1
|
Greenwood JC, Jang DH. The authors reply. Crit Care Med 2025; 53:e237-e238. [PMID: 39774229 DOI: 10.1097/ccm.0000000000006483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Affiliation(s)
- John C Greenwood
- Department of Emergency Medicine, Center for Resuscitation Science, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Anesthesiology and Critical Care, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - David H Jang
- Department of Emergency Medicine, Center for Resuscitation Science, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Park I, Min EK, Park JH, Oh AY, Ryu JH. The Effects of Volatile Anesthetics on Early Clinical Outcomes in Liver Transplantation: A Systematic Review and Meta-Analysis. Transplant Proc 2024; 56:1984-1994. [PMID: 39472225 DOI: 10.1016/j.transproceed.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND The aim of this systematic review and meta-analysis was to evaluate the effects of volatile anesthesia (VA) on early clinical outcomes in liver transplantation. METHODS We searched electronic databases to identify relevant studies comparing VA to non-VA in liver transplant recipients. The primary outcome assessed was early allograft dysfunction (EAD), and secondary outcomes were postoperative peak liver function tests (LFT) including aspartate transaminase (AST) and alanine transaminase (ALT) levels, and hospitalization time. RESULTS Six relevant studies involving 919 patients were analyzed. In meta-analysis of prospective studies, VA was associated with fewer incidence of EAD than non-VA (RR: 0.45; 95% CI: 0.25, 0.84; P = .012; I2 = 0%; Ph = 0.334) but this association was not significant in meta-analysis of retrospective studies (OR: 0.83; 95% CI: 0.58, 1.19; P = .310; I2 = 0%; Ph = 0.624). No significant difference in peak AST (SMD: -0.14 U/L; 95% CI: -0.65, 0.37 U/L; P = .594; I2 = 69.9%; Ph = 0.036) and ALT (SMD: -0.16 U/L; 95% CI: -0.65, 0.33 U/L; P = .529; I2 = 67.0%; Ph = 0.048) were found between VA and non-VA. The hospitalization time also did not differ between the two groups (SMD: -0.09 days; 95% CI: -0.29, 0.10 days; P = .350; I2 = 0%; Ph = 0.864). CONCLUSIONS While there is potential protective effect of VA against EAD in liver transplant recipients, certainty remains low, whereas VA was not associated with postoperative LFT or hospitalization time.
Collapse
Affiliation(s)
- Insun Park
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea; Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun-Ki Min
- Department of General Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hyon Park
- Department of Radiology, The Armed Forces Daejeon Hospital, Daejeon, Republic of Korea
| | - Ah-Young Oh
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea; Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Hee Ryu
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea; Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Liu W, Du M, Zhang M, Dai X, Wang H, Le Y, Zhi S, Bo L, Quan J. Impact of propofol versus desflurane anesthesia on postoperative hepatic and renal functions in infants with living-related liver transplantation: a randomized controlled trial. BMC Med 2024; 22:397. [PMID: 39285414 PMCID: PMC11406785 DOI: 10.1186/s12916-024-03622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND The effects of anesthetics on liver and kidney functions after infantile living-related liver transplantation (LRLT) are unclear. This study aimed to investigate the effects of propofol-based total intravenous anesthesia (TIVA) or desflurane-based inhalation anesthesia on postoperative liver and kidney functions in infant recipients after LRLT and to evaluate hepatic ischemia-reperfusion injury (HIRI). METHODS Seventy-six infants with congenital biliary atresia scheduled for LRLT were randomly divided into two anesthesia maintenance groups: group D with continuous inhalation of desflurane and group P with an infusion of propofol. The primary focus was to assess alterations of liver transaminase and serum creatinine (Scr) levels within the first 7 days after surgery. And the peak aminotransferase level within 72 h post-surgery was used as a surrogate marker for HIRI. RESULTS There were no differences in preoperative hepatic and renal functions between the two groups. Upon the intensive care unit (ICU) arrival, the levels of aspartate aminotransferase (AST, P = 0.001) and alanine aminotransferase (ALT, P = 0.005) in group P were significantly lower than those in group D. These changes persisted until the fourth and sixth days after surgery. The peak AST and ALT levels within 72 h after surgery were also lower in group P than in group D (856 (552, 1221) vs. 1468 (732, 1969) U/L, P = 0.001 (95% CI: 161-777) and 517 (428, 704) vs. 730 (541, 1100) U/L, P = 0.006, (95% CI: 58-366), respectively). Patients in group P had lower levels of Scr upon the ICU arrival and on the first day after surgery, compared to group D (17.8 (15.2, 22.0) vs. 23.0 (20.8, 30.8) μmol/L, P < 0.001 (95% CI: 3.0-8.7) and 17.1 (14.9, 21.0) vs. 20.5 (16.5, 25.3) μmol/L, P = 0.02 (95% CI: 0.0-5.0) respectively). Moreover, the incidence of severe acute kidney injury was significantly lower in group P compared to that in group D (15.8% vs. 39.5%, P = 0.038). CONCLUSIONS Propofol-based TIVA might improve liver and kidney functions after LRLT in infants and reduce the incidence of serious complications, which may be related to the reduction of HIRI. However, further biomarkers will be necessary to prove these associations.
Collapse
Affiliation(s)
- Wei Liu
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, P.R. China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Min Du
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, P.R. China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Mingman Zhang
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Xiaoke Dai
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Haoming Wang
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Ying Le
- Department of Hepatobiliary Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China
| | - Shenshen Zhi
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Lin Bo
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, P.R. China.
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China.
| | - Junjun Quan
- Department of Anesthesiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, 136 Zhongshan Er Road, Yu Zhong District, Chongqing, 400014, P.R. China.
- Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, China.
| |
Collapse
|
4
|
Shen H, Yang J, Chen X, Gao Y, He B. Role of hypoxia-inducible factor in postoperative delirium of aged patients: A review. Medicine (Baltimore) 2023; 102:e35441. [PMID: 37773821 PMCID: PMC10545271 DOI: 10.1097/md.0000000000035441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023] Open
Abstract
Postoperative delirium is common, especially in older patients. Delirium is associated with prolonged hospitalization, an increased risk of postoperative complications, and significant mortality. The mechanism of postoperative delirium is not yet clear. Cerebral desaturation occurred during the maintenance period of general anesthesia and was one of the independent risk factors for postoperative delirium, especially in the elderly. Hypoxia stimulates the expression of hypoxia-inducible factor-1 (HIF-1), which controls the hypoxic response. HIF-1 may have a protective role in regulating neuron apoptosis in neonatal hypoxia-ischemia brain damage and may promote the repair and rebuilding process in the brain that was damaged by hypoxia and ischemia. HIF-1 has a neuroprotective effect during cerebral hypoxia and controls the hypoxic response by regulating multiple pathways, such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. On the other hand, anesthetics have been reported to inhibit HIF activity in older patients. So, we speculate that HIF plays an important role in the pathophysiology of postoperative delirium in the elderly. The activity of HIF is reduced by anesthetics, leading to the inhibition of brain protection in a hypoxic state. This review summarizes the possible mechanism of HIF participating in postoperative delirium in elderly patients and provides ideas for finding targets to prevent or treat postoperative delirium in elderly patients.
Collapse
Affiliation(s)
- Hu Shen
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyin Yang
- Department of ICU, Chengdu Xinjin District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Xu Chen
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Gao
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Baoming He
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Matsumi J, Sato T. Protective effect of propofol compared with sevoflurane on liver function after hepatectomy with Pringle maneuver: A randomized clinical trial. PLoS One 2023; 18:e0290327. [PMID: 37616308 PMCID: PMC10449203 DOI: 10.1371/journal.pone.0290327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
While the Pringle maneuver reduces intraoperative blood loss in hepatectomies, this technique can also be hepatotoxic. Hepatectomies require general anesthesia with propofol or volatile anesthetics like sevoflurane, agents known to offer multi-organ protection. However, their clinical effect after liver resection is unclear. We aimed to assess the effect of the two anesthetics on post-hepatectomy liver damage via measuring liver function tests. Fifty-six patients who underwent elective hepatectomies with the Pringle maneuver due to metastatic hepatic masses were preoperatively randomized to be anesthetized by sevoflurane or propofol. The primary and secondary outcomes were the postoperative peak levels of aspartate transaminase (AST) and alanine transaminase (ALT), respectively. Patients anesthetized by propofol exhibited significantly lower transaminases than those given sevoflurane (AST, p = 0.005; ALT, p = 0.006). The former agent significantly affected postoperative transaminases (AST hazard ratio -192.2, 95% confidence interval [-332.1 to -52.4], p = 0.00; ALT hazard ratio -140.2, 95% confidence interval [-240.0 to -40.7], p = 0.007). In conclusion, propofol had a greater hepatoprotective effect than sevoflurane as assessed by postoperative transaminases after hepatectomy with Pringle maneuver for metastatic liver tumors.
Collapse
Affiliation(s)
- Junya Matsumi
- Department of Anesthesia and Intensive Care, National Cancer Center Hospital, Tokyo, Japan
| | - Tetsufumi Sato
- Department of Anesthesia and Intensive Care, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
6
|
Zhao Y, Jiao F, Tang T, Wu S, Wang F, Zhao X. Adverse effects and potential mechanisms of fluxapyroxad in Xenopus laevis on carbohydrate and lipid metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121710. [PMID: 37137408 DOI: 10.1016/j.envpol.2023.121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023]
Abstract
Fungicides are one of significant contributing factors to the rapid decline of amphibian species worldwide. Fluxapyroxad (FLX), an effective and broad-spectrum succinate dehydrogenase inhibitor fungicide, has attracted major concerns due to its long-lasting in the environment. However, the potential toxicity of FLX in the development of amphibians remains mostly unknown. In this research, the potential toxic effects and mechanisms of FLX on Xenopus laevis were investigated. In the acute toxicity test, the 96 h median lethal concentration (LC50) of FLX to X. laevis tadpoles was 1.645 mg/L. Based on the acute toxicity result, tadpoles at the stage 51 were exposed to 0, 0.00822, 0.0822, and 0.822 mg/L FLX during 21 days. Results demonstrated that FLX exposure led to an apparent delay in the growth and development of tadpoles and associated with severe liver injury. Additionally, FLX induced glycogen depletion and lipid accumulation in the liver of X. laevis. The biochemical analysis of plasma and liver indicated that FLX exposure could perturb liver glucose and lipid homeostasis by altering enzyme activity related to glycolysis, gluconeogenesis, fatty acid synthesis, and oxidation. Consistent with the biochemical result, FLX exposure altered the liver transcriptome profile, and the enrichment analysis of differential expression genes highlighted the adverse effects of FLX exposure on steroid biosynthesis, PPAR signaling pathway, glycolysis/gluconeogenesis, and fatty acid metabolism in the tadpole liver. Overall, our study was the first to reveal that sub-lethal concentrations of FLX could induce liver damage and produce obvious interference effects on carbohydrate and lipid metabolism of Xenopus, providing new insight into the potential chronic hazards of FLX for amphibians.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Feidi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
7
|
Benoit L, Dieu A, Foguenne M, Bonaccorsi-Riani E. Experimental and Clinical Aspects of Sevoflurane Preconditioning and Postconditioning to Alleviate Hepatic Ischemia-Reperfusion Injury: A Scoping Review. Int J Mol Sci 2023; 24:2340. [PMID: 36768670 PMCID: PMC9916998 DOI: 10.3390/ijms24032340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/21/2022] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is an inflammatory process inherent in organ transplantation procedures. It is associated with tissue damage and, depending on its intensity, can impact early graft function. In liver transplantation (LT), strategies to alleviate IRI are essential in order to increase the use of extended criteria donor (ECD) grafts, which are more susceptible to IRI, as well as to improve postoperative graft and patient outcomes. Sevoflurane, a commonly used volatile anesthetic, has been shown to reduce IRI. This scoping review aims to give a comprehensive overview of the existing experimental and clinical data regarding the potential benefits of sevoflurane for hepatic IRI (HIRI) and to identify any gaps in knowledge to guide further research. We searched Medline and Embase for relevant articles. A total of 380 articles were identified, 45 of which were included in this review. In most experimental studies, the use of sevoflurane was associated with a significant decrease in biomarkers of acute liver damage and oxidative stress. Administration of sevoflurane before hepatic ischemia (preconditioning) or after reperfusion (postconditioning) appears to be protective. However, in the clinical setting, results are conflicting. While some studies showed a reduction of postoperative markers of liver injury, the benefit of sevoflurane on clinical outcomes and graft survival remains unclear. Further prospective clinical trials remain necessary to assess the clinical relevance of the use of sevoflurane as a protective factor against HIRI.
