1
|
Valacchi G, Pecorelli A. Role of Scavenger Receptor B1 (SR-B1) in Improving Food Benefits for Human Health. Annu Rev Food Sci Technol 2025; 16:403-432. [PMID: 39899837 DOI: 10.1146/annurev-food-111523-121935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Scavenger receptor class B member 1 (SR-B1) is a multiligand receptor with a broad range of functions spanning from the uptake of cholesteryl esters from high-density lipoproteins (HDLs) and transport of micronutrients such as fat-soluble vitamins and carotenoids across cell membranes to roles in tumor progression, pathogen recognition, and inflammatory responses. As a target of exposome factors such as environmental stressors and unhealthy lifestyle choices, as well as aging, dysregulated expression and activity of SR-B1 can negatively impact human health. Intriguingly, not only is SR-B1 a major determinant of nutrient homeostasis and, hence, metabolic health status, but these same nutrients and some phytochemicals have also demonstrated their ability to modulate SR-B1. Therefore, an integrated approach that, taking into account human health, nutrition, and food technology sciences, aims to produce foods with health-promoting effects should take advantage of the multifaceted properties of SR-B1. Improved functional foods and novel nanoparticle-based delivery systems, rich in nutrients and phytochemicals, with precise targeting to SR-B1 in specific tissues or structures could represent a strategic advance to improve human health and promote well-being.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Department of Animal Science, North Carolina State University, Kannapolis, North Carolina, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy;
- Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy;
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, North Carolina, USA
| |
Collapse
|
2
|
Benedusi M, Lee H, Lim Y, Valacchi G. Oxidative State in Cutaneous Melanoma Progression: A Question of Balance. Antioxidants (Basel) 2024; 13:1058. [PMID: 39334716 PMCID: PMC11428248 DOI: 10.3390/antiox13091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) are highly bioactive molecules involved not only in tissue physiology but also in the development of different human conditions, including premature aging, cardiovascular pathologies, neurological and neurodegenerative disorders, inflammatory diseases, and cancer. Among the different human tumors, cutaneous melanoma, the most aggressive and lethal form of skin cancer, is undoubtedly one of the most well-known "ROS-driven tumor", of which one of the main causes is represented by ultraviolet (UV) rays' exposure. Although the role of excessive ROS production in melanoma development in pro-tumorigenic cell fate is now well established, little is known about its contribution to the progression of the melanoma metastatic process. Increasing evidence suggests a dual role of ROS in melanoma progression: excessive ROS production may enhance cellular growth and promote therapeutic resistance, but at the same time, it can also have cytotoxic effects on cancer cells, inducing their apoptosis. In this context, the aim of the present work was to focus on the relationship between cell redox state and the signaling pathways directly involved in the metastatic processes. In addition, oxidative or antioxidant therapeutic strategies for metastatic melanoma were also reviewed and discussed.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Giuseppe Valacchi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Lipidomic Analysis of Hand Skin Surface Lipids Reveals Smoking-Related Skin Changes. Metabolites 2023; 13:metabo13020254. [PMID: 36837873 PMCID: PMC9963340 DOI: 10.3390/metabo13020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Smoking contributes to the formation of skin wrinkles and reduces skin function, but the mechanism is not yet fully proven. This study aims to compare and analyze the effects of smoking on skin lipids and to further investigate the harmful effects of smoking on the skin. A total of 40 subjects (20 male smokers and 20 healthy control males) were recruited for this study. Measurement of hand skin-surface lipids (SSLs) in smoking and healthy control groups was undertaken using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Multivariate data analysis was used to investigate the differences in SSLs between the two groups. There were 1230 lipids detected in the two groups and significant differences in SSLs' composition were observed between them. Under selected conditions, 26 types of lipid with significant differences were observed between the two groups (p < 0.05). Sphingolipids (SP) and glycerolipids (GL) were significantly increased, and sterol lipids (ST) were significantly reduced. Smoking causes changes in skin lipids that disrupt skin homeostasis, making the skin more fragile and more susceptible to skin aging and diseases.
