R&D & Institute Chair Professor of Biochemistry, Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Nidhee Chaudhary
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
12
|
Cauli O. Oxidative Stress and Cognitive Alterations Induced by Cancer Chemotherapy Drugs: A Scoping Review. Antioxidants (Basel) 2021; 10:1116. [PMID: 34356349 PMCID: PMC8301189 DOI: 10.3390/antiox10071116] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
Cognitive impairment is one of the most deleterious effects of chemotherapy treatment in cancer patients, and this problem sometimes remains even after chemotherapy ends. Common classes of chemotherapy-based regimens such as anthracyclines, taxanes, and platinum derivatives can induce both oxidative stress in the blood and in the brain, and these effects can be reproduced in neuronal and glia cell cultures. In rodent models, both the acute and repeated administration of doxorubicin or adriamycin (anthracyclines) or cisplatin impairs cognitive functions, as shown by their diminished performance in different learning and memory behavioural tasks. Administration of compounds with strong antioxidant effects such as N-acetylcysteine, gamma-glutamyl cysteine ethyl ester, polydatin, caffeic acid phenethyl ester, and 2-mercaptoethane sulfonate sodium (MESNA) counteract both oxidative stress and cognitive alterations induced by chemotherapeutic drugs. These antioxidant molecules provide the scientific basis to design clinical trials in patients with the aim of reducing the oxidative stress and cognitive alterations, among other probable central nervous system changes, elicited by chemotherapy in cancer patients. In particular, N-acetylcysteine and MESNA are currently used in clinical settings and are therefore attracting scientific attention.
Collapse
Affiliation(s)
- Omar Cauli
- Frailty and Cognitive Impairment Group (FROG), University of Valencia, 46010 Valencia, Spain; ; Tel.: +34-96-386-41-82; Fax: +34-96-398-30-35
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
13
|
Micheli L, Rajagopalan R, Lucarini E, Toti A, Parisio C, Carrino D, Pacini A, Ghelardini C, Rajagopalan P, Di Cesare Mannelli L. Pain Relieving and Neuroprotective Effects of Non-opioid Compound, DDD-028, in the Rat Model of Paclitaxel-Induced Neuropathy. Neurotherapeutics 2021; 18:2008-2020. [PMID: 34312766 PMCID: PMC8608957 DOI: 10.1007/s13311-021-01069-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 02/04/2023] Open
Abstract
Chemotherapy-induced neuropathy (CIN) is a major dose-limiting side effect of anticancer therapy that can compel therapy discontinuation. Inadequate analgesic efficacy of current pharmacological approaches requires the identification of innovative therapeutics and, hence, the purpose of this study is to conduct a preclinical evaluation of the efficacy of DDD-028, a versatile pentacyclic pyridoindole derivative, against paclitaxel-induced neuropathic pain. In two separate experiments, DDD-028 was administered per os acutely (1-25 mg kg-1) or repeatedly (10 mg kg-1) in paclitaxel-treated rats. The response to mechanical noxious stimulus (paw pressure) as well as to non-noxious mechanical (von Frey) and thermal (cold plate) stimuli was investigated. Acute administration of DDD-028 induced a dose-dependent anti-neuropathic pain effect in all tests performed. Further, repeated daily treatment for 18 consecutive days (starting the first day of paclitaxel administration) significantly reduced the development of pain over time without the development of tolerance to the anti-hyperalgesic effect. Ex vivo analysis showed that DDD-028 was able to reduce oxidative damage of dorsal root ganglia as evidenced by the increase in the level of carbonylated proteins and the decrease in catalase activity. In the lumbar spinal cord, periaqueductal gray matter, thalamus, and somatosensory cortex 1, DDD-28 significantly prevented the activation of microglia and astrocytes. The pharmacodynamic study revealed that the pain-relieving effects of DDD-028 were fully blocked by both the non-selective nicotinic receptor (nAChR) antagonist mecamylamine and by the selective α7 nAChR antagonist methyllycaconitine. In conclusion, DDD-028 was active in reducing paclitaxel-induced neuropathic pain after single or repeated administrations without tolerance development and displaying a double symptomatic and neuroprotective profile. DDD-028 could represent a valuable candidate for the treatment of CIN.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Psychology, Drug Research and Child HealthViale Pieraccini 6, 50139, Florence, Italy
| | | | - Elena Lucarini
- Department of Neuroscience, NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Psychology, Drug Research and Child HealthViale Pieraccini 6, 50139, Florence, Italy
| | - Alessandra Toti
- Department of Neuroscience, NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Psychology, Drug Research and Child HealthViale Pieraccini 6, 50139, Florence, Italy
| | - Carmen Parisio
- Department of Neuroscience, NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Psychology, Drug Research and Child HealthViale Pieraccini 6, 50139, Florence, Italy
| | - Donatello Carrino
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy and Histology Section, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Psychology, Drug Research and Child HealthViale Pieraccini 6, 50139, Florence, Italy
| | | | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Psychology, Drug Research and Child HealthViale Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
14
|
Doyle TM, Salvemini D. Mini-Review: Mitochondrial dysfunction and chemotherapy-induced neuropathic pain. Neurosci Lett 2021; 760:136087. [PMID: 34182057 DOI: 10.1016/j.neulet.2021.136087] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a somatosensory axonopathy in cancer patients receiving any of a variety of widely-use antitumor agents. CIPN can lead to long-lasting neuropathic pain that limits the dose or length of otherwise life-saving cancer therapy. Accumulating evidence over the last two decades indicates that many chemotherapeutic agents cause mitochondrial injury in the peripheral sensory nerves by disrupting mitochondrial structure and bioenergetics, increasing nitro-oxidative stress and altering mitochondrial transport, fission, fusion and mitophagy. The accumulation of abnormal and dysfunctional mitochondria in sensory neurons are linked to axonal growth defects resulting in the loss of intraepidermal nerve fibers in the hands and feet, increased spontaneous discharge and the sensitization of peripheral sensory neurons that provoke and promote changes in the central nervous system that establish a chronic neuropathic pain state. This has led to the propose mitotoxicity theory of CIPN. Strategies that improve mitochondrial function have shown success in preventing and reversing CIPN in pre-clinical animal models and have begun to show some progress toward translation to the clinic. In this review, we will review the evidence for, the causes and effects of and current strategies to target mitochondrial dysfunction in CIPN.