Collapse
Affiliation(s)
- Loïc Benoit
- Department of Anesthesiology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Audrey Dieu
- Department of Anesthesiology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Maxime Foguenne
- Abdominal Transplant Unit, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Pôle de Chirurgie Expérimentale et Transplantation-Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Eliano Bonaccorsi-Riani
- Abdominal Transplant Unit, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Pôle de Chirurgie Expérimentale et Transplantation-Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
8
|
Mohamed OS, Al-Elwany SE, Raouf MM, Tawfik HM, Youssef IA. Propofol versus insulin cardioplegia in valvular heart surgeries assessed by myocardial histopathology and troponin I. EGYPTIAN JOURNAL OF ANAESTHESIA 2022. [DOI: 10.1080/11101849.2022.2133760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Omyma Shehata Mohamed
- Department of Anesthesia and Intensive Care Unit. Minia University Hospital. Faculty of Medicine, Minia University, Minya Egypt
| | - Shady Eid Al-Elwany
- Department of Cardiothoracic Surgery. Faculty of Medicine, Minia University, Minya Egypt
| | - Mina Maher Raouf
- Department of Anesthesia and Intensive Care Unit. Minia University Hospital. Faculty of Medicine, Minia University, Minya Egypt
| | - Heba Mohamed Tawfik
- Department of Histopathology, Faculty of Medicine, Minia University, Minya Egypt
| | - Ibrahim Abbas Youssef
- Department of Anesthesia and Intensive Care Unit. Minia University Hospital. Faculty of Medicine, Minia University, Minya Egypt
| |
Collapse
|
9
|
Wu J, Yu C, Zeng X, Xu Y, Sun C. Protection of propofol on liver ischemia reperfusion injury by regulating Cyp2b10/ Cyp3a25 pathway. Tissue Cell 2022; 78:101891. [DOI: 10.1016/j.tice.2022.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/09/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022]
|
10
|
Longhitano L, Distefano A, Murabito P, Astuto M, Nicolosi A, Buscema G, Sanfilippo F, Lazzarino G, Amorini AM, Bruni A, Garofalo E, Tibullo D, Volti GL. Propofol and α2-Agonists Attenuate Microglia Activation and Restore Mitochondrial Function in an In Vitro Model of Microglia Hypoxia/Reoxygenation. Antioxidants (Basel) 2022; 11:antiox11091682. [PMID: 36139756 PMCID: PMC9495359 DOI: 10.3390/antiox11091682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebrovascular ischemia is a common clinical disease encompassing a series of complex pathophysiological processes in which oxidative stress plays a major role. The present study aimed to evaluate the effects of Dexmedetomidine, Clonidine, and Propofol in a model of hypoxia/reoxygenation injury. Microglial cells were exposed to 1%hypoxia for 3 h and reoxygenated for 3 h, and oxidative stress was measured by ROS formation and the expression of inflammatory process genes. Mitochondrial dysfunction was assessed by membrane potential maintenance and the levels of various metabolites involved in energetic metabolism. The results showed that Propofol and α2-agonists attenuate the formation of ROS during hypoxia and after reoxygenation. Furthermore, the α2-agonists treatment restored membrane potential to values comparable to the normoxic control and were both more effective than Propofol. At the same time, Propofol, but not α2-agonists, reduces proliferation (Untreated Hypoxia = 1.16 ± 0.2, Untreated 3 h Reoxygenation = 1.28 ± 0.01 vs. Propofol hypoxia = 1.01 ± 0.01 vs. Propofol 3 h Reoxygenation = 1.12 ± 0.03) and microglial migration. Interestingly, all of the treatments reduced inflammatory gene and protein expressions and restored energy metabolism following hypoxia/reoxygenation (ATP content in hypoxia/reoxygenation 3 h: Untreated = 3.11 ± 0.8 vs. Propofol = 7.03 ± 0.4 vs. Dexmedetomidine = 5.44 ± 0.8 vs. Clonidine = 7.70 ± 0.1), showing that the drugs resulted in a different neuroprotective profile. In conclusion, our results may provide clinically relevant insights for neuroprotective strategies in intensive care units.
Collapse
Affiliation(s)
- Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Paolo Murabito
- Unità Operativa Complessa Anestesia e Rianimazione 2, Azienda Universitaria “Policlinico G. Rodolico” Via S. Sofia 97, 95125 Catania, Italy
| | - Marinella Astuto
- Unità Operativa Complessa Anestesia e Rianimazione 2, Azienda Universitaria “Policlinico G. Rodolico” Via S. Sofia 97, 95125 Catania, Italy
| | - Anna Nicolosi
- Azienda Ospedaliera “Cannizzaro”, Via Messina 628, 95126 Catania, Italy
| | - Giovanni Buscema
- Unità Operativa Complessa Anestesia e Rianimazione 2, Azienda Universitaria “Policlinico G. Rodolico” Via S. Sofia 97, 95125 Catania, Italy
| | - Filippo Sanfilippo
- Unità Operativa Complessa Anestesia e Rianimazione 2, Azienda Universitaria “Policlinico G. Rodolico” Via S. Sofia 97, 95125 Catania, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Andrea Bruni
- Anesthesia and Intesive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Grecia University, 88100 Catanzaro, Italy
| | - Eugenio Garofalo
- Anesthesia and Intesive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Grecia University, 88100 Catanzaro, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95125 Catania, Italy
- Correspondence:
| |
Collapse
|
11
|
Wang YW, Dong HZ, Tan YX, Bao X, Su YM, Li X, Jiang F, Liang J, Huang ZC, Ren YL, Xu YL, Su Q. HIF-1α-regulated lncRNA-TUG1 promotes mitochondrial dysfunction and pyroptosis by directly binding to FUS in myocardial infarction. Cell Death Discov 2022; 8:178. [PMID: 35396503 PMCID: PMC8993815 DOI: 10.1038/s41420-022-00969-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
Myocardial infarction (MI) is a fatal heart disease that affects millions of lives worldwide each year. This study investigated the roles of HIF-1α/lncRNA-TUG1 in mitochondrial dysfunction and pyroptosis in MI. CCK-8, DHE, lactate dehydrogenase (LDH) assays, and JC-1 staining were performed to measure proliferation, reactive oxygen species (ROS), LDH leakage, and mitochondrial damage in hypoxia/reoxygenation (H/R)-treated cardiomyocytes. Enzyme-linked immunoassay (ELISA) and flow cytometry were used to detect LDH, creatine kinase (CK), and its isoenzyme (CK-MB) levels and caspase-1 activity. Chromatin immunoprecipitation (ChIP), luciferase assay, and RNA-immunoprecipitation (RIP) were used to assess the interaction between HIF-1α, TUG1, and FUS. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemistry were used to measure HIF-1α, TUG1 and pyroptosis-related molecules. Hematoxylin and eosin (HE), 2,3,5-triphenyltetrazolium chloride (TTC), and terminal deoxynucleotidyl transferase dUTP risk end labelling (TUNEL) staining were employed to examine the morphology, infarction area, and myocardial injury in the MI mouse model. Mitochondrial dysfunction and pyroptosis were induced in H/R-treated cardiomyocytes, accompanied by an increase in the expression of HIF-α and TUG1. HIF-1α promoted TUG1 expression by directly binding to the TUG1 promoter. TUG1 silencing inhibited H/R-induced ROS production, mitochondrial injury and the expression of the pyroptosis-related proteins NLRP3, caspase-1 and GSDMD. Additionally, H/R elevated FUS levels in cardiomyocytes, which were directly inhibited by TUG1 silencing. Fused in sarcoma (FUS) overexpression reversed the effect of TUG1 silencing on mitochondrial damage and caspase-1 activation. However, the ROS inhibitor N-acetylcysteine (NAC) promoted the protective effect of TUG1 knockdown on H/R-induced cardiomyocyte damage. The in vivo MI model showed increased infarction, myocardial injury, ROS levels and pyroptosis, which were inhibited by TUG1 silencing. HIF-1α targeting upregulated TUG1 promotes mitochondrial damage and cardiomyocyte pyroptosis by combining with FUS, thereby promoting the occurrence of MI. HIF-1α/TUG1/FUS may serve as a potential treatment target for MI.
Collapse
Affiliation(s)
- Yong-Wang Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Hong-Zhi Dong
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, 300222, P. R. China
| | - Yong-Xing Tan
- Department of Intensive Care Unit, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Xu Bao
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Ying-Man Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Xin Li
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Fang Jiang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Jing Liang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Zhen-Cai Huang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Yan-Ling Ren
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Yu-Li Xu
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China.
| |
Collapse
|
12
|
Sha Z, Yang Y, Liu R, Bao H, Song S, Dong J, Guo M, Zhao Y, Liu H, Ding G. Hepatic Ischemia-reperfusion Injury in Mice was Alleviated by Rac1 Inhibition - More Than Just ROS-inhibition. J Clin Transl Hepatol 2022; 10:42-52. [PMID: 35233372 PMCID: PMC8845157 DOI: 10.14218/jcth.2021.00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Reducing reactive oxygen species (ROS) production has proven an effective way for alleviating oxidative stress during ischemia-reperfusion injury (IRI). Moreover, inhibition of Rac1 could reduce ROS production and prevent oxidative stress injury. Previous studies have suggested a positive interactivation feedback loop between Rac1 and hypoxia-inducible factor (HIF)-1α, the latter being up-regulated early during ischemia. The positive inter-activation between Rac1 and HIF-1α would aggravate ROS production, thereby promoting IRI. This study was designed to verify the effects of Rac1 inhibition on hepatic IRI both at animal and cellular levels and to explore the interaction between Rac1 and HIF-1α during hepatic IRI. METHODS C57B/6 mice and AML-12 cells were used for the construction of hepatic IRI animal and cell models. Rac1 inhibition was achieved by NSC23766 (a specific Rac1 inhibitor). Lentiviral vectors were used for Rac1 knockdown. At designated time points, serum and liver tissues were collected from the mice and treated cells were collected for further analysis. RESULTS NSC23766 treatment significantly alleviated the hepatic IRI in mice, manifesting as lower vacuolation score and less apoptosis cells, lower ROS and serum/liver alanine aminotransferase/aspartate aminotransferase levels, and fewer activated inflammatory cells. IRI of AML-12 was also alleviated by 50 µM NSC23766 or Rac1-knockdown, manifesting as reduced cell apoptosis, less extensive interruption of mitochondrial membrane potential, down-regulation of apoptosis, and effects on DNA damage-related proteins. Interestingly, Rac1 knockdown also down-regulated the expression level of HIF-1α. CONCLUSIONS Our study supports a protective effect of Rac1 inhibition on hepatic IRI. Aside from the classic topics of reducing ROS production and oxidative stress, our study showed an interaction between Rac1 and HIF-1α signaling during hepatic IRI.