Collapse
|
4
|
Woodby B, Pambianchi E, Ferrara F, Therrien JP, Pecorelli A, Messano N, Lila MA, Valacchi G. Cutaneous antimicrobial peptides: New "actors" in pollution related inflammatory conditions. Redox Biol 2021; 41:101952. [PMID: 33839421 PMCID: PMC8059092 DOI: 10.1016/j.redox.2021.101952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
Ozone (O3) exposure has been reported to contribute to various cutaneous inflammatory conditions, such as eczema, psoriasis, rush etc. via a redox-inflammatory pathway. O3 is too reactive to penetrate cutaneous tissue; it interacts with lipids present in the outermost layer of skin, resulting in formation of oxidized molecules and hydrogen peroxide (H2O2). Interestingly, several inflammatory skin pathologies demonstrate altered levels of antimicrobial peptides (AMPs). These small, cationic peptides are found in various cells, including keratinocytes, eccrine gland cells, and seboctyes. Classically, AMPs function as antimicrobial agents. Recent studies indicate that AMPs also play roles in inflammation, angiogenesis, and wound healing. Since altered levels of AMPs have been detected in pollution-associated skin pathologies, we hypothesized that exposure to O3 could affect the levels of AMPs in the skin. We examined levels of AMPs using qRT-PCR, Western blotting, and immunofluorescence in vitro (human keratinocytes), ex vivo (human skin explants), and in vivo (human volunteer subjects exposed to O3) and observed increased levels of all the measured AMPs upon O3 exposure. In addition, in vitro studies have confirmed the redox regulation of AMPs in keratinocytes. This novel finding suggests that targeting AMPs could be a possible defensive strategy to combat pollution-associated skin conditions. AMPs (hBDs1-3, CAMP) increase in O3 exposed human skin by a redox mechanism. Transcriptional upregulation of AMPs in response to O3 exposure is due to an altered redox status. Pollution increase AMPs could be the connection between pollution exposure and the development/exacerbation of inflammatory skin conditions.
Collapse
Affiliation(s)
- Brittany Woodby
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA
| | - Erika Pambianchi
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA
| | - Francesca Ferrara
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Alessandra Pecorelli
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA
| | - Nicolo' Messano
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA
| | - Mary Ann Lila
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA
| | - Giuseppe Valacchi
- Plants for Human Health Institute Animal Science Dept, NC Research Campus Kannapolis, NC, 28081, USA; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; JP Therrien Consulting, LLC, USA; Kyung Hee University, Department of Food and Nutrition, South Korea.
| |
Collapse
|
5
|
Zouboulis CC. Endocrinology and immunology of acne: Two sides of the same coin. Exp Dermatol 2020; 29:840-859. [DOI: 10.1111/exd.14172] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology Dessau Medical Center Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg Dessau Germany
| |
Collapse
|
6
|
Ercoli J, Finetti F, Woodby B, Belmonte G, Miracco C, Valacchi G, Trabalzini L. KRIT1 as a possible new player in melanoma aggressiveness. Arch Biochem Biophys 2020; 691:108483. [PMID: 32735866 DOI: 10.1016/j.abb.2020.108483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 11/27/2022]
Abstract
Krev interaction trapped protein 1 (KRIT1) is a scaffold protein known to form functional complexes with distinct proteins, including Malcavernin, PDCD10, Rap1 and others. It appears involved in several cellular signaling pathways and exerts a protective role against inflammation and oxidative stress. KRIT1 has been studied as a regulator of endothelial cell functions and represents a determinant in the pathogenesis of Cerebral Cavernous Malformation (CCM), a cerebrovascular disease characterized by the formation of clusters of abnormally dilated and leaky blood capillaries, which predispose to seizures, neurological deficits and intracerebral hemorrhage. Although KRIT1 is ubiquitously expressed, few studies have described its involvement in pathologies other than CCM including cancer. Cutaneous melanoma represents the most fatal skin cancer due to its high metastatic propensity. Despite the numerous efforts made to define the signaling pathways activated during melanoma progression, the molecular mechanisms at the basis of melanoma growth, phenotype plasticity and resistance to therapies are still under investigation.