Collapse
Affiliation(s)
- Timothy M Doyle
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO 63104, USA; Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO 63104, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO 63104, USA; Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO 63104, USA.
| |
Collapse
|
15
|
Branca JJV, Carrino D, Gulisano M, Ghelardini C, Di Cesare Mannelli L, Pacini A. Oxaliplatin-Induced Neuropathy: Genetic and Epigenetic Profile to Better Understand How to Ameliorate This Side Effect. Front Mol Biosci 2021; 8:643824. [PMID: 34026827 PMCID: PMC8138476 DOI: 10.3389/fmolb.2021.643824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
In the most recent decades, oxaliplatin has been used as a chemotherapeutic agent for colorectal cancer and other malignancies as well. Oxaliplatin interferes with tumor growth predominantly exerting its action in DNA synthesis inhibition by the formation of DNA-platinum adducts that, in turn, leads to cancer cell death. On the other hand, unfortunately, this interaction leads to a plethora of systemic side effects, including those affecting the peripheral and central nervous system. Oxaliplatin therapy has been associated with acute and chronic neuropathic pain that induces physicians to reduce the dose of medication or discontinue treatment. Recently, the capability of oxaliplatin to alter the genetic and epigenetic profiles of the nervous cells has been documented, and the understanding of gene expression and transcriptional changes may help to find new putative treatments for neuropathy. The present article is aimed to review the effects of oxaliplatin on genetic and epigenetic mechanisms to better understand how to ameliorate neuropathic pain in order to enhance the anti-cancer potential and improve patients’ quality of life.
Collapse
Affiliation(s)
- Jacopo Junio Valerio Branca
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Donatello Carrino
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Massimo Gulisano
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Carla Ghelardini
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Lorenzo Di Cesare Mannelli
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Firenze, Firenze, Italy
| | - Alessandra Pacini
- Histology and Anatomy Section, Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| |
Collapse
|
16
|
Chen M, Song X, Jiang J, Xing L, Wang P. Hepatoprotective effect of galangin on carbon tetrachloride-induced hepatotoxicity via the LKB1/AMPK pathway. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To investigate the protective effects of galangin on liver toxicity induced by carbon tetrachloride (CCl4) in mice. Mouse hepatotoxicity model was established by intraperitoneal injection (i.p.) of 10 ml/kg body weight CCl4 that diluted with corn oil to a proportion of 1:500 on Kunming mice. The mice were randomly divided into five groups named control group, model group, and 1, 5, and 10 mg/kg galangin group. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed by ELISA. Liver histopathological examination was observed via optical microscopy. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), and glutathion (GSSG) were analyzed to assess oxidative stress. Finally, western blot assay was carried out to analyse the expression levels of total AMP-activated protein kinase (AMPK), phospho-AMPK (p-AMPK), total liver kinase B1 (LKB1), and phospho-LKB1 (p-LKB1). Compared with the control group, in the model group, the levels of AST, ALT, MDA, and GSSG increased significantly ( p < 0.01); the activity of SOD and GSH decreased significantly ( p < 0.01); and the histopathological examination revealed liver necrosis. However, treatment with galangin (5 and 10 mg/kg) significantly reversed these CCl4-induced liver damage indicators. Furthermore, treatment with galangin (10 mg/kg) significantly increased the p-AMPK and p-LKB1 expression levels ( p < 0.01). This study supports the hepatoprotective effect of galangin against hepatotoxicity, perhaps occurring mainly through the LKB1/AMPK-mediated pathway.
Collapse
Affiliation(s)
- Meng Chen
- Department of Internal Medicine, Yantai Yuhuangding Hospital of Laishan branch, Yantai, Shandong, China
| | - Xinyan Song
- Pharmacy Dispensary, Yantai Yuhuangding Hospital of Laishan branch, Yantai, Shandong, China
| | - Jifang Jiang
- Department of Pharmacy, Yantai Yuhuangding Hospital of Laishan branch, Yantai, Shandong Province, China
| | - Lei Xing
- Department of Internal Medicine, Yantai Yuhuangding Hospital of Laishan branch, Yantai, Shandong, China
| | - Pengfei Wang
- Department of Internal Medicine, Yantai Yuhuangding Hospital of Laishan branch, Yantai, Shandong, China
| |
Collapse
|
17
|
Azizian H, Forooghian S, Amanlou A, Pérez-Sánchez H, Amanlou M. Phenothiazine as novel human superoxide dismutase modulators: discovery, optimization, and biological evaluation. J Biomol Struct Dyn 2021; 40:7070-7083. [PMID: 33663349 DOI: 10.1080/07391102.2021.1893819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Superoxide dismutases (SODs) are regarded as important antioxidants for protecting cells against damage arising from oxidative stress. Much research is focused on finding new chemicals with an ability to boost human SOD activity. In the research described herein a structure-based approach was used to identify new human Cu-Zn superoxide dismutase (SOD1) modulators based on previously reported plasmodium falciparum iron SOD inhibitors using induced fit docking and molecular dynamic (MD) protocols. The compound with the highest docking binding energy was selected for further structure simplification followed by structural similarity and MD in order to find a new activator/inhibitor scaffold of the SOD1 enzyme. According to the docking survey of the mentioned series, 1,4-bis(3-(1,4,8-trichloro-10Hphenothiazin-10-yl) propyl) piperazine (DS88) was the top scoring compound interacting with the SOD1 active site channel. Following structure simplification and similarity search, the most promising scaffold which is closely related to the phenothiazine antipsychotic class, was identified. Compared with the normal blood SOD1 activity, the percent of O2 production increased with trifluoperazine, while it decreased with the chlorpromazine. The molecular dynamic investigation shows that trifluoperazine exerts its SOD1 activating effect by stabilizing electrostatic loop while chlorpromazine employs SOD1 inhibition activity through repositioning of the electrostatic loop and increasing its distance from the catalytic metal site which diminished substrate specificity and catalytic activity of the SOD1 enzyme. The results identified the preferred region, orientation, and types of interaction for each activator or inhibitor compound.