Collapse
Affiliation(s)
- Zhilin Sha
- Department of Organ Transplantation, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yajie Yang
- College of Basic Medicine, Naval Medical University, Shanghai, China
- Incubation Base for Undergraduates’ Innovation Practice, Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Ruling Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Haili Bao
- Department of Organ Transplantation, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shaohua Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Junfeng Dong
- Department of Organ Transplantation, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Meng Guo
- Department of Organ Transplantation, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yuanyu Zhao
- Department of Organ Transplantation, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hu Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Guoshan Ding
- Department of Organ Transplantation, Second Affiliated Hospital of Naval Medical University, Shanghai, China
- Correspondence to: Guoshan Ding, Department of Organ Transplantation, Second Affiliated Hospital of Naval Medical University, Shanghai, China. ORCID: https://orcid.org/0000-0001-8127-1053. Tel: +86-21-8187-1023, Fax: +86-21-8187-1031, E-mail:
| |
Collapse
|
13
|
Zhang S, Rao S, Yang M, Ma C, Hong F, Yang S. Role of Mitochondrial Pathways in Cell Apoptosis during He-Patic Ischemia/Reperfusion Injury. Int J Mol Sci 2022; 23:ijms23042357. [PMID: 35216473 PMCID: PMC8877300 DOI: 10.3390/ijms23042357] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatic ischemia-reperfusion injury is a major cause of post-operative hepatic dysfunction and liver failure after transplantation. Mitochondrial pathways can be either beneficial or detrimental to hepatic cell apoptosis during hepatic ischemia/reperfusion injury, depending on multiple factors. Hepatic ischemia/reperfusion injury may be induced by opened mitochondrial permeability transition pore, released apoptosis-related proteins, up-regulated B-cell lymphoma-2 gene family proteins, unbalanced mitochondrial dynamics, and endoplasmic reticulum stress, which are integral parts of mitochondrial pathways. In this review, we discuss the role of mitochondrial pathways in apoptosis that account for the most deleterious effect of hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Sen Zhang
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Sijing Rao
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Meiwen Yang
- Department of Surgery, Fuzhou Medical College, Nanchang University, Fuzhou 344099, China;
| | - Chen Ma
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Fengfang Hong
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Correspondence: (F.H.); or (S.Y.)
| | - Shulong Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
- Department of Physiology, Fuzhou Medical College, Nanchang University, Fuzhou 344099, China
- Correspondence: (F.H.); or (S.Y.)
| |
Collapse
|
14
|
Han J, Tao W, Cui W, Chen J. Propofol via Antioxidant Property Attenuated Hypoxia-Mediated Mitochondrial Dynamic Imbalance and Malfunction in Primary Rat Hippocampal Neurons. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6298786. [PMID: 35087616 PMCID: PMC8789416 DOI: 10.1155/2022/6298786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/24/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Hypoxia may induce mitochondrial abnormality, which is associated with a variety of clinical phenotypes in the central nervous system. Propofol is an anesthetic agent with neuroprotective property. We examined whether and how propofol protected hypoxia-induced mitochondrial abnormality in neurons. METHODS Primary rat hippocampal neurons were exposed to propofol followed by hypoxia treatment. Neuron viability, mitochondrial morphology, mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) production were measured. Mechanisms including reactive oxygen species (ROS), extracellular regulated protein kinase (ERK), protein kinase A (PKA), HIF-1α, Drp1, Fis1, Mfn1, Mfn2, and Opa1 were investigated. RESULTS Hypoxia increased intracellular ROS production and induced mPTP opening, while reducing ATP production, MMP values, and neuron viability. Hypoxia impaired mitochondrial dynamic balance by increasing mitochondrial fragmentation. Further, hypoxia induced the translocation of HIF-1α and increased the expression of Drp1, while having no effect on Fis1 expression. In addition, hypoxia induced the phosphorylation of ERK and Drp1ser616, while reducing the phosphorylation of PKA and Drp1ser637. Importantly, we demonstrated all these effects were attenuated by pretreatment of neurons with 50 μM propofol, antioxidant α-tocopherol, and ROS scavenger ebselen. Besides, hypoxia, propofol, α-tocopherol, or ebselen had no effect on the expression of Mfn1, Mfn2, and Opa1. CONCLUSIONS In rat hippocampal neurons, hypoxia induced oxidative stress, caused mitochondrial dynamic imbalance and malfunction, and reduced neuron viability. Propofol protected mitochondrial abnormality and neuron viability via antioxidant property, and the molecular mechanisms involved HIF-1α-mediated Drp1 expression and ERK/PKA-mediated Drp1 phosphorylation.
Collapse
Affiliation(s)
- Jingfeng Han
- Department of Anesthesiology, Jing'an District Central Hospital, No. 259 Xi Kang Road, Shanghai 200040, China
| | - Weiping Tao
- Department of Anesthesiology, Jing'an District Central Hospital, No. 259 Xi Kang Road, Shanghai 200040, China
| | - Wei Cui
- Department of Anesthesiology, Jing'an District Central Hospital, No. 259 Xi Kang Road, Shanghai 200040, China
| | - Jiawei Chen
- Department of Anesthesiology, Jing'an District Central Hospital, No. 259 Xi Kang Road, Shanghai 200040, China
| |
Collapse
|
15
|
Chen J, Chen L, Wu Y, Fang Y, Zeng F, Wu S, Zhao Y. A H 2O 2-activatable nanoprobe for diagnosing interstitial cystitis and liver ischemia-reperfusion injury via multispectral optoacoustic tomography and NIR-II fluorescent imaging. Nat Commun 2021; 12:6870. [PMID: 34824274 PMCID: PMC8617030 DOI: 10.1038/s41467-021-27233-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
Developing high-quality NIR-II fluorophores (emission in 1000-1700 nm) for in vivo imaging is of great significance. Benzothiadiazole-core fluorophores are an important class of NIR-II dyes, yet ongoing limitations such as aggregation-caused quenching in aqueous milieu and non-activatable response are still major obstacles for their biological applications. Here, we devise an activatable nanoprobe to address these limitations. A molecular probe named BTPE-NO2 is synthesized by linking a benzothiadiazole core with two tetraphenylene groups serving as hydrophobic molecular rotors, followed by incorporating two nitrophenyloxoacetamide units at both ends of the core as recognition moieties and fluorescence quenchers. An FDA-approved amphiphilic polymer Pluronic F127 is then employed to encapsulate the molecular BTPE-NO2 to render the nanoprobe BTPE-NO2@F127. The pathological levels of H2O2 in the disease sites cleave the nitrophenyloxoacetamide groups and activate the probe, thereby generating strong fluorescent emission (950~1200 nm) and ultrasound signal for multi-mode imaging of inflammatory diseases. The nanoprobe can therefore function as a robust tool for detecting and imaging the disease sites with NIR-II fluorescent and multispectral optoacoustic tomography (MSOT) imaging. Moreover, the three-dimensional MSOT images can be obtained for visualizing and locating the disease foci.
Collapse
Affiliation(s)
- Junjie Chen
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Longqi Chen
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Yinglong Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yichang Fang
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China.
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China.
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
16
|
Zhang Q, Piao C, Ma H, Xu J, Wang Y, Liu T, Liu G, Wang H. Exosomes from adipose-derived mesenchymal stem cells alleviate liver ischaemia reperfusion injury subsequent to hepatectomy in rats by regulating mitochondrial dynamics and biogenesis. J Cell Mol Med 2021; 25:10152-10163. [PMID: 34609057 PMCID: PMC8572784 DOI: 10.1111/jcmm.16952] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatic ischaemia reperfusion injury (HIRI) is a major factor leading to liver dysfunction after liver resection and liver transplantation. Adipose-derived mesenchymal stem cells (ADSCs) have potential therapeutic effects on HIRI. Exosomes derived from ADSCs (ADSCs-exo) have been widely studied as an alternative of ADSCs therapy. Thus, the aim of this study was to evaluate the potential protective effect and related mechanism of ADSCs-exo on HIRI subsequent to hepatectomy. Rats were randomly divided into four groups: Sham, I30R+PH, ADSCs and ADSCs-exo group. After 24 h of reperfusion, liver and serum of the rats were immediately collected. ADSCs-exo improved liver function, inhibited oxidative stress and reduced apoptosis of hepatocytes in HIRI subsequent to hepatectomy in rats. ADSCs-exo significantly promoted the recovery of mitochondrial function, markedly increased the content of ATP in the liver tissue, and improved the ultrastructure of mitochondria in hepatocytes. Moreover, ADSCs-exo significantly increased the expression of OPA-1, MFN-1 and MFN-2 proteins related to mitochondrial fusion, while DRP-1 and Fis-1 mRNA and protein expression associated with mitochondrial fission were significantly decreased after the treatment with ADSCs-exo. In addition, ADSCs-exo significantly increased the expression of PGC-1α, NRF-1 and TFAM genes and proteins related to mitochondrial biogenesis. ADSCs-exo improves liver function induced by HIRI subsequent to hepatectomy in rats and maintains mitochondrial homeostasis by inhibiting mitochondrial fission, promoting mitochondrial fusion and promoting mitochondrial biogenesis. Therefore, ADSCs-exo may be considered as a potential promising alternative to ADSCs in the treatment of HIRI subsequent to hepatectomy.
Collapse
Affiliation(s)
- Qianzhen Zhang
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
- College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
| | - Chenxi Piao
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Haiyang Ma
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Jiayuan Xu
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Yue Wang
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Tao Liu
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Guodong Liu
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Hongbin Wang
- College of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| |
Collapse
|
17
|
Cho HB, Kim MG, Park SY, Song S, Jang YS, Park S, Lee HK, Yoo JH, Chung JW, Kim SH. The influence of propofol-based total intravenous anesthesia on postoperative outcomes in end-stage renal disease patients: A retrospective observation study. PLoS One 2021; 16:e0254014. [PMID: 34292982 PMCID: PMC8297880 DOI: 10.1371/journal.pone.0254014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
Background To determine whether the anesthetic method of propofol total intravenous anesthesia (TIVA) is associated with postoperative outcome in ESRD patients, we evaluated the incidence of postoperative major adverse cardiac events (MACE), comparing propofol TIVA versus anesthesia with volatile anesthesia in ESRD patients. Methods Retrospectively, we identified cases with ESRD patients who underwent surgery under general anesthesia. Patients were divided into those who received only volatile anesthesia (volatile group) and those who received only propofol TIVA (TIVA group). The incidence of MACE and potential confounding variables were compared separately in a univariate logistic model and subsequently by multivariate logistic regression. Results Among the 2576 cases in ESRD patients, 1374 were in the TIVA group and 1202 were in the volatile group. The multivariate analysis included 12 factors, including the anesthesia method, of which five factors were significant. Factors that were associated with a significantly lower MACE risk included preoperative chloride concentration (OR: 0.96; 95% CI, 0.92–0.99), baseline SBP (OR: 0.98; 95% CI, 0.98–0.99), and propofol TIVA (OR: 0.37; 95% CI, 0.22–0.60). Conclusions We inferred that the anesthetic method associated with the postoperative outcome in patients with ESRD.
Collapse
Affiliation(s)
- Ho Bum Cho
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Hospital Seoul, Seoul, Republic of Korea
| | - Mun Gyu Kim
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Hospital Seoul, Seoul, Republic of Korea
| | - Sun Young Park
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Hospital Seoul, Seoul, Republic of Korea
- * E-mail:
| | - Sanghoon Song
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Hospital Seoul, Seoul, Republic of Korea
| | - Youn Sil Jang
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Hospital Seoul, Seoul, Republic of Korea
| | - Suyeon Park
- Department of Biostatistics, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Hyun Keun Lee
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Hospital Seoul, Seoul, Republic of Korea
| | - Jae Hwa Yoo
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Hospital Seoul, Seoul, Republic of Korea
| | - Ji Won Chung
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Hospital Seoul, Seoul, Republic of Korea
| | - Sang Ho Kim
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Hospital Seoul, Seoul, Republic of Korea
| |
Collapse
|
18
|
The Role of Mitochondria in Liver Ischemia-Reperfusion Injury: From Aspects of Mitochondrial Oxidative Stress, Mitochondrial Fission, Mitochondrial Membrane Permeable Transport Pore Formation, Mitophagy, and Mitochondria-Related Protective Measures. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6670579. [PMID: 34285766 PMCID: PMC8275408 DOI: 10.1155/2021/6670579] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
Ischemia-reperfusion injury (IRI) has indeed been shown as a main complication of hepatectomy, liver transplantation, trauma, and hypovolemic shock. A large number of studies have confirmed that microvascular and parenchymal damage is mainly caused by reactive oxygen species (ROS), which is considered to be a major risk factor for IRI. Under normal conditions, ROS as a kind of by-product of cellular metabolism can be controlled at normal levels. However, when IRI occurs, mitochondrial oxidative phosphorylation is inhibited. In addition, oxidative respiratory chain damage leads to massive consumption of adenosine triphosphate (ATP) and large amounts of ROS. Additionally, mitochondrial dysfunction is involved in various organs and tissues in IRI. On the one hand, excessive free radicals induce mitochondrial damage, for instance, mitochondrial structure, number, function, and energy metabolism. On the other hand, the disorder of mitochondrial fusion and fission results in further reduction of the number of mitochondria so that it is not enough to clear excessive ROS, and mitochondrial structure changes to form mitochondrial membrane permeable transport pores (mPTPs), which leads to cell necrosis and apoptosis, organ failure, and metabolic dysfunction, increasing morbidity and mortality. According to the formation mechanism of IRI, various substances have been discovered or synthesized for specific targets and cell signaling pathways to inhibit or slow the damage of liver IRI to the body. Here, based on the development of this field, this review describes the role of mitochondria in liver IRI, from aspects of mitochondrial oxidative stress, mitochondrial fusion and fission, mPTP formation, and corresponding protective measures. Therefore, it may provide references for future clinical treatment and research.