Collapse
Affiliation(s)
- Jasmine Ercoli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Federica Finetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Brittany Woodby
- Plants for Human Health Institute, NC Research Campus, NC State University, NC, USA
| | - Giuseppe Belmonte
- Unit of Pathological Anatomy, Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Clelia Miracco
- Unit of Pathological Anatomy, Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, NC Research Campus, NC State University, NC, USA; Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy.
| |
Collapse
|
7
|
Choi YJ. Shedding Light on the Effects of Calorie Restriction and its Mimetics on Skin Biology. Nutrients 2020; 12:nu12051529. [PMID: 32456324 PMCID: PMC7284700 DOI: 10.3390/nu12051529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
During the aging process of an organism, the skin gradually loses its structural and functional characteristics. The skin becomes more fragile and vulnerable to damage, which may contribute to age-related diseases and even death. Skin aging is aggravated by the fact that the skin is in direct contact with extrinsic factors, such as ultraviolet irradiation. While calorie restriction (CR) is the most effective intervention to extend the lifespan of organisms and prevent age-related disorders, its effects on cutaneous aging and disorders are poorly understood. This review discusses the effects of CR and its alternative dietary intake on skin biology, with a focus on skin aging. CR structurally and functionally affects most of the skin and has been reported to rescue both age-related and photo-induced changes. The anti-inflammatory, anti-oxidative, stem cell maintenance, and metabolic activities of CR contribute to its beneficial effects on the skin. To the best of the author’s knowledge, the effects of fasting or a specific nutrient-restricted diet on skin aging have not been evaluated; these strategies offer benefits in wound healing and inflammatory skin diseases. In addition, well-known CR mimetics, including resveratrol, metformin, rapamycin, and peroxisome proliferator-activated receptor agonists, show CR-like prevention against skin aging. An overview of the role of CR in skin biology will provide valuable insights that would eventually lead to improvements in skin health.
Collapse
Affiliation(s)
- Yeon Ja Choi
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Korea
| |
Collapse
|
8
|
Prieux R, Eeman M, Rothen-Rutishauser B, Valacchi G. Mimicking cigarette smoke exposure to assess cutaneous toxicity. Toxicol In Vitro 2019; 62:104664. [PMID: 31669394 DOI: 10.1016/j.tiv.2019.104664] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/24/2022]
Abstract
Cigarette smoke stands among the most toxic environmental pollutants and is composed of thousands of chemicals including polycyclic aromatic hydrocarbons (PAHs). Despite restrict cigarette smoking ban in indoor or some outdoor locations, the risk of non-smokers to be exposed to environmental cigarette smoke is not yet eliminated. Beside the well-known effects of cigarette smoke to the respiratory and cardiovascular systems, a growing literature has shown during the last 3 decades its noxious effects also on cutaneous tissues. Being the largest organ as well as the interface between the outer environment and the body, human skin acts as a natural shield which is continuously exposed to harmful exogenous agents. Thus, a prolonged and/or repetitive exposure to significant levels of toxic smoke pollutants may have detrimental effects on the cutaneous tissue by disrupting the epidermal barrier function and by exacerbating inflammatory skin disorders (i.e. psoriasis, atopic dermatitis). With the development of very complex skin tissue models and sophisticated cigarette smoke exposure systems it has become important to better understand the toxicity pathways induced by smoke pollutants in more realistic laboratory conditions to find solutions for counteracting their effects. This review provides an update on the skin models currently available to study cigarette smoke exposure and the known pathways involved in cutaneous toxicity. In addition, the article will briefly cover the inflammatory skin pathologies potentially induced and/or exacerbated by cigarette smoke exposure.