Collapse
Affiliation(s)
- Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran Iran
| | - Simin Forooghian
- Faculty of Basic Science, Department of Biology, Tehran Payame Noor University, Tehran, Iran
| | - Arash Amanlou
- Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - Massoud Amanlou
- Faculty of Pharmacy, Department of Medicinal Chemistry, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021; 22:1393. [PMID: 33573316 PMCID: PMC7866815 DOI: 10.3390/ijms22031393&set/a 813269399+839900579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
|
19
|
Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021. [DOI: 10.3390/ijms22031393
expr 945913974 + 948698388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
|
20
|
Kawashiri T, Mine K, Kobayashi D, Inoue M, Ushio S, Uchida M, Egashira N, Shimazoe T. Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence. Int J Mol Sci 2021; 22:ijms22031393. [PMID: 33573316 PMCID: PMC7866815 DOI: 10.3390/ijms22031393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research.
Collapse
Affiliation(s)
- Takehiro Kawashiri
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
- Correspondence: ; Tel.: +81-92-642-6573
| | - Keisuke Mine
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Daisuke Kobayashi
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Mizuki Inoue
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| | - Soichiro Ushio
- Department of Pharmacy, Okayama University Hospital, Okayama 700-8558, Japan;
| | - Mayako Uchida
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan;
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan;
| | - Takao Shimazoe
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (K.M.); (D.K.); (M.I.); (T.S.)
| |
Collapse
|
21
|
Nagayasu M, Imanaka S, Kimura M, Maruyama S, Kobayashi H. Nonhormonal Treatment for Endometriosis Focusing on Redox Imbalance. Gynecol Obstet Invest 2021; 86:1-12. [PMID: 33395684 DOI: 10.1159/000512628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022]
Abstract
The aim of this review is to investigate the oxidant/antioxidant status and its regulatory mechanisms in patients with endometriosis and to summarize the antioxidant therapy as an alternative to hormonal therapy for endometriosis. Each keyword alone or in combination was used to search from PubMed and Embase by applying the filters of the title and the publication years between January 2000 and March 2020. Endometriosis is a chronic inflammatory disease characterized by repeated episodes of hemorrhage. Methemoglobin in repeated hemorrhage produces large amounts of superoxide anion via the autoxidation of hemoglobin. Excessive free-radical production causes redox imbalance, leading to inadequate antioxidant defenses and damage to endometrial cells, but may contribute to endometrial cell growth and survival through activation of various signaling pathways. In addition, to overcome excessive oxidative stress, estradiol participates in the induction of antioxidants such as superoxide dismutase in mitochondria. Several antioxidants that suppress free radicals may be effective in endometriosis-related pain. We searched for 23 compounds and natural substances that could reduce the pain caused by superoxide/reactive oxygen species in basic research and animal models. Next, we built a list of 16 drugs that were suggested to be effective against endometriosis other than hormone therapy in preclinical studies and clinical trials. Of the 23 and 16 drugs, 4 overlapping drugs could be potential candidates for clinically reducing endometriosis-related pain caused by superoxide anion/reactive oxygen species. These drugs include polyphenols (resveratrol and polydatin), dopamine agonists (cabergoline), and statins (simvastatin). However, no randomized controlled trials have evaluated the efficacy of these drugs. In conclusion, this review summarizes the following 2 points: superoxide anion generation by methemoglobin is enhanced in endometriosis, resulting in redox imbalance; and some compounds and natural substances that can suppress free radicals may be effective in endometriosis-related pain. Further randomized clinical trials based on larger series are mandatory to confirm the promising role of antioxidants in the nonhormonal management of endometriosis.
Collapse
Affiliation(s)
- Mika Nagayasu
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan.,Ms.Clinic MayOne, Kashihara, Japan
| | - Mai Kimura
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Sachiyo Maruyama
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan, .,Ms.Clinic MayOne, Kashihara, Japan,
| |
Collapse
|
22
|
The active second-generation proteasome inhibitor oprozomib reverts the oxaliplatin-induced neuropathy symptoms. Biochem Pharmacol 2020; 182:114255. [PMID: 33010214 DOI: 10.1016/j.bcp.2020.114255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Oxaliplatin-induced neuropathy (OXAIN) is a major adverse effect of this antineoplastic drug, widely used in the treatment of colorectal cancer. Although its molecular mechanisms remain poorly understood, recent evidence suggest that maladaptive neuroplasticity and oxidative stress may participate to the development of this neuropathy. Given the role played on protein remodeling by ubiquitin-proteasome system (UPS) in response to oxidative stress and in neuropathic pain, we investigated whether oxaliplatin might cause alterations in the UPS-mediated degradation pathway, in order to identify new pharmacological tools useful in OXAIN. In a rat model of OXAIN (2.4 mg kg-1 i.p., daily for 10 days), a significant increase in chymotrypsin-(β5) like activity of the constitutive proteasome 26S was observed in the thalamus (TH) and somatosensory cortex (SSCx). In addition, the selective up-regulation of β5 and LMP7 (β5i) subunit gene expression was assessed in the SSCx. Furthermore, this study revealed that oprozomib, a selective β5 subunit proteasome inhibitor, is able to normalize the spinal prodynorphin gene expression upregulation induced by oxaliplatin, as well as to revert mechanical allodynia and thermal hyperalgesia observed in oxaliplatin-treated rats. These results underline the relevant role of UPS in the OXAIN and suggest new pharmacological targets to counteract this severe adverse effect. This preclinical study reveals the involvement of the proteasome in the oxaliplatin-induced neuropathy and adds useful information to better understand the molecular mechanism underlying this pain condition. Moreover, although further evidence is required, these findings suggest that oprozomib could be a therapeutic option to counteract chemotherapy-induced neuropathy.