Collapse
|
19
|
Hirota K. Hypoxia-dependent signaling in perioperative and critical care medicine. J Anesth 2021; 35:741-756. [PMID: 34003375 PMCID: PMC8128984 DOI: 10.1007/s00540-021-02940-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/24/2021] [Indexed: 12/14/2022]
Abstract
A critical goal of patient management for anesthesiologists and intensivists is to maintain oxygen homeostasis in patients admitted to operation theaters and intensive care units. For this purpose, it is imperative to understand the strategies of the body against oxygen imbalance—especially oxygen deficiency (hypoxia). Adaptation to hypoxia and maintenance of oxygen homeostasis involve a wide range of responses that occur at different organizational levels in the body. These responses are greatly influenced by perioperative patient management including factors such as perioperative drugs. Herein, the influence of perioperative patient management on the body's response to oxygen imbalance was reviewed with a special emphasis on hypoxia-inducible factors (HIFs), transcription factors whose activity are regulated by the perturbation of oxygen metabolism. The 2019 Nobel Prize in Physiology or Medicine was awarded to three researchers who made outstanding achievements in this field. While previous studies have reported the effect of perioperatively used drugs on hypoxia-induced gene expression mediated by HIFs, this review focused on effects of subacute or chronic hypoxia changes in gene expression that are mediated by the transcriptional regulator HIFs. The clinical implications and perspectives of these findings also will be discussed. Understanding the basic biology of the transcription factor HIF can be informative for us since anesthesiologists manage patients during the perioperative period facing the imbalances the oxygen metabolism in organ and tissue. The clinical implications of hypoxia-dependent signaling in critical illness, including Coronavirus disease (COVID-19), in which disturbances in oxygen metabolism play a major role in its pathogenesis will also be discussed.
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan.
| |
Collapse
|
20
|
Propofol Protects Against Hepatic Ischemia Reperfusion Injury via Inhibiting Bnip3-Mediated Oxidative Stress. Inflammation 2021; 44:1288-1301. [PMID: 33496895 DOI: 10.1007/s10753-021-01416-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022]
Abstract
Propofol (PRO) protects against hepatic ischemia/reperfusion (I/R) injury. Bnip3 is involved in the I/R-induced injury. This study investigated whether the effect of PRO on hepatic hypoxia/reoxygenation (H/R) injury was realized through regulating Bnip3. After establishing a hepatic ischemia reperfusion (I/R ) injury model in mice, the serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were determined by an automatic biochemical analyzer. The histopathology and apoptosis of liver tissues were detected by hematoxylin-eosin and TUNEL staining. After the H/R liver cells were cultured and treated with PRO, the viability, apoptosis, reactive oxygen species (ROS) production, and the levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), TNF-α, and IL-6 were detected by MTT, flow cytometry, colorimetry, and ELISA. The expressions of Bnip3 and apoptosis-related factors in I/R mouse liver tissues and H/R cells were determined by immunohistochemical assay, immunofluorescence, Western blot, or RT-qPCR. PRO ameliorated the abnormal histopathology, reduced cell apoptosis and the levels of AST, ALT, Bnip3, Cleaved Caspase-3, and Bax, but upregulated the Bcl-2 level in the liver tissues of I/R mice. In H/R liver cells, PRO promoted the cell viability, downregulated the levels of LDH, MDA, TNF-α, IL-6, and reduced ROS production. Moreover, PRO promoted the downregulated expressions of cytosolic Bnip3, total Bni3p, Cleaved Caspase-3, and Bax and upregulated the Bcl-2 level. siBnip3 reversed the effect of H/R on the liver cells, and its overexpression also reversed the effect of PRO on H/R-induced liver cells. PRO protects against hepatic I/R injury via inhibiting Bnip3.
Collapse
|
21
|
Yu X, Zhou Y, Zheng X, Shao S, He H. Clinical efficacy of intravenous anesthesia on breast segmental surgery and its effects on oxidative stress response and hemodynamics of patients. Exp Ther Med 2021; 21:11. [PMID: 33235620 PMCID: PMC7678611 DOI: 10.3892/etm.2020.9443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
This study was designed to investigate the clinical efficacy of intravenous anesthesia on breast segmental surgery and the effects on hemodynamics of patients. A total of 267 patients were collected as research subjects. These patients underwent breast segmental surgery in Chun'an First People's Hospital from March 2015 to September 2018. Among them, 137 patients undergoing intravenous anesthesia were the research group, and 130 patients undergoing inhalation anesthesia were the control group. The following parameters were recorded: Clinical efficacy, postoperative adverse conditions, hemodynamic indicators including systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR). Visual analogue scale (VAS) was used to observe the analgesic effect of the two groups, the mental state of patients in the two groups was observed by mini-mental state examination (MMSE) scoring method, and systemic evaluation was made by oxidative stress (OS) reaction indicators. The MMSE scores of the two groups decreased one day after surgery, but the score in the research group was higher than that in the control group (P<0.05). The levels of SBP and DBP at T1 and T2 in the control group were significantly higher than those in the research group (P<0.05). HR of research group at T1 and T2 was lower than that at T0 and that at corresponding time of control group (P<0.05). The incidence rate of postoperative adverse reactions in the research group was significantly lower than that in the control group (P<0.05). In conclusion, intravenous anesthesia for breast segmental surgery can reduce the occurrence of adverse reactions after surgery, with complete sedation and analgesia. Patients were able to wake up quickly and stably after surgery, and their cognitive function and OS recovered rapidly. However, due to the great impact on hemodynamics during surgery, attention should be paid to maintain hemodynamic stability during surgery to avoid hypotension and bradycardia.
Collapse
Affiliation(s)
- Xiaohong Yu
- Department of Nursing Care, Chun'an First People's Hospital, Hangzhou, Zhejiang 311700, P.R. China
| | - Yinchan Zhou
- Department of Nursing Care, Chun'an First People's Hospital, Hangzhou, Zhejiang 311700, P.R. China
| | - Xuezhen Zheng
- Department of Nursing Care, Chun'an First People's Hospital, Hangzhou, Zhejiang 311700, P.R. China
| | - Su Shao
- Department of Nursing Care, Chun'an First People's Hospital, Hangzhou, Zhejiang 311700, P.R. China
| | - Huihong He
- Department of Nursing Care, Chun'an Hospital of TCM, Hangzhou, Zhejiang 311700, P.R. China
| |
Collapse
|
22
|
Yang C, Xia Z, Li T, Chen Y, Zhao M, Sun Y, Ma J, Wu Y, Wang X, Wang P, Wang H. Antioxidant Effect of Propofol in Gliomas and Its Association With Divalent Metal Transporter 1. Front Oncol 2020; 10:590931. [PMID: 33330075 PMCID: PMC7732593 DOI: 10.3389/fonc.2020.590931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/26/2020] [Indexed: 01/31/2023] Open
Abstract
Background Oxidative stress enhances tumor invasion and metastasis in brain cancer. The activation of divalent metal transporter 1 (DMT1), which is regulated by glutamate receptors, can result in the increase of oxidative stress and risk of cancer development. Propofol, an anesthetic with antioxidant capacity, has been shown to decrease oxidative stress in several different types of cancer. However, the underlying mechanism remains unclear. Therefore, the present study aimed to elucidate the mechanism underlying the suppression of oxidative stress in glioma cells by propofol. It was hypothesized that propofol may inhibit oxidative stress in gliomas via suppressing Ca2+-permeable α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA) receptor (CPAR)-DMT1 signaling. Methods Male Wistar rats with C6 gliomas, which were established by intracranial injection of C6 glioma cells, were either treated with propofol or not for 6 h before being sacrificed. The levels of AMPA receptor subunit GluR2 and DMT1 protein expression were assessed using western blotting. The association between CPARs and DMT1 was confirmed in vitro using the AMPA receptor activator (R, S)-AMPA. Glutathione and reactive oxygen species assay kits were used to evaluate tumor oxidative stress. The effect of propofol on glioma proliferation was evaluated by determining tumor weight, cell cycles and a growth curve. Results Propofol infusion at either 20 or 40 mg/kg-1/h-1 increased GluR2 levels and downregulated DMT1 expression as well as glutathione content markedly in the periphery compared with that in the glioma core. The in vitro results revealed that (R, S)-AMPA increased DMT1 expression and reactive oxygen species levels, which were partly reversed by propofol treatment. Conclusion Propofol regulated DMT1 expression by modulating CPARs, resulting in the inhibition of tumor oxidative stress and glioma growth. The present study provides evidence for optimizing the selection of anesthetic drugs in perioperative management and prognosis of patients with glioma.
Collapse
Affiliation(s)
- Chenyi Yang
- Department of Anesthesiology, The Third Central Hospital of Tianjin, Nankai University Affinity the Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Tang Li
- Department of Anesthesiology, The Third Central Hospital of Tianjin, Nankai University Affinity the Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yimeng Chen
- Department of Anesthesiology, The Third Central Hospital of Tianjin, Nankai University Affinity the Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Mingshu Zhao
- Department of Anesthesiology, The Third Central Hospital of Tianjin, Nankai University Affinity the Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yi Sun
- Department of Anesthesiology, The Third Central Hospital of Tianjin, Nankai University Affinity the Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Ji Ma
- Department of Anesthesiology, The Third Central Hospital of Tianjin, Nankai University Affinity the Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yi Wu
- Department of Anesthesiology, The Third Central Hospital of Tianjin, Nankai University Affinity the Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Xinyue Wang
- Department of Anesthesiology, The Third Central Hospital of Tianjin, Nankai University Affinity the Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Peng Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Haiyun Wang
- Department of Anesthesiology, The Third Central Hospital of Tianjin, Nankai University Affinity the Third Central Hospital, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
23
|
A Potential Role for Mitochondrial DNA in the Activation of Oxidative Stress and Inflammation in Liver Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [PMID: 32393967 PMCID: PMC7683147 DOI: 10.1155/2020/5835910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondria are organelles that are essential for cellular homeostasis including energy harvesting through oxidative phosphorylation. Mitochondrial dysfunction plays a vital role in liver diseases as it produces a large amount of reactive oxygen species (ROS), in turn leading to further oxidative damage to the structure and function of mitochondria and other cellular components. More severe oxidative damage occurred in mitochondrial DNA (mtDNA) than in nuclear DNA. mtDNA dysfunction results in further oxidative damage as it participates in encoding respiratory chain polypeptides. In addition, mtDNA can leave the mitochondria and enter the cytoplasm and extracellular environment. mtDNA is derived from ancient bacteria, contains many unmethylated CpG dinucleotide repeats similar to bacterial DNA, and thus can induce inflammation to exacerbate damage to liver cells and distal organs by activating toll-like receptor 9, inflammatory bodies, and stimulator of interferon genes (STING). In this review, we focus on the mechanism by which mtDNA alterations cause liver injuries, including nonalcoholic fatty liver, alcoholic liver disease, drug-induced liver injury, viral hepatitis, and liver cancer.
Collapse
|
24
|
Oxidative stress under general intravenous and inhalation anaesthesia. Arh Hig Rada Toksikol 2020; 71:169-177. [PMID: 33074169 PMCID: PMC7968496 DOI: 10.2478/aiht-2020-71-3437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/01/2020] [Indexed: 01/23/2023] Open
Abstract
Oxidative stress occurs when reactive oxygen species (ROS) production overwhelms cell protection by antioxidants. This review is focused on general anaesthesia-induced oxidative stress because it increases the rate of complications and delays recovery after surgery. It is important to know what effects of anaesthetics to expect in terms of oxidative stress, particularly in surgical procedures with high ROS production, because their either additive or antagonistic effect may be pivotal for the outcome of surgery. In vitro and animal studies on this topic are numerous but show large variability. There are not many human studies and what we know has been learned from different surgical procedures measuring different endpoints in blood samples taken mostly before and after surgery. In these studies most intravenous anaesthetics have antioxidative properties, while volatile anaesthetics temporarily increase oxidative stress in longer surgical procedures.