Collapse
|
23
|
Kawashiri T, Kobayashi D, Egashira N, Tsuchiya T, Shimazoe T. Oral administration of Cystine and Theanine ameliorates oxaliplatin-induced chronic peripheral neuropathy in rodents. Sci Rep 2020; 10:12665. [PMID: 32728157 PMCID: PMC7391686 DOI: 10.1038/s41598-020-69674-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/17/2020] [Indexed: 01/19/2023] Open
Abstract
Oxaliplatin frequently causes severe peripheral neuropathy as a dose-limiting toxicity. However, this toxicity lacks a strategy for prevention. Cystine/Theanine is a supplement, which includes precursors for the biosynthesis of glutathione. In this study, we investigated the effects of Cystine/Theanine on oxaliplatin-induced peripheral neuropathy using an in vivo model. Repeated injection of oxaliplatin (4 mg/kg intraperitoneally twice a week for 2 weeks) caused mechanical allodynia, cold hyperalgesia and axonal degeneration of the sciatic nerve in rats. Mechanical allodynia and axonal degeneration, but not cold hyperalgesia, were ameliorated by daily co-administration of Cystine [200 mg/kg orally (p.o.)] and Theanine (80 mg/kg p.o.). Moreover, co-administration of Cystine and Theanine to rats significantly increased the glutathione level in the sciatic nerve compared with the oxaliplatin group. Furthermore, Cystine and Theanine did not attenuate the tumour cytotoxicity of oxaliplatin in C-26 tumour cell-bearing mice. These findings suggest that Cystine and Theanine may be beneficial for preventing oxaliplatin-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Takehiro Kawashiri
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Daisuke Kobayashi
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Takashi Tsuchiya
- Department of Surgery, Sendai City Medical Center, Sendai City, Miyagi, 983-0824, Japan
| | - Takao Shimazoe
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
24
|
Shigematsu N, Kawashiri T, Kobayashi D, Shimizu S, Mine K, Hiromoto S, Uchida M, Egashira N, Shimazoe T. Neuroprotective effect of alogliptin on oxaliplatin-induced peripheral neuropathy in vivo and in vitro. Sci Rep 2020; 10:6734. [PMID: 32317735 PMCID: PMC7174301 DOI: 10.1038/s41598-020-62738-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
Oxaliplatin is a platinum-based antineoplastic drug commonly used for treating colorectal, gastric, and pancreatic cancer. However, it frequently causes peripheral neuropathy as dose-limiting toxicity and is lacking a strategy for prevention. Alogliptin, a dipeptidyl peptidase 4 (DPP-4) inhibitor, is an oral antidiabetic drug. Previous studies have shown that DPP-4 inhibitors have pleiotropic effects, including neuroprotection. In this study, we investigated the effects of alogliptin on oxaliplatin-induced peripheral neuropathy using in vitro and in vivo models. In PC12 cells, alogliptin attenuated neurite disorders induced by oxaliplatin and cisplatin. The repeated injection of oxaliplatin caused mechanical allodynia and axonal degeneration of the sciatic nerve in rats. These neuropathies were ameliorated by co-administration of alogliptin. Moreover, alogliptin did not attenuate tumor cytotoxicity of oxaliplatin in the cultured colon, gastric, or pancreatic cancer cell lines and tumor-bearing mice. These findings suggest that alogliptin may be beneficial for preventing oxaliplatin-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Nao Shigematsu
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takehiro Kawashiri
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Daisuke Kobayashi
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shiori Shimizu
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keisuke Mine
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shiori Hiromoto
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mayako Uchida
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Osaka, 569-1094, Japan
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Takao Shimazoe
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
25
|
Trecarichi A, Flatters SJL. Mitochondrial dysfunction in the pathogenesis of chemotherapy-induced peripheral neuropathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:83-126. [PMID: 31208528 DOI: 10.1016/bs.irn.2019.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several first-line chemotherapeutic agents, including taxanes, platinum agents and proteasome inhibitors, are associated with the dose-limiting side effect of chemotherapy-induced peripheral neuropathy (CIPN). CIPN predominantly manifests as sensory symptoms, which are likely due to drug accumulation within peripheral nervous tissues rather than the central nervous system. No treatment is currently available to prevent or reverse CIPN. The causal mechanisms underlying CIPN are not yet fully understood. Mitochondrial dysfunction has emerged as a major factor contributing to the development and maintenance of CIPN. This chapter will provide an overview of both clinical and preclinical data supporting this hypothesis. We will review the studies reporting the nature of mitochondrial dysfunction evoked by chemotherapy in terms of changes in mitochondrial morphology, bioenergetics and reactive oxygen species (ROS) generation. Furthermore, we will discuss the in vivo effects of pharmacological interventions that counteract chemotherapy-evoked mitochondrial dysfunction and ameliorate pain-like behavior.
Collapse
Affiliation(s)
- Annalisa Trecarichi
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sarah J L Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
26
|
Coppi E, Cherchi F, Fusco I, Failli P, Vona A, Dettori I, Gaviano L, Lucarini E, Jacobson KA, Tosh DK, Salvemini D, Ghelardini C, Pedata F, Di Cesare Mannelli L, Pugliese AM. Adenosine A3 receptor activation inhibits pronociceptive N-type Ca2+ currents and cell excitability in dorsal root ganglion neurons. Pain 2019; 160:1103-1118. [PMID: 31008816 PMCID: PMC6669900 DOI: 10.1097/j.pain.0000000000001488] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, studies have focused on the antihyperalgesic activity of the A3 adenosine receptor (A3AR) in several chronic pain models, but the cellular and molecular basis of this effect is still unknown. Here, we investigated the expression and functional effects of A3AR on the excitability of small- to medium-sized, capsaicin-sensitive, dorsal root ganglion (DRG) neurons isolated from 3- to 4-week-old rats. Real-time quantitative polymerase chain reaction experiments and immunofluorescence analysis revealed A3AR expression in DRG neurons. Patch-clamp experiments demonstrated that 2 distinct A3AR agonists, Cl-IB-MECA and the highly selective MRS5980, inhibited Ca-activated K (KCa) currents evoked by a voltage-ramp protocol. This effect was dependent on a reduction in Ca influx via N-type voltage-dependent Ca channels, as Cl-IB-MECA-induced inhibition was sensitive to the N-type blocker PD173212 but not to the L-type blocker, lacidipine. The endogenous agonist adenosine also reduced N-type Ca currents, and its effect was inhibited by 56% in the presence of A3AR antagonist MRS1523, demonstrating that the majority of adenosine's effect is mediated by this receptor subtype. Current-clamp recordings demonstrated that neuronal firing of rat DRG neurons was also significantly reduced by A3AR activation in a MRS1523-sensitive but PD173212-insensitive manner. Intracellular Ca measurements confirmed the inhibitory role of A3AR on DRG neuronal firing. We conclude that pain-relieving effects observed on A3AR activation could be mediated through N-type Ca channel block and action potential inhibition as independent mechanisms in isolated rat DRG neurons. These findings support A3AR-based therapy as a viable approach to alleviate pain in different pathologies.
Collapse
Affiliation(s)
- Elisabetta Coppi
- Division of Pharmacology and Toxicology, Department of NEUROFARBA, University of Florence, Italy
| | - Federica Cherchi
- Division of Pharmacology and Toxicology, Department of NEUROFARBA, University of Florence, Italy
| | - Irene Fusco
- Division of Pharmacology and Toxicology, Department of NEUROFARBA, University of Florence, Italy
| | - Paola Failli
- Division of Pharmacology and Toxicology, Department of NEUROFARBA, University of Florence, Italy
| | - Alessia Vona
- Division of Pharmacology and Toxicology, Department of NEUROFARBA, University of Florence, Italy
| | - Ilaria Dettori
- Division of Pharmacology and Toxicology, Department of NEUROFARBA, University of Florence, Italy
| | - Lisa Gaviano
- Division of Pharmacology and Toxicology, Department of NEUROFARBA, University of Florence, Italy
| | - Elena Lucarini
- Division of Pharmacology and Toxicology, Department of NEUROFARBA, University of Florence, Italy
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Carla Ghelardini
- Division of Pharmacology and Toxicology, Department of NEUROFARBA, University of Florence, Italy
| | - Felicita Pedata
- Division of Pharmacology and Toxicology, Department of NEUROFARBA, University of Florence, Italy
| | | | - Anna Maria Pugliese
- Division of Pharmacology and Toxicology, Department of NEUROFARBA, University of Florence, Italy
| |
Collapse
|
27
|
Flatters SJL, Dougherty PM, Colvin LA. Clinical and preclinical perspectives on Chemotherapy-Induced Peripheral Neuropathy (CIPN): a narrative review. Br J Anaesth 2019; 119:737-749. [PMID: 29121279 DOI: 10.1093/bja/aex229] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
This review provides an update on the current clinical and preclinical understanding of chemotherapy induced peripheral neuropathy (CIPN). The overview of the clinical syndrome includes a review of its assessment, diagnosis and treatment. CIPN is caused by several widely-used chemotherapeutics including paclitaxel, oxaliplatin, bortezomib. Severe CIPN may require dose reduction, or cessation, of chemotherapy, impacting on patient survival. While CIPN often resolves after chemotherapy, around 30% of patients will have persistent problems, impacting on function and quality of life. Early assessment and diagnosis is important, and we discuss tools developed for this purpose. There are no effective strategies to prevent CIPN, with limited evidence of effective drugs for treating established CIPN. Duloxetine has moderate evidence, with extrapolation from other neuropathic pain states generally being used to direct treatment options for CIPN. The preclinical perspective includes a discussion on the development of clinically-relevant rodent models of CIPN and some of the potentially modifiable mechanisms that have been identified using these models. We focus on the role of mitochondrial dysfunction, oxidative stress, immune cells and changes in ion channels from summary of the latest literature in these areas. Many causal mechanisms of CIPN occur simultaneously and/or can reinforce each other. Thus, combination therapies may well be required for most effective management. More effective treatment of CIPN will require closer links between oncology and pain management clinical teams to ensure CIPN patients are effectively monitored. Furthermore, continued close collaboration between clinical and preclinical research will facilitate the development of novel treatments for CIPN.