Collapse
|
25
|
Meng XY, Zhang XP, Sun Z, Wang HQ, Yu WF. Distant survival for patients undergoing surgery using volatile versus IV anesthesia for hepatocellular carcinoma with portal vein tumor thrombus: a retrospective study. BMC Anesthesiol 2020; 20:233. [PMID: 32928121 PMCID: PMC7491163 DOI: 10.1186/s12871-020-01111-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Background Whether anesthesia type is associated with the surgical outcome of Hepatocellular carcinoma (HCC) patients with portal vein tumor thrombus (PVTT) remains to be determined. This study aims to investigate the impact of volatile inhalational anesthesia (INHA) versus total IV anesthesia (TIVA) on the survival outcomes in HCC patients with PVTT. Methods A cohort of in-patients whom were diagnosed of HCC with PVTT in Eastern Hepatobiliary Surgery Hospital, Shanghai, China, from January 1, 2008 to December 24, 2012 were identified. Surgical patients receiving the INHA and TIVA were screened out. The overall survival (OS), recurrence-free survival (RFS) and several postoperative adverse events were compared according to anesthesia types. Results A total of 1513 patients were included in this study. After exclusions are applied, 263 patients remain in the INHA group and 208 in the TIVA group. Patients receiving INHA have a lower 5-year overall survival rate than that of patients receiving TIVA [12.6% (95% CI, 9.0 to 17.3) vs. 17.7% (95% CI, 11.3 to 20.8), P = 0.024]. Results of multivariable Cox-regression analysis also identify that INHA anesthesia is significantly associated with mortality and cancer recurrence after surgery compare to TIVA, with HR (95%CI) of 1.303 (1.065, 1.595) and 1.265 (1.040, 1.539), respectively. Subgroup analysis suggested that in more severe cancer patients, the worse outcome related to INHA might be more significant. Conclusion This retrospective analysis identifies that TIVA is associated with better outcomes compared with INHA. Future prospective studies clinical and translational studies are required to verify this difference and investigate underlying pathophysiology.
Collapse
Affiliation(s)
- Xiao-Yan Meng
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, 225 Changhai Road, Shanghai, China.,Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pudian Road, Shanghai, China
| | - Xiu-Ping Zhang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, 225 Changhai Road, Shanghai, China
| | - Zhe Sun
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, 225 Changhai Road, Shanghai, China
| | - Hong-Qian Wang
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, 225 Changhai Road, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, 225 Changhai Road, Shanghai, China. .,Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pudian Road, Shanghai, China.
| |
Collapse
|
26
|
Almoiliqy M, Wen J, Xu B, Sun YC, Lian MQ, Li YL, Qaed E, Al-Azab M, Chen DP, Shopit A, Wang L, Sun PY, Lin Y. Cinnamaldehyde protects against rat intestinal ischemia/reperfusion injuries by synergistic inhibition of NF-κB and p53. Acta Pharmacol Sin 2020; 41:1208-1222. [PMID: 32238887 PMCID: PMC7609352 DOI: 10.1038/s41401-020-0359-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
Our preliminary study shows that cinnamaldehyde (CA) could protect against intestinal ischemia/reperfusion (I/R) injuries, in which p53 and NF-κB p65 play a synergistic role. In this study, we conducted in vivo and in vitro experiments to verify this proposal. SD rats were pretreated with CA (10 or 40 mg · kg−1 · d−1, ig) for 3 days, then subjected to 1 h mesenteric ischemia followed by 2 h reperfusion. CA pretreatment dose-dependently ameliorated morphological damage and reduced inflammation evidenced by decreased TNF-α, IL-1β, and IL-6 levels and MPO activity in I/R-treated intestinal tissues. CA pretreatment also attenuated oxidative stress through restoring SOD, GSH, LDH, and MDA levels in I/R-treated intestinal tissues. Furthermore, CA pretreatment significantly reduced the expression of inflammation/apoptosis-related NF-κB p65, IKKβ, IK-α, and NF-κB p50, and downregulated apoptotic protein expression including p53, Bax, caspase-9 and caspase-3, and restoring Bcl-2, in I/R-treated intestinal tissues. We pretreated IEC-6 cells in vitro with CA for 24 h, followed by 4 h hypoxia and 3 h reoxygenation (H/R) incubation. Pretreatment with CA (3.125, 6.25, and 12.5 μmol · L−1) significantly reversed H/R-induced reduction of IEC-6 cell viability. CA pretreatment significantly suppressed oxidative stress, NF-κB activation and apoptosis in H/R-treated IEC-6 cells. Moreover, CA pretreatment significantly reversed mitochondrial dysfunction in H/R-treated IEC-6 cells. CA pretreatment inhibited the nuclear translocation of p53 and NF-κB p65 in H/R-treated IEC-6 cells. Double knockdown or overexpression of p53 and NF-κB p65 caused a synergistic reduction or elevation of p53 compared with knockdown or overexpression of p53 or NF-κB p65 alone. In H/R-treated IEC-6 cells with double knockdown or overexpression of NF-κB p65 and p53, CA pretreatment caused neither further decrease nor increase of NF-κB p65 or p53 expression, suggesting that CA-induced synergistic inhibition on both NF-κB and p53 played a key role in ameliorating intestinal I/R injuries. Finally, we used immunoprecipitation assay to demonstrate an interaction between p53 and NF-κB p65, showing the basis for CA-induced synergistic inhibition. Our results provide valuable information for further studies.
Collapse
|
27
|
Li L, Liu T, Liu L, Zhang Z, Li S, Zhang Z, Zhou Y, Liu F. Metabolomics Analysis of the Effect of Hydrogen-Rich Water on Myocardial Ischemia-Reperfusion Injury in Rats. J Bioenerg Biomembr 2020; 52:257-268. [PMID: 32472432 DOI: 10.1007/s10863-020-09835-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022]
Abstract
To investigate the effect of hydrogen-rich water on myocardial tissue metabolism in a myocardial ischemia-reperfusion injury (MIRI) rat model. Twelve rats were randomly divided into a hydrogen-rich water group and a control group of size 6 each. After the heart was removed, it was fixed in the Langendorff device, and the heart was perfused with 37 °C perfusion solution pre-balanced with oxygen. The control group was perfused with Kreb's-Ringers (K-R) solution, and the hydrogen-rich water group was perfused with K-R solution + hydrogen-rich water. Liquid Chromatograph Mass Spectrometer (LC-MS) analysis platform was used for metabolomics research. Principle component analysis (PCA), partial least squares discriminant analysis (PLS-DA), orthogonal partial least squares discriminant analysis (OPLS-DA), Variable importance in projection (VIP) value of OPLS-DA model (threshold value ≥1) were employed with independent sample T Test (p < 0.05) to find differentially expressed metabolites, and screen for differential metabolic pathways. VIP (OPLS-DA) analysis was performed with T test, and the metabolites of the control group and the hydrogen-rich water group were significantly different, and the glycerophospholipid metabolism was screened. Seven myocardial ischemia-reperfusion injury (MIRI)-related signaling pathways were identified, including glycerophospholipid metabolism, glycosylphosphatidylinositol (GPI) anchored biosynthesis, and purine metabolism, as well as 10 biomarkers such as phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. Hydrogen-rich water regulates the metabolic imbalance that could change MIRI myocardial tissue metabolism, and alleviate ischemia-reperfusion injury in isolated hearts of rats through multiple signaling pathways.
Collapse
Affiliation(s)
- Liangtong Li
- Medical College, Hebei University, Baoding, 071000, China
| | - Tongtong Liu
- Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Li Liu
- Medical College, Hebei University, Baoding, 071000, China
| | - Zhe Zhang
- Medical College, Hebei University, Baoding, 071000, China
| | - Shaochun Li
- Medical College, Hebei University, Baoding, 071000, China
| | - Zhiling Zhang
- Department of Cardiology, Baoding First Center Hospital, Baoding, 071000, China
| | - Yujuan Zhou
- Medical College, Hebei University, Baoding, 071000, China.
| | - Fulin Liu
- Affiliated Hospital of Hebei University, Baoding, 071000, China.
| |
Collapse
|
28
|
Xuan W, Song D, Yan Y, Yang M, Sun Y. Police Violence among Adults Diagnosed with Mental Disorders. HEALTH & SOCIAL WORK 2020; 45:81-89. [PMID: 32393967 PMCID: PMC7683147 DOI: 10.1093/hsw/hlaa003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 05/15/2019] [Indexed: 06/11/2023]
Abstract
Police violence is reportedly common among those diagnosed with mental disorders characterized by the presence of psychotic symptoms or pronounced emotional lability. Despite the perception that people with mental illness are disproportionately mistreated by the police, there is relatively little empirical research on this topic. A cross-sectional general population survey was administered online in 2017 to 1,000 adults in two eastern U.S. cities to examine the relationship between police violence exposure, mental disorders, and crime involvement. Results from hierarchical logistic regression and mediation analyses revealed that a range of mental health conditions are broadly associated with elevated risk for police violence exposure. Individuals with severe mental illness are more likely than the general population to be physically victimized by police, regardless of their involvement in criminal activities. Most of the excess risk of police violence exposure related to common psychiatric diagnoses was explained by confounding factors including crime involvement. However, crime involvement may necessitate more police contact, but does not necessarily justify victimization or excessive force (particularly sexual and psychological violence). Findings support the need for adequate training for police officers on how to safely interact with people with mental health conditions, particularly severe mental illness.
Collapse
Affiliation(s)
- Wei Xuan
- Department of Hepatopancreaticobiliary Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Youyou Yan
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, No. 126 Xinmin Street, Changchun 130041, China
| | - Yan Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
29
|
Propofol Attenuates Hypoxia-Induced Inflammation in BV2 Microglia by Inhibiting Oxidative Stress and NF- κB/Hif-1 α Signaling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8978704. [PMID: 32420378 PMCID: PMC7204316 DOI: 10.1155/2020/8978704] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 01/29/2023]
Abstract
Hypoxia-induced neuroinflammation typically causes neurological damage and can occur during stroke, neonatal hypoxic-ischemic encephalopathy, and other diseases. Propofol is widely used as an intravenous anesthetic. Studies have shown that propofol has antineuroinflammatory effect. However, the underlying mechanism remains to be fully elucidated. Thus, we aimed to investigate the beneficial effects of propofol against hypoxia-induced neuroinflammation and elucidated its potential cellular and biochemical mechanisms of action. In this study, we chose cobalt chloride (CoCl2) to establish a hypoxic model. We found that propofol decreased hypoxia-induced proinflammatory cytokines (TNFα, IL-1β, and IL-6) in BV2 microglia, significantly suppressed the excessive production of reactive oxygen species, and increased the total antioxidant capacity and superoxide dismutase activity. Furthermore, propofol attenuated the hypoxia-induced decrease in mitochondrial membrane potential andy 2 strongly inhibited protein expression of nuclear factor-kappa B (NF-κB) subunit p65 and hypoxia inducible factor-1α (Hif-1α) in hypoxic BV2 cells. To investigate the role of NF-κB p65, specific small interfering RNA (siRNA) against NF-κB p65 were transfected into BV2 cells, followed by exposure to hypoxia for 24 h. Hypoxia-induced Hif-1α production was downregulated after NF-κB p65 silencing. Further, propofol suppressed Hif-1α expression by inhibiting the upregulation of NF-κB p65 after exposure to hypoxia in BV2 microglia. In summary, propofol attenuates hypoxia-induced neuroinflammation, at least in part by inhibiting oxidative stress and NF-κB/Hif-1α signaling.
Collapse
|
30
|
Chen L, Zhong JL. MicroRNA and heme oxygenase-1 in allergic disease. Int Immunopharmacol 2020; 80:106132. [DOI: 10.1016/j.intimp.2019.106132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
|
31
|
Liu J, Tan S, Wang Y, Luo J, Long Y, Mei X, Tang Y. Role of Metallothionein-1 and Metallothionein-2 in the Neuroprotective Mechanism of Sevoflurane Preconditioning in Mice. J Mol Neurosci 2020; 70:713-723. [PMID: 31953609 DOI: 10.1007/s12031-020-01481-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
This study investigated the protective effects and mechanisms of sevoflurane preconditioning (SPC) on neurons in ischemic mice. After SPC, mice were subjected to middle cerebral artery occlusion (MCAO). Cerebral infarction area, cell apoptosis, and metallothionein-1 (MT-1) and metallothionein-2 (MT-2) expressions in MCAO mice were analyzed. Mouse primary neurons were isolated and cultured to determine the location of metallothioneins (MTs) using immunofluorescence. Neurons transfected with MT-siRNA, exogenous MTs, or sh-MTF-1 were subjected to SPC and/or oxygen-glucose deprivation (OGD), and MT-1/MT-2 expression and neurotoxin release were assayed. Meanwhile, neurons were treated with the nitric oxide donor SNAP, degraded SNAP, or the peroxide initiator paraquat, and alterations in MT-1/MT-2 expression and neurotoxicity release were observed. SPC attenuated neuronal injury and apoptosis in MCAO mice. SPC could protect neurons against OGD injury and resulted in upregulated MT-1/MT-2 expression. MT-siRNA transfection led to the downregulated expression of MT-1/MT-2 and increased neurotoxicity, and the expression patterns of these neurons were different from those of neurons transfected with exogenous MTs. The knockdown of MTs could hinder the protective effect of SPC against OGD. Pretreatment with SNAP or paraquat could increase MTF-1 expression in the nucleus of neurons, protecting against OGD injury. The inhibition of nitric oxide and peroxide inhibited the protective role of SPC in OGD by downregulating MTF-1 expression. sh-MTF-1 transfection downregulated MT-1/MT-2 expression and enhanced neurotoxicity in neurons. SPC confers neuroprotection in focal cerebral ischemia mouse models by upregulating the expression of MT-1 and MT-2 by activating NO and peroxide and increasing MTF-1 expression in the nucleus.