Collapse
Affiliation(s)
- S J L Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - P M Dougherty
- Division of Anaesthesia, Critical Care and Pain Medicine, Department of Pain Medicine Research, The University of Texas M.D. Anderson Cancer Centre, Houston, TX, USA
| | - L A Colvin
- Department of Anaesthesia, Critical Care & Pain Medicine, University of Edinburgh, Western General Hospital, Crewe Rd, Edinburgh EH4 2XU, UK
| |
Collapse
|
28
|
Xiao T, Zhang L, Huang Y, Shi Y, Wang J, Ji Q, Ye J, Lin Y, Liu H. Sestrin2 increases in aortas and plasma from aortic dissection patients and alleviates angiotensin II-induced smooth muscle cell apoptosis via the Nrf2 pathway. Life Sci 2018; 218:132-138. [PMID: 30594664 DOI: 10.1016/j.lfs.2018.12.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND Previous studies have demonstrated that oxidative stress is closely related to aortic dissection (AD). Sestrin2 (Sesn2) is an important antioxidant protein, and this study aimed to investigate whether Sesn2 participates in AD and the possible mechanisms. METHODS Sesn2 expression was detected in aortas collected from AD patients and normal donors. In addition, blood samples were collected from AD patients and non-AD (NAD) patients, and the plasma Sesn2 levels were measured. Furthermore, the effects of Sesn2 on angiotensin (Ang) II-induced smooth muscle cell (SMC) apoptosis were investigated in vitro. RESULTS Compared with the aortas from normal donors, aortas from AD patients had significantly increased Sesn2. Sesn2 was mainly secreted by macrophages, and low levels were secreted by CD4+ T lymphocytes, but not SMCs. Plasma Sesn2 levels were also increased in AD patients compared with NAD patients. Sesn2 levels were negatively corrected with superoxide dismutase (SOD) levels but positively corrected with malondialdehyde (MDA) levels in AD patients. In co-cultures of macrophages and SMCs, Sesn2 overexpression in macrophages significantly reduced Ang II-induced SMC apoptosis, and this effect could be reversed by Nrf2 silencing. CONCLUSIONS Sesn2 is increased in both aortas and plasma from AD patients. Sesn2 may alleviate Ang II-induced SMC apoptosis and participate in AD via the Nrf2 pathway. Sesn2 may be a new target in the treatment and prevention of AD.
Collapse
Affiliation(s)
- Ting Xiao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, Guangdong Province 518110, China
| | - Le Zhang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, Guangdong Province 518110, China
| | - Ying Huang
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Ying Shi
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Jing Wang
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Qingwei Ji
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China; Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yingzhong Lin
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| | - Hongtao Liu
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, Guangdong Province 518110, China.
| |
Collapse
|
29
|
Hu Y, Wang B, Yang J, Liu T, Sun J, Wang X. Synthesis and biological evaluation of 3-arylcoumarin derivatives as potential anti-diabetic agents. J Enzyme Inhib Med Chem 2018; 34:15-30. [PMID: 30362362 PMCID: PMC6211316 DOI: 10.1080/14756366.2018.1518958] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A variety of substituted 3-arylcoumarin derivatives were synthesised through microwave radiation heating. The method has characteristics of environmental friendliness, economy, simple separation, and purification process, less by-products and high reaction yield. Those 3-arylcoumarin derivatives were screened for antioxidant, α-glucosidase inhibitory and advanced glycation end-products (AGEs) formation inhibitory. Most compounds exhibited significant antioxidant and AGEs formation inhibitory activities. Anti-diabetic activity studies showed that compounds 11 and 17 were equipotent to the standard drug glibenclamide in vivo. According to the experimental results, the target compound 35 can be used as a lead compound for the development of new anti-diabetic drugs. The whole experiment showed that anti-diabetic activity is prevalent in 3-arylcoumarins, which added a new natural skeleton to the development of anti-diabetic active drugs.
Collapse
Affiliation(s)
- Yuheng Hu
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , Shandong , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , Shandong , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , Shandong , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , Shandong , China
| | - Bing Wang
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , Shandong , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , Shandong , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , Shandong , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , Shandong , China
| | - Jie Yang
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , Shandong , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , Shandong , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , Shandong , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , Shandong , China
| | - Teng Liu
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , Shandong , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , Shandong , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , Shandong , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , Shandong , China
| | - Jie Sun
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , Shandong , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , Shandong , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , Shandong , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , Shandong , China
| | - Xiaojing Wang
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , Shandong , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , Shandong , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , Shandong , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , Shandong , China
| |
Collapse
|
30
|
Yang HK, Son WS, Lim KS, Kim GH, Lim EJ, Gadhe CG, Lee JY, Jeong KS, Lim SM, Pae AN. Synthesis and biological evaluation of pyrrolidine-based T-type calcium channel inhibitors for the treatment of neuropathic pain. J Enzyme Inhib Med Chem 2018; 33:1460-1471. [PMID: 30231778 PMCID: PMC6151954 DOI: 10.1080/14756366.2018.1513926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The treatment of neuropathic pain is one of the urgent unmet medical needs and T-type calcium channels are promising therapeutic targets for neuropathic pain. Several potent T-type channel inhibitors showed promising in vivo efficacy in neuropathic pain animal models and are being investigated in clinical trials. Herein we report development of novel pyrrolidine-based T-type calcium channel inhibitors by pharmacophore mapping and structural hybridisation followed by evaluation of their Cav3.1 and Cav3.2 channel inhibitory activities. Among potent inhibitors against both Cav3.1 and Cav3.2 channels, a promising compound 20n based on in vitro ADME properties displayed satisfactory plasma and brain exposure in rats according to in vivo pharmacokinetic studies. We further demonstrated that 20n effectively improved the symptoms of neuropathic pain in both SNL and STZ neuropathic pain animal models, suggesting modulation of T-type calcium channels can be a promising therapeutic strategy for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Hak Kyun Yang
- a Convergence Research Center for Diagnosis, Treatment and Care System of Dementia , Korea Institute of Science and Technology , Seoul , Republic of Korea
| | - Woo Seung Son
- a Convergence Research Center for Diagnosis, Treatment and Care System of Dementia , Korea Institute of Science and Technology , Seoul , Republic of Korea.,b Department of Chemistry , Yonsei University , Seoul , Republic of Korea
| | - Keon Seung Lim
- c 1ST Biotherapeutics Inc. , Seongnam , Gyeonggi-do , Republic of Korea
| | - Gun Hee Kim
- d Research Institute for Basic Sciences and Department of Chemistry, College of Sciences , Kyung Hee University , Seoul , Republic of Korea
| | - Eun Jeong Lim
- a Convergence Research Center for Diagnosis, Treatment and Care System of Dementia , Korea Institute of Science and Technology , Seoul , Republic of Korea
| | - Changdev G Gadhe
- a Convergence Research Center for Diagnosis, Treatment and Care System of Dementia , Korea Institute of Science and Technology , Seoul , Republic of Korea
| | - Jae Yeol Lee
- d Research Institute for Basic Sciences and Department of Chemistry, College of Sciences , Kyung Hee University , Seoul , Republic of Korea
| | - Kyu-Sung Jeong
- b Department of Chemistry , Yonsei University , Seoul , Republic of Korea
| | - Sang Min Lim
- a Convergence Research Center for Diagnosis, Treatment and Care System of Dementia , Korea Institute of Science and Technology , Seoul , Republic of Korea.,e Division of Bio-Medical Science and Technology , Korea University of Science and Technology , Daejon , Republic of Korea
| | - Ae Nim Pae
- a Convergence Research Center for Diagnosis, Treatment and Care System of Dementia , Korea Institute of Science and Technology , Seoul , Republic of Korea.,f Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology , Seoul , Republic of Korea
| |
Collapse
|
31
|
Toyama S, Shimoyama N, Szeto HH, Schiller PW, Shimoyama M. Protective Effect of a Mitochondria-Targeted Peptide against the Development of Chemotherapy-Induced Peripheral Neuropathy in Mice. ACS Chem Neurosci 2018; 9:1566-1571. [PMID: 29660270 DOI: 10.1021/acschemneuro.8b00013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Several chemotherapeutic agents used for cancer treatment induce dose-limiting peripheral neuropathy that compromises patients' quality of life and limits cancer treatment. Recently, mitochondrial dysfunction has been shown to be involved in the mechanism of chemotherapy-induced peripheral neuropathy. SS-20 is a mitochondria-targeted peptide that promotes mitochondrial respiration and restores mitochondrial bioenergetics. In the present study, we examined the protective effect of SS-20 against the development of chemotherapy-induced peripheral neuropathy utilizing a murine model of peripheral neuropathy induced by oxaliplatin, a first-line chemotherapy agent for colon cancer. Weekly administrations of oxaliplatin induced peripheral neuropathy as demonstrated by the development of neuropathic pain and loss of intraepidermal nerve fibers in the hind paw. Continuous administration of SS-20 protected against the development of oxaliplatin-induced neuropathic pain and mitigated the loss of intraepidermal nerve fibers to normal levels. Our findings suggest that SS-20 may be a drug candidate for the prevention of chemotherapy-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Satoshi Toyama
- Department of Neuroscience, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, Tokyo 105-8471, Japan
- Department of Critical Care and Anesthesia, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo 157-8535, Japan
| | - Naohito Shimoyama
- Department of Palliative Medicine, Jikei University Hospital, 3-19-18 Nishi-Shimbashi, Minato-Ku, Tokyo 105-8471, Japan
| | - Hazel H. Szeto
- Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, New York 10605, United States
| | - Peter W. Schiller
- Laboratory of Chemical Biology and Peptide Research, Montreal Clinical Research Institute, 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Megumi Shimoyama
- Department of Palliative Medicine, Jikei University Hospital, 3-19-18 Nishi-Shimbashi, Minato-Ku, Tokyo 105-8471, Japan
| |
Collapse
|
32
|
Kawashiri T, Miyagi A, Shimizu S, Shigematsu N, Kobayashi D, Shimazoe T. Dimethyl fumarate ameliorates chemotherapy agent-induced neurotoxicity in vitro. J Pharmacol Sci 2018; 137:202-211. [PMID: 30042024 DOI: 10.1016/j.jphs.2018.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 11/19/2022] Open
Abstract
Chemotherapy agents such as oxaliplatin, cisplatin, paclitaxel, and bortezomib frequently cause severe peripheral neuropathy and there is currently no effective strategy to prevent this. Dimethyl fumarate (DMF) is a new oral drug for the treatment of multiple sclerosis, and has neuroprotective effects via up-regulation of the nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant response. In this study, we investigated the effect of DMF on chemotherapy agent-induced neurodegenerations in cultured cells. We found that DMF and its metabolite monomethyl fumarate (MMF) attenuated oxaliplatin-, cisplatin-, and bortezomib- (but not paclitaxel-) induced inhibition of neurite outgrowth, but had no effect on cell death as a result of these agents in cultured PC12 cells and primary cultured rat dorsal root ganglion (DRG) neurons. Furthermore, Nrf2 DNA binding activity was increased by DMF and MMF in PC12 cells. These findings suggest that DMF, which activates Nrf2 pathway, has a potential protective action against chemotherapy-induced neurotoxicity, particularly neurite impairments.
Collapse
Affiliation(s)
- Takehiro Kawashiri
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Anna Miyagi
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shiori Shimizu
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nao Shigematsu
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daisuke Kobayashi
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takao Shimazoe
- Department of Clinical Pharmacy and Pharmaceutical Care, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
33
|
Carvalho LF, Silva AMF, Carvalho AA. The use of antioxidant agents for chemotherapy-induced peripheral neuropathy treatment in animal models. Clin Exp Pharmacol Physiol 2017. [PMID: 28649767 DOI: 10.1111/1440-1681.12803] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antineoplastic drugs such as cisplatin, oxaliplatin, paclitaxel and vincristin are widely used in the treatment of several solid and blood tumours. However, the severity of peripheral neuropathy caused by these agents can affect the patient's quality of life. The major symptoms of chemotherapy-induced peripheral neuropathy (CIPN) involve: sensory loss, paresthesia, dysesthaesia, numbness, tingling, temperature sensitivity, allodynia and hyperalgesia, in a "stocking and glove" distribution. Why many different chemotherapeutic agents result in similar neuropathy profiles is unclear. Many drug classes such as antidepressants, anticonvulsants, antispastic agents and others have been used in clinical practice, but there is no scientific evidence to prove their effectiveness. But drugs as the antioxidant have shown a protective effect against free radical damage. In order to find out a successful treatment for CIPN, animal studies (ie pharmacological and mechanical tests and histopathological immunohistochemical analyses) have been developed to try to determinate the action of the antioxidant agents. This review provides an overview of the major antioxidant agents recently investigated to treat CIPN and the animal models used for this purpose.