Collapse
Affiliation(s)
- Jitong Liu
- Department of Anesthesiology, Clinical Research Center for Anesthesiology of ERAS in Hunan Province, Hunan Provincial People's Hospital, Changsha, 410005, Hunan, People's Republic of China
| | - Suhong Tan
- Department of Anesthesiology, Clinical Research Center for Anesthesiology of ERAS in Hunan Province, Hunan Provincial People's Hospital, Changsha, 410005, Hunan, People's Republic of China
| | - Yongsheng Wang
- Department of Anesthesiology, Clinical Research Center for Anesthesiology of ERAS in Hunan Province, Hunan Provincial People's Hospital, Changsha, 410005, Hunan, People's Republic of China
| | - Jia Luo
- Department of Anesthesiology, Clinical Research Center for Anesthesiology of ERAS in Hunan Province, Hunan Provincial People's Hospital, Changsha, 410005, Hunan, People's Republic of China
| | - Yi Long
- Department of Anesthesiology, Clinical Research Center for Anesthesiology of ERAS in Hunan Province, Hunan Provincial People's Hospital, Changsha, 410005, Hunan, People's Republic of China
| | - Xiping Mei
- Department of Anesthesiology, Clinical Research Center for Anesthesiology of ERAS in Hunan Province, Hunan Provincial People's Hospital, Changsha, 410005, Hunan, People's Republic of China
| | - Yixun Tang
- Department of Anesthesiology, Clinical Research Center for Anesthesiology of ERAS in Hunan Province, Hunan Provincial People's Hospital, Changsha, 410005, Hunan, People's Republic of China.
| |
Collapse
|
32
|
Chen Z, Zhang L, Liu C, Wang X, Chen C. Effect of propofol on the skeletal muscle insulin receptor in rats with hepatic ischemia-reperfusion injury. J Int Med Res 2019; 48:300060519894450. [PMID: 31885348 PMCID: PMC7607524 DOI: 10.1177/0300060519894450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Objective To investigate the effect of propofol on the expression and phosphorylation of the skeletal muscle insulin receptor and its substrates following hepatic ischemia-reperfusion injury (HIRI). Methods Sixty healthy Wistar rats were divided randomly into a propofol group (P) and an ischemia-reperfusion group (I/R). Rats in the P group received propofol infusion prior to ischemia and during a 120-minute post-reperfusion period. Plasma glucose and insulin concentrations were measured, as well as expression levels of the insulin signaling proteins insulin receptor (IR) β unit (IRβ) and IR substrate 1 (IRS-1). In addition, tyrosine phosphorylation levels of these proteins were measured in skeletal muscle. Results Plasma glucose levels in the two groups were higher at 2 hours after reperfusion (T2) versus exposure of the hepatic hilum (T1). Plasma glucose levels in the I/R group were higher than those in the P group, while insulin levels at T2 were lower. In addition, phosphotyrosine levels of IRβ and IRS-1 were decreased by 32.1% and 22.4%, respectively. Conclusion Propofol increased phosphotyrosine levels of IRβ and IRS-2, resulting in an alleviation of increased plasma glucose levels following HIRI.
Collapse
Affiliation(s)
- Zuping Chen
- Department of Anesthesiology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Li Zhang
- National Health Commission, Beijing, China
| | - Cunming Liu
- The People's Hospital of Jiangsu, Jiangsu, China
| | - Xuehao Wang
- The People's Hospital of Jiangsu, Jiangsu, China
| | - Chen Chen
- Department of Anesthesiology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
33
|
Murakami Y, Ueki R, Tachikawa T, Hirose M. The Basic Study of the Mechanism of Propofol-Related Infusion Syndrome Using a Murine Skeletal Muscle Injury Model. Anesth Pain Med 2019; 9:e89417. [PMID: 31497518 PMCID: PMC6712282 DOI: 10.5812/aapm.89417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/05/2019] [Accepted: 04/07/2019] [Indexed: 12/12/2022] Open
Abstract
Background The pathophysiological mechanism of propofol-related infusion syndrome (PRIS) is believed to be due to the injury to the mitochondrial electron transport chain and the resultant metabolic disorders that are caused by both propofol agents and the lipid solvent. However, the mechanisms and causative factors of PRIS have not been fully elucidated. Objectives The aim of this study was to evaluate the possibility of a research model using the culture of differentiated C2C12 cells for fundamental research of PRIS. Methods First, differentiated C2C12 cells were cultured accompanied by several concentrations of chemical reagents of 2,6-diisopropylphenol (2,6 DIP) or dimethyl sulfoxide (DMSO) for 60 hours and the cell death rate was examined by trypan blue staining. Second, The cells were incubated with a commercially available propofol reagent or lipid reagent for 48 hours. The supernatant fluid of the cell culture medium was gathered and the numbers of floating cells were measured by cell counter. To investigate the mitochondrial disorder by the propofol preparation, JC-1, an experiment using fluorescent reagent, was performed for the 48 hours with 100 µg/mL propofol incubation. Results The rate of cell death was increased with elevating concentrations both of chemical reagents of 2,6 DIP group and dimethyl sulfoxide group. The rates of cell death were significantly higher in the 2,6 DIP group than DMSO group. The numbers of floating cells were increased with elevating concentrations both commercially available propofol reagent and lipid reagent groups. The decreased red/green fluorescence ratio by JC-1 staining in the propofol 100µg/mL group proved an attenuated mitochondrial membrane potential. Conclusions The dose-dependent cell damage induced by the propofol reagents and a lipid solvent may provide a proposed model as a basic experimental model for further investigations into PRIS.
Collapse
Affiliation(s)
- Yuryo Murakami
- Department of Anesthesiology and Pain Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Ryusuke Ueki
- Department of Anesthesiology and Pain Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Corresponding Author: MD, Ph.D. Department of Anesthesiology and Pain Medicine, Hyogo College of Medicine, 1-1 Mukogawa-Cho, Nishinomiya, Hyogo 663-8501, Japan. Tel: 81-798456392, Fax: 81-798456393,
| | - Taihei Tachikawa
- Department of Anesthesiology, Meiwa Hospital, Nishinomiya, Japan
| | - Munetaka Hirose
- Department of Anesthesiology and Pain Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
34
|
Ming N, Na HST, He JL, Meng QT, Xia ZY. Propofol alleviates oxidative stress via upregulating lncRNA-TUG1/Brg1 pathway in hypoxia/reoxygenation hepatic cells. J Biochem 2019; 166:415-421. [PMID: 31297532 DOI: 10.1093/jb/mvz054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
Abstract
Reducing oxidative stress is an effective method to prevent hepatic ischaemia/reperfusion injury (HIRI). This study focuses on the role of propofol on the oxidative stress of hepatic cells and the involved lncRNA-TUG1/Brahma-related gene 1 (Brg1) pathway in HIRI mice. The mouse HIRI model was established and was intraperitoneally injected with propofol postconditioning. Hepatic injury indexes were used to evaluate HIRI. The oxidative stress was indicated by increasing 8-isoprostane concentration. Mouse hepatic cell line AML12 was treated with hypoxia and subsequent reoxygenation (H/R). The targeted regulation of lncRNA-TUG1 on Brg1 was proved by RNA pull-down, RIP (RNA-binding protein immunoprecipitation) and the expression level of Brg1 responds to silencing or overexpression of lncRNA-TUG1. Propofol alleviates HIRI and induces the upregulation of lncRNA-TUG1 in the mouse HIRI model. Propofol increases cell viability and lncRNA-TUG1 expression level in H/R-treated hepatic cells. In H/R plus propofol-treated hepatic cells, lncRNA-TUG1 silencing reduces cell viability and increased oxidative stress. LncRNA-TUG1 interacts with Brg1 protein and keeps its level via inhibiting its degradation. Brg1 overexpression reverses lncRNA-TUG1 induced the reduction of cell viability and the increase in oxidative stress. LncRNA-TUG1 silencing abrogates the protective role of propofol against HIRI in the mouse HIRI model. LncRNA-TUG1 has a targeted regulation of Brg1, and thereby affects the oxidative stress induced by HIRI. This pathway mediates the protective effect of propofol against HIRI of hepatic cell.
Collapse
Affiliation(s)
- Nuo Ming
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ha Sen Ta Na
- Department of Anesthesiology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Jin-Ling He
- Department of Anesthesiology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
35
|
Fu J, Cheng X, Zhang L. Effect of hydrogen sulphide on inflammatory factors of the mitochondria after limb ischaemia-reperfusion injury in rats. Int Wound J 2019; 16:595-600. [PMID: 30693651 PMCID: PMC7948542 DOI: 10.1111/iwj.13068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/18/2018] [Accepted: 12/28/2018] [Indexed: 12/24/2022] Open
Abstract
The goal of this study was to evaluate the effect of hydrogen sulphide on inflammatory factors and the energy metabolism of mitochondria after limb reperfusion injury in rats. Sixty Wistar rats were divided into three groups: the sham operated group, the control group (the ischaemia-reperfusion injury [IRI] + normal saline group), and the experimental group (the IRI + H2 S group). An experimental rat model of limb IRI was established. Skeletal muscle samples were collected to observe the content of necrotic products (including myoglobin (MB), lysophosphatidylcholine (LPC), and lipid peroxidation (LPO)); blood samples were collected to observe changes in the contents of interleukin-1 (IL-1), Interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α); and the mitochondria of skeletal muscle cells were extracted for mitochondrial transmembrane potential measurement and adenosine triphosphate (ATP) content determination. The results underwent further statistical analysis. The contents of MB, LPC, and LPO in the limb skeletal muscle, liver, lung, and kidney tissues of rats in the control group were significantly increased (P < 0.05) after IRI, which was markedly attenuated by treatment with hydrogen sulphide (P < 0.05). Ischaemia/reperfusion of the lower extremities in rats triggered a significant increase in serum levels of IL-1, IL-6, and TNF-α, which was significantly inhibited by treatment with H2 S during ischaemia/reperfusion. In addition, the inhibitory effect tended to be time-dependent. After limb ischaemia/reperfusion, the mitochondrial transmembrane potential of skeletal muscle cells in the control group decreased significantly (P < 0.05), while the potential energy of the mitochondrial membrane in the experimental group was significantly higher than that in the control group (P < 0.05). The content of ATP in mitochondria of skeletal muscle cells of ischaemia-reperfusion rats in the control group was significantly lower than that in the sham operated group (P < 0.05), while the content of ATP of mitochondria in the experimental group after H2 S treatment was significantly higher than the control group (P < 0.05). Hydrogen sulphide can alleviate the injury of skeletal muscle and distal organs after limb ischaemia-reperfusion and reduce local inflammatory reaction, which is essential in alleviating mitochondrial transmembrane potential and energy metabolism disorder during reperfusion injury. The purpose of the study is to summarise the available information and provide theoretical support for the application of hydrogen sulphide in the treatment of limb IRI in skeletal muscle and distal organs.