Collapse
Affiliation(s)
- Larissa F Carvalho
- Federal University of Sergipe, Department of Medicine, Post Graduation Program in Health Sciences, São Cristóvão, Sergipe, Brazil
| | - Ana Maria F Silva
- Federal University of Sergipe, Department of Medicine, Post Graduation Program in Health Sciences, São Cristóvão, Sergipe, Brazil
| | - Adriana A Carvalho
- Federal University of Sergipe, Department of Pharmacy, Lagarto, Sergipe, Brazil
| |
Collapse
|
34
|
Kerckhove N, Collin A, Condé S, Chaleteix C, Pezet D, Balayssac D. Long-Term Effects, Pathophysiological Mechanisms, and Risk Factors of Chemotherapy-Induced Peripheral Neuropathies: A Comprehensive Literature Review. Front Pharmacol 2017; 8:86. [PMID: 28286483 PMCID: PMC5323411 DOI: 10.3389/fphar.2017.00086] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/09/2017] [Indexed: 12/29/2022] Open
Abstract
Neurotoxic anticancer drugs, such as platinum-based anticancer drugs, taxanes, vinca alkaloids, and proteasome/angiogenesis inhibitors are responsible for chemotherapy-induced peripheral neuropathy (CIPN). The health consequences of CIPN remain worrying as it is associated with several comorbidities and affects a specific population of patients already impacted by cancer, a strong driver for declines in older adults. The purpose of this review is to present a comprehensive overview of the long-term effects of CIPN in cancer patients and survivors. Pathophysiological mechanisms and risk factors are also presented. Neurotoxic mechanisms leading to CIPNs are not yet fully understood but involve neuronopathy and/or axonopathy, mainly associated with DNA damage, oxidative stress, mitochondria toxicity, and ion channel remodeling in the neurons of the peripheral nervous system. Classical symptoms of CIPNs are peripheral neuropathy with a “stocking and glove” distribution characterized by sensory loss, paresthesia, dysesthesia and numbness, sometimes associated with neuropathic pain in the most serious cases. Several risk factors can promote CIPN as a function of the anticancer drug considered, such as cumulative dose, treatment duration, history of neuropathy, combination of therapies and genetic polymorphisms. CIPNs are frequent in cancer patients with an overall incidence of approximately 38% (possibly up to 90% of patients treated with oxaliplatin). Finally, the long-term reversibility of these CIPNs remain questionable, notably in the case of platinum-based anticancer drugs and taxanes, for which CIPN may last several years after the end of anticancer chemotherapies. These long-term effects are associated with comorbidities such as depression, insomnia, falls and decreases of health-related quality of life in cancer patients and survivors. However, it is noteworthy that these long-term effects remain poorly studied, and only limited data are available such as in the case of bortezomib and thalidomide-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Nicolas Kerckhove
- INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Délégation à la Recherche Clinique et à l'Innovation, Université Clermont Auvergne Clermont-Ferrand, France
| | - Aurore Collin
- INSERM U1107, NEURO-DOL, Université Clermont Auvergne Clermont-Ferrand, France
| | - Sakahlé Condé
- INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Neurologie, Université Clermont Auvergne Clermont-Ferrand, France
| | - Carine Chaleteix
- CHU Clermont-Ferrand, Hématologie Clinique Adulte Clermont-Ferrand, France
| | - Denis Pezet
- INSERM U1071, CHU Clermont-Ferrand, Chirurgie et Oncologie Digestive, Université Clermont Auvergne Clermont-Ferrand, France
| | - David Balayssac
- INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Délégation à la Recherche Clinique et à l'Innovation, Université Clermont Auvergne Clermont-Ferrand, France
| |
Collapse
|
35
|
Wang X, Zuo Z, Zhao C, Zhang Z, Peng G, Cao S, Hu Y, Yu S, Zhong Z, Deng J, Ren Z. Protective role of selenium in the activities of antioxidant enzymes in piglet splenic lymphocytes exposed to deoxynivalenol. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 47:53-61. [PMID: 27620958 DOI: 10.1016/j.etap.2016.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/29/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
We evaluated the effects of selenium (Se) on antioxidant enzymes of piglet splenic lymphocytes exposed to deoxynivalenol (DON). We measured cell viability, the activities of several antioxidant enzymes, and lactate dehydrogenase (LDH), as well as total antioxidant capacity (T-AOC) and the levels of malonaldehyde (MDA) and hydrogen peroxide (H2O2). We found that DON exposure increased the concentrations of LDH, MDA, and H2O2 in all experimental groups in a dose-dependent manner, while the concentrations of other antioxidant enzymes were decreased. In Se-pretreated DON-exposed cells, damage to antioxidant enzymes was reduced, especially in the lower-dose DON groups over longer exposure times. These results may indicate that in piglet splenic lymphocytes, Se can alleviate DON-induced damage to antioxidant enzymes by improving glutathione peroxidase activity. Se may function as a potential antioxidative agent to alleviate DON-induced oxidative stress.
Collapse
Affiliation(s)
- Xuemei Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu 611130, China.
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu 611130, China.
| | - Chuanping Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu 611130, China.
| | - Zhuo Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu 611130, China.
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu 611130, China.
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu 611130, China.
| | - Yanchun Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu 611130, China.
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu 611130, China.
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu 611130, China.
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu 611130, China.
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province Key Laboratory of Animal Disease & Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu 611130, China.
| |
Collapse
|