Collapse
Affiliation(s)
- Jun Fu
- Department of Anesthesiology, Renmin HospitalHubei University of MedicineShiyanChina
| | - Xin‐Hua Cheng
- Department of Microscopic Orthopaedic, Renmin HospitalHubei University of MedicineShiyanChina
| | - Lei Zhang
- Department of Orthopedic Surgery, Renmin HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
36
|
Mladinov D, Yarnoff K, Nagababu E, Berkowitz DE, Lawrence C, Ness PM, Kickler T, Brunker PA, Boyd JS, Dodd-O JM. Effect of incubation with crystalloid solutions or medications on packed red blood cells. Transfusion 2019; 59:2643-2651. [PMID: 31135973 DOI: 10.1111/trf.15353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND American Association of Blood Banks (AABB) guidelines suggest that packed red blood cells (PRBCs) be administered through a dedicated intravenous (IV) catheter. Literature supporting this broad-scope declaration are scarce. Obtaining additional IV access is painful, costly, and an infectious risk. We evaluated the effect of co-incubating PRBCs with crystalloids and medications on PRBC hemolysis, membrane deformability, and aggregation, as well as medication concentration. METHODS PRBCs were co-incubated 5 minutes with plasma, normal saline (NS), 5% dextrose in water (D5W), Plasmalyte, epinephrine (epi), norepinephrine (norepi), dopamine (dopa), or Propofol (prop). Samples were then assessed for hemolysis (free hemoglobin, serum potassium), membrane deformability (elongation index [EI]), aggregation (smear, critical shear stress [mPa]) and drug concentration (High Performance Liquid Chromatography/Tandem Mass Spectrometry [LCMS-MS]). Significance (p ≤ 0.05) was determined by Wilcoxon-paired comparisons or Wilcoxon/Kruskall Willis with post-hoc Dunn's test. RESULTS Compared to co-incubation with plasma: 1) co-incubation resulted in significantly increased hemolysis only when D5W as used (free hemoglobin, increased potassium); 2) EI trended lower when co-incubated with D5W and trended toward higher when co-incubated with prop; 3) aggregation was significantly lower when PRBCs co-incubated with NS, D5W, or Plasmalyte, and trended lower when co-incubated with epi, norepi, or dopa. Medication concentrations were between those predicted by distribution only in plasma and distribution through the entire intra- and extracellular space. CONCLUSION Our data suggest that 5 minutes of PRBC incubation with isotonic crystalloids or catecholamines does not deleteriously alter PRBC hemolysis, membrane deformability, or aggregation. Co-incubation with D5W likely increases hemolysis. Propofol may promote hemolysis.
Collapse
Affiliation(s)
- Domagoj Mladinov
- Department of Anesthesiology, University of Alabama, Birmingham, Alabama
| | - Kristine Yarnoff
- Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Enika Nagababu
- Department of Anesthesiology, University of Alabama, Birmingham, Alabama
| | - Daniel E Berkowitz
- Department of Anesthesiology, University of Alabama, Birmingham, Alabama
| | - Courtney Lawrence
- Department of Transfusion Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul M Ness
- Department of Transfusion Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas Kickler
- Department of Transfusion Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patricia A Brunker
- Department of Transfusion Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Biomedical Services, Greater Chesapeake and Potomac Region, The American Red Cross, Baltimore, Maryland
| | - Joan S Boyd
- Department of Transfusion Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeffrey M Dodd-O
- Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
37
|
Feng Z, Wang JW, Wang Y, Dong WW, Xu ZF. Propofol Protects Lung Endothelial Barrier Function by Suppression of High-Mobility Group Box 1 (HMGB1) Release and Mitochondrial Oxidative Damage Catalyzed by HMGB1. Med Sci Monit 2019; 25:3199-3211. [PMID: 31040263 PMCID: PMC6507496 DOI: 10.12659/msm.915417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background The processes of mechanical ventilation-induced lung injury (VILI) triggers the release of high-mobility group box 1 (HMGB1), a prominent damage-associated molecular pattern (DAMP) family member, which can cause damage to pulmonary vascular endothelial cells. We aimed to determine whether propofol protected against endothelial cell injury induced by HMGB1 in vitro and in vivo. Material/Methods ICR mice (male) were mechanically ventilated for 4 h after anesthetization at both low tidal volume (LVT, 6 ml/kg) and high tidal volume (HVT, 30 ml/kg). A propofol bolus (10 mg/kg) was administered to the animals prior to the onset of ventilation, followed by infusion at 5 mg/(kg·h). We obtained confluent cultures of mouse lung vascular endothelial cells (MLVECs) and then performed cyclic stretching at 20% stretch for 4 h with or without propofol. Results HMGB1 reduced the expression of tight junctions between endothelial cells, including VE-cadherin and ZO-1, and increased endothelial permeability, and both were blocked by propofol. We found that MLVECs exhibited mitochondrial oxidative damage by HMGB1, which was successfully suppressed through administration of MnTBAP as well as propofol. Propofol ameliorated HVT-associated lung vascular hyperpermeability and HMGB1 production in vivo. Propofol also inhibited HMBG1 release caused by cyclic stretching in MLVECs in vitro. Conclusions Our results prove that the cyto-protective function of propofol protects against lung ventilation-induced dysfunction of the lung endothelial barrier. This function of propofol is mediated through inhibition of HMGB1 release caused by mechanical stretching and mitochondrial oxidative damage triggered by HMGB1.
Collapse
Affiliation(s)
- Zhou Feng
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Jian-Wei Wang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Wen-Wen Dong
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Zi-Feng Xu
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
38
|
Chen W, Ju XZ, Lu Y, Ding XW, Miao CH, Chen JW. Propofol improved hypoxia-impaired integrity of blood-brain barrier via modulating the expression and phosphorylation of zonula occludens-1. CNS Neurosci Ther 2019; 25:704-713. [PMID: 30680941 PMCID: PMC6515893 DOI: 10.1111/cns.13101] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/04/2018] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Aims Hypoxia may damage blood‐brain barrier (BBB). The neuroprotective effect of propofol has been reported. We aimed to identify whether and how propofol improved hypoxia‐induced impairment of BBB integrity. Methods Mouse brain microvascular endothelial cells (MBMECs) and astrocytes were cocultured to establish in vitro BBB model. The effects of hypoxia and propofol on BBB integrity were examined. Further, zonula occludens‐1 (ZO‐1) expression and phosphorylation, hypoxia‐inducible factor‐1α (HIF‐1α) and vascular endothelial growth factor (VEGF) expression, intracellular calcium concentration and Ca2+/calmodulin‐dependent protein kinase II (CAMKII) activation were measured. Results Hypoxia‐impaired BBB integrity, which was protected by propofol. Hypoxia‐reduced ZO‐1 expression, while induced ZO‐1 phosphorylation. These effects were attenuated by propofol. The expression of HIF‐1α and VEGF was increased by hypoxia and was alleviated by propofol. The hypoxia‐mediated suppression of ZO‐1 and impaired BBB integrity was reversed by HIF‐α inhibitor and VEGF inhibitor. In addition, hypoxia increased the intracellular calcium concentration and induced the phosphorylation of CAMKII, which were mitigated by propofol. The hypoxia‐induced phosphorylation of ZO‐1 and impaired BBB integrity was ameliorated by calcium chelator and CAMKII inhibitor. Conclusion Propofol could protect against hypoxia‐mediated impairment of BBB integrity. The underlying mechanisms may involve the expression and phosphorylation of ZO‐1.
Collapse
Affiliation(s)
- Wei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xing-Zhu Ju
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yan Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Wei Ding
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chang-Hong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia-Wei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Heme oxygenase-1 induction by hemin prevents oxidative stress-induced acute cholestasis in the rat. Clin Sci (Lond) 2019; 133:117-134. [PMID: 30538149 DOI: 10.1042/cs20180675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
We previously demonstrated in in vitro and ex vivo models that physiological concentrations of unconjugated bilirubin (BR) prevent oxidative stress (OS)-induced hepatocanalicular dysfunction and cholestasis. Here, we aimed to ascertain, in the whole rat, whether a similar cholestatic OS injury can be counteracted by heme oxygenase-1 (HO-1) induction that consequently elevates endogenous BR levels. This was achieved through the administration of hemin, an inducer of HO-1, the rate-limiting step in BR generation. We found that BR peaked between 6 and 8 h after hemin administration. During this time period, HO-1 induction fully prevented the pro-oxidant tert-butylhydroperoxide (tBuOOH)-induced drop in bile flow, and in the biliary excretion of bile salts and glutathione, the two main driving forces of bile flow; this was associated with preservation of the membrane localization of their respective canalicular transporters, bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2), which are otherwise endocytosed by OS. HO-1 induction counteracted the oxidation of intracellular proteins and membrane lipids induced by tBuOOH, and fully prevented the increase in the oxidized-to-total glutathione (GSHt) ratio, a sensitive parameter of hepatocellular OS. Compensatory elevations of the activity of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) were also prevented. We conclude that in vivo HO-1 induction protects the liver from acute oxidative injury, thus preventing consequent cholestasis. This reveals an important role for the induction of HO-1 and the consequently elevated levels of BR in preserving biliary secretory function under OS conditions, thus representing a novel therapeutic tool to limit the cholestatic injury that bears an oxidative background.
Collapse
|
40
|
Loggi S, Mininno N, Damiani E, Marini B, Adrario E, Scorcella C, Domizi R, Carsetti A, Pantanetti S, Pagliariccio G, Carbonari L, Donati A. Changes in the sublingual microcirculation following aortic surgery under balanced or total intravenous anaesthesia: a prospective observational study. BMC Anesthesiol 2019; 19:1. [PMID: 30611197 PMCID: PMC6320625 DOI: 10.1186/s12871-018-0673-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022] Open
Abstract
Background In vascular surgery with aortic cross-clamping, ischemia/reperfusion injury induces systemic haemodynamic and microcirculatory disturbances. Different anaesthetic regimens may have a varying impact on tissue perfusion. The aim of this study was to explore changes in microvascular perfusion in patients undergoing elective open abdominal aortic aneurysm repair under balanced or total intravenous anaesthesia. Methods Prospective observational study. Patients undergoing elective open infrarenal abdominal aortic aneurysm repair received balanced (desflurane + remifentanil, n = 20) or total intravenous anaesthesia (TIVA, propofol + remifentanil using target-controlled infusion, n = 20) according to the clinician’s decision. A goal-directed haemodynamic management was applied in all patients. Measurements were obtained before anaesthesia induction (baseline) and at end-surgery and included haemodynamics, arterial/venous blood gases, sublingual microvascular flow and density (incident dark field illumination imaging), peripheral muscle tissue oxygenation and microcirculatory reactivity (thenar near infrared spectroscopy with a vascular occlusion test). Results The two groups did not differ for baseline characteristics, mean aortic-clamping time and requirement of vasoactive agents during surgery. Changes in mean arterial pressure, systemic vascular resistance index, haemoglobin and blood lactate levels were similar between the two groups, while the cardiac index increased at end-surgery in patients undergoing balanced anaesthesia. The sublingual microcirculation was globally unaltered in the TIVA group at end-surgery, while patients undergoing balanced anaesthesia showed an increase in the total and perfused small vessel densities (from 16.6 ± 4.2 to 19.1 ± 5.4 mm/mm2, p < 0.05). Changes in microvascular density were negatively correlated with changes in the systemic vascular resistance index. The area of reactive hyperaemia during the VOT increased in the balanced anaesthesia group (from 14.8 ± 8.1 to 25.6 ± 14.8%*min, p < 0.05). At end-surgery, the tissue haemoglobin index in the TIVA group was lower than that in the balanced anaesthesia group. Conclusions In patients undergoing elective open abdominal aortic aneurysm repair with a goal-directed hemodynamic management, indices of sublingual or peripheral microvascular perfusion/oxygenation were globally preserved with both balanced anaesthesia and TIVA. Patients undergoing balanced anaesthesia showed microvascular recruitment at end-surgery. Trial registration NCT03510793, https://www.clinicaltrials.gov, date of registration April 27th 2018, retrospectively registered.
Collapse
Affiliation(s)
- Silvia Loggi
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Nicoletta Mininno
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Elisa Damiani
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Benedetto Marini
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Erica Adrario
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Claudia Scorcella
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Roberta Domizi
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Andrea Carsetti
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Simona Pantanetti
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy
| | - Gabriele Pagliariccio
- Unit of Vascular Surgery, Azienda Ospedaliera Universitaria "Ospedali Riuniti Umberto I - Lancisi - Salesi" of Ancona, Ancona, Italy
| | - Luciano Carbonari
- Unit of Vascular Surgery, Azienda Ospedaliera Universitaria "Ospedali Riuniti Umberto I - Lancisi - Salesi" of Ancona, Ancona, Italy
| | - Abele Donati
- Anaesthesia and Intensive Care Unit, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, via Tronto 10/a, 60126, Torrette di Ancona, Italy.
| |
Collapse
|
41
|
Nekhendzy V. Lights! Oxygen! Action! Hollywood anaesthesia is coming to a theatre near you. Br J Anaesth 2018; 118:489-491. [PMID: 28403425 DOI: 10.1093/bja/aex077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
42
|
Lyu Z, Cao J, Wang J, Lian H. Protective effect of vitexin reduces sevoflurane-induced neuronal apoptosis through HIF-1α, VEGF and p38 MAPK signaling pathway in vitro and in newborn rats. Exp Ther Med 2018; 15:3117-3123. [PMID: 29456715 DOI: 10.3892/etm.2018.5758] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/26/2017] [Indexed: 12/17/2022] Open
Abstract
Previous studies have demonstrated that Vitexin possesses antihypertensive, anti-inflammatory and potential anticancer effects. The present study aimed to investigate whether the protective effect of vitexin protects against sevoflurane-induced neuronal apoptosis and the underlying mechanisms of this protective effect. The results demonstrated that Vitexin pretreatment significantly reduced neuronal apoptosis, and inhibited caspase-3 activity, apoptosis regulator BAX protein expression and malondialdehyde levels in sevoflurane-induced newborn rats. In addition, Vitexin pretreatment increased superoxide dismutase and glutathione peroxidase activity. Furthermore, it was revealed that treatment with vitexin induced hypoxia inducible factor 1α subunit (HIF-1α) and vascular endothelial growth factor (VEGF) protein expression, and suppressed phosphorylated-p38 MAP kinase (p38) protein expression in sevoflurane-induced newborn rat. Together, the results of the current study suggest that the protective effect of vitexin reduces sevoflurane-induced neuronal apoptosis through HIF-1α-, VEGF- and p38-associated signaling pathways in newborn rats.
Collapse
Affiliation(s)
- Zhipai Lyu
- Department of Anesthesia, The Third Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou 450052, P.R. China
| | - Jing Cao
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou 450052, P.R. China
| | - Ju Wang
- Department of Anesthesia, The Third Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou 450052, P.R. China
| | - Hongmei Lian
- Department of Anesthesia, The Third Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou 450052, P.R. China
| |
Collapse
|
43
|
Chen J, Shen N, Duan X, Guo Y. An investigation of the mechanism of dexmedetomidine in improving postoperative cognitive dysfunction from the perspectives of alleviating neuronal mitochondrial membrane oxidative stress and electrophysiological dysfunction. Exp Ther Med 2017; 15:2037-2043. [PMID: 29434802 PMCID: PMC5776520 DOI: 10.3892/etm.2017.5589] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to investigate the mechanism of dexmedetomidine in improving postoperative cognitive dysfunction from the perspectives of alleviating neuronal mitochondrial membrane oxidative stress and electrophysiological dysfunction. A total of 120 patients undergoing elective surgery under general anesthesia from June 2013 to May, 2016 were selected as the subjects of the study and randomly divided into the propofol + remifentanil and dexmedetomidine groups. The Rey Auditory Verbal Learning Test (AVLT) and Beck Depression Inventory (BDI) were performed at day 1 before operation and at day 1, 3, 5 and 15 after operation. The mitochondrial membrane potential was detected using a flow cytometer after staining and labeling for mitochondria in leukocytes via JC-1 fluorescence staining using a fluorescence probe at day 1 before operation and at day 1, 3, 5 and 15 after operation. The activities of mitochondrial respiratory chain complexes at day 1 before and after operation were detected via enzyme-linked immunosorbent assay (ELISA). The results showed that there were no statistically significant differences in the comparisons of general conditions (age, body weight, sex ratio, body mass index, anesthesia time, operation time, and length of stay in the ICU and hospital) for the dexmedetomidine and propofol + remifentanil groups (P>0.05). At day 3 and 5 after operation, the National Institutes of Health Stroke Scale (NIHSS) scores and AVLT scores in the two groups were decreased in different degrees, but the decrease range in the dexmedetomidine group was smaller than that in the propofol + remifentanil group, and the differences were statistically significant (P<0.05). At day 3, 5 and 15 after operation, the BDI scores of the two groups were increased in different degrees, but the increase range in the dexmedetomidine group was smaller than that in the propofol + remifentanil group, and the differences were statistically significant (P<0.05). At day 1, 3 and 5 after operation, the mitochondrial membrane potentials of the two groups were decreased in different degrees, but the decrease range in the dexmedetomidine group was smaller than that in the propofol + remifentanil group, and the differences were statistically significant (P<0.05). The mitochondrial membrane potentials of the two groups returned to the preoperative levels at day 15 after operation. The activities of mitochondrial respiratory chain complex I–IV in the propofol + remifentanil group at day 1 after operation were significantly decreased compared with those before operation, and the differences were statistically significant (P<0.05). The decrease in activities of mitochondrial respiratory chain complex I–IV in the propofol + remifentanil group at day 1 after operation was more significant than that in the dexmedetomidine group, and the difference was statistically significant (P<0.05). The results suggest that dexmedetomidine can relieve neuronal damage that may be caused by mitochondrial membrane oxidative stress, alleviate the damage to mitochondrial related enzyme system activity, and reduce the damage to the activities of mitochondrial respiratory chain enzyme complex I, II, III and IV, ultimately improving the postoperative cognitive dysfunction of patients.
Collapse
Affiliation(s)
- Jie Chen
- Department of Anesthesiology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056029, P.R. China
| | - Na Shen
- Department of ENT, Tianjin 4th Center Hospital, Tianjin 300140, P.R. China
| | - Xiaohui Duan
- Department of ENT, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei 056029, P.R. China
| | - Yaning Guo
- Department of Anesthesiology, Handan Central Hospital, Handan, Hebei 056002, P.R. China
| |
Collapse
|
44
|
Bellanti F. Hypoxia-inducible factor-1 in myocardial ischaemia/reperfusion injury. Acta Physiol (Oxf) 2017; 221:93-94. [PMID: 28581154 DOI: 10.1111/apha.12903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- F Bellanti
- Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
45
|
Activation of Endocannabinoid Receptor 2 as a Mechanism of Propofol Pretreatment-Induced Cardioprotection against Ischemia-Reperfusion Injury in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2186383. [PMID: 28814985 PMCID: PMC5549482 DOI: 10.1155/2017/2186383] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/20/2017] [Accepted: 04/30/2017] [Indexed: 01/16/2023]
Abstract
Propofol pretreatment before reperfusion, or propofol conditioning, has been shown to be cardioprotective, while its mechanism is unclear. The current study investigated the roles of endocannabinoid signaling in propofol cardioprotection in an in vivo model of myocardial ischemia/reperfusion (I/R) injury and in in vitro primary cardiomyocyte hypoxia/reoxygenation (H/R) injury. The results showed that propofol conditioning increased both serum and cell culture media concentrations of endocannabinoids including anandamide (AEA) and 2-arachidonoylglycerol (2-AG) detected by LC-MS/MS. The reductions of myocardial infarct size in vivo and cardiomyocyte apoptosis and death in vitro were accompanied with attenuations of oxidative injuries manifested as decreased reactive oxygen species (ROS), malonaldehyde (MDA), and MPO (myeloperoxidase) and increased superoxide dismutase (SOD) production. These effects were mimicked by either URB597, a selective endocannabinoids degradation inhibitor, or VDM11, a selective endocannabinoids reuptake inhibitor. In vivo study further validated that the cardioprotective and antioxidative effects of propofol were reversed by selective CB2 receptor antagonist AM630 but not CB1 receptor antagonist AM251. We concluded that enhancing endogenous endocannabinoid release and subsequent activation of CB2 receptor signaling represent a major mechanism whereby propofol conditioning confers antioxidative and cardioprotective effects against myocardial I/R injury.
Collapse
|
46
|
Félix LM, Correia F, Pinto PA, Campos SP, Fernandes T, Videira R, Oliveira M, Peixoto FP, Antunes LM. Propofol affinity to mitochondrial membranes does not alter mitochondrial function. Eur J Pharmacol 2017; 803:48-56. [DOI: 10.1016/j.ejphar.2017.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 01/11/2023]
|
47
|
Moris D, Pawlik TM. Liver hypoxia as a trigger to liver regeneration: No more than another piece of the puzzle. Surgery 2017; 161:1176-1177. [PMID: 27712878 DOI: 10.1016/j.surg.2016.08.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Demetrios Moris
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
48
|
Hu C, Li L. Pre-conditions for eliminating mitochondrial dysfunction and maintaining liver function after hepatic ischaemia reperfusion. J Cell Mol Med 2017; 21:1719-1731. [PMID: 28301072 PMCID: PMC5571537 DOI: 10.1111/jcmm.13129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
The liver, the largest organ with multiple synthesis and secretion functions in mammals, consists of hepatocytes and Kupffer, stem, endothelial, stellate and other parenchymal cells. Because of early and extensive contact with the external environment, hepatic ischaemia reperfusion (IR) may result in mitochondrial dysfunction, autophagy and apoptosis of cells and tissues under various pathological conditions. Because the liver requires a high oxygen supply to maintain normal detoxification and synthesis functions, it is extremely susceptible to ischaemia and subsequent reperfusion with blood. Consequently, hepatic IR leads to acute or chronic liver failure and significantly increases the total rate of morbidity and mortality through multiple regulatory mechanisms. An increasing number of studies indicate that mitochondrial structure and function are impaired after hepatic IR, but that the health of liver tissues or liver grafts can be effectively rescued by attenuation of mitochondrial dysfunction. In this review, we mainly focus on the subsequent therapeutic interventions related to the conservation of mitochondrial function involved in mitigating hepatic IR injury and the potential mechanisms of protection. Because mitochondria are abundant in liver tissue, clarification of the regulatory mechanisms between mitochondrial dysfunction and hepatic IR should shed light on clinical therapies for alleviating hepatic IR‐induced injury.
Collapse
Affiliation(s)
- Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
49
|
Amifostine Pretreatment Attenuates Myocardial Ischemia/Reperfusion Injury by Inhibiting Apoptosis and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4130824. [PMID: 28392886 PMCID: PMC5368387 DOI: 10.1155/2017/4130824] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 11/17/2022]
Abstract
The present study was aimed at investigating the effect of amifostine on myocardial ischemia/reperfusion (I/R) injury of mice and H9c2 cells cultured with TBHP (tert-butyl hydroperoxide). The results showed that pretreatment with amifostine significantly attenuated cell apoptosis and death, accompanied by decreased reactive oxygen species (ROS) production and lower mitochondrial potential (ΔΨm). In vivo, amifostine pretreatment alleviated I/R injury and decreased myocardial apoptosis and infarct area, which was paralleled by increased superoxide dismutase (SOD) and reduced malondialdehyde (MDA) in myocardial tissues, increased Bcl2 expression, decreased Bax expression, lower cleaved caspase-3 level, fewer TUNEL positive cells, and fewer DHE-positive cells in heart. Our results indicate that amifostine pretreatment has a protective effect against myocardial I/R injury via scavenging ROS.
Collapse
|
50
|
Xie LJ, Huang JX, Yang J, Yuan F, Zhang SS, Yu QJ, Hu J. Propofol protects against blood-spinal cord barrier disruption induced by ischemia/reperfusion injury. Neural Regen Res 2017; 12:125-132. [PMID: 28250758 PMCID: PMC5319217 DOI: 10.4103/1673-5374.199004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Propofol has been shown to exert neuroprotective effects on the injured spinal cord. However, the effect of propofol on the blood-spinal cord barrier (BSCB) after ischemia/reperfusion injury (IRI) is poorly understood. Therefore, we investigated whether propofol could maintain the integrity of the BSCB. Spinal cord IRI (SCIRI) was induced in rabbits by infrarenal aortic occlusion for 30 minutes. Propofol, 30 mg/kg, was intravenously infused 10 minutes before aortic clamping as well as at the onset of reperfusion. Then, 48 hours later, we performed histological and mRNA/protein analyses of the spinal cord. Propofol decreased histological damage to the spinal cord, attenuated the reduction in BSCB permeability, downregulated the mRNA and protein expression levels of matrix metalloprotease-9 (MMP-9) and nuclear factor-κB (NF-κB), and upregulated the protein expression levels of occludin and claudin-5. Our findings suggest that propofol helps maintain BSCB integrity after SCIRI by reducing MMP-9 expression, by inhibiting the NF-κB signaling pathway, and by maintaining expression of tight junction proteins.
Collapse
Affiliation(s)
- Li-Jie Xie
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Jin-Xiu Huang
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Jian Yang
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Fen Yuan
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Shuang-Shuang Zhang
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Qi-Jing Yu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Ji Hu
- Department of Anesthesiology, Liyuan Hospital of Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| |
Collapse
|