Collapse
Affiliation(s)
- Roxane Prieux
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Marc Eeman
- Home & Personal Care, Dow Silicones Belgium, Seneffe, Belgium
| | | | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, North Carolina State University, Kannapolis, United States; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
9
|
Dong YM, Liao LY, Li L, Yi F, Meng H, He YF, Guo MM. Skin inflammation induced by ambient particulate matter in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:364-373. [PMID: 31125750 DOI: 10.1016/j.scitotenv.2019.05.155] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/29/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Most published studies on particulate matter (PM) concerning PM2.5 and PM10 have focused on PM-induced effects on the respiratory system (particularly lung) and cardiovascular system effects. However, epidemiological and mechanistic studies suggest that PM2.5 and PM10 also affects the skin, which is a key health issue. In this study, we first reviewed the current status of PM2.5 and PM10 in China, including relevant regulations, concentration levels, chemical components, and emission sources. Next, we summarized the association between PM2.5 and PM10 or its representative components, in relation to skin inflammation as well as inflammatory skin diseases, such as atopic dermatitis, acne, eczema, and skin aging. Finally, we determined the mechanism of oxidative stress or programmed cell death induced through PM, which can provide useful information for future research on PM-induced skin inflammation.
Collapse
Affiliation(s)
- Yin-Mao Dong
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Lian-Ying Liao
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Li Li
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Fan Yi
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Hong Meng
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Yi-Fan He
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China
| | - Miao-Miao Guo
- Key Laboratory of Cosmetics, China National Light Industry, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11/33, Fucheng Road, Haidian District, Beijing 100048, PR China.
| |
Collapse
|
10
|
Pecorelli A, Woodby B, Prieux R, Valacchi G. Involvement of 4-hydroxy-2-nonenal in pollution-induced skin damage. Biofactors 2019; 45:536-547. [PMID: 31087730 DOI: 10.1002/biof.1513] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/19/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022]
Abstract
The effects of environmental insults on human health are a major global concern. Some of the most noxious pollutants that humans are exposed to include ozone (O3 ), particulate matter (PM), and cigarette smoke (CS). Since the skin is the first line of defense against environmental insults, it is considered one of the main target organs for the harmful insults of air pollution. Thus, there is solid evidence that skin pathologies such as premature aging, atopic dermatitis (AD), and psoriasis are associated with pollutant exposure; all of these skin conditions are also associated with an altered redox status. Therefore, although the mechanisms of action and concentrations of O3 , PM, and CS that we are exposed to differ, exposure to all of these pollutants is associated with the development of similar skin conditions due to the fact that all of these pollutants alter redox homeostasis, increasing reactive oxygen species production and oxidative stress. A main product of oxidative stress, induced by exposure to the aforementioned pollutants, is 4-hydroxy-2-nonenal (HNE), which derives from the oxidation of ω-6 polyunsaturated fatty acids. HNE is a highly reactive compound that can form adducts with cellular proteins and even DNA; it is also an efficient cell signaling molecule able to regulate mitogen-activated protein kinase pathways and the activity of redox-sensitive transcription factors such as Nrf2, AP1, and NFκB. Therefore, increased levels of HNE in the skin, in response to pollutants, likely accelerates skin aging and exacerbates existing skin inflammatory conditions; thus, targeting HNE formation could be an innovative cosmeceutical approach for topical applications.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Plants for Human Health Institute, Department of Animal Sciences, North Carolina State University, Kannapolis, North Carolina
| | - Brittany Woodby
- Plants for Human Health Institute, Department of Animal Sciences, North Carolina State University, Kannapolis, North Carolina
| | - Roxane Prieux
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Department of Animal Sciences, North Carolina State University, Kannapolis, North Carolina
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
11
|
Muresan XM, Narzt MS, Woodby B, Ferrara F, Gruber F, Valacchi G. Involvement of cutaneous SR-B1 in skin lipid homeostasis. Arch Biochem Biophys 2019; 666:1-7. [DOI: 10.1016/j.abb.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 12/16/2022]
|
12
|
Cervellati C, Valacchi G, Tisato V, Zuliani G, Marsillach J. Evaluating the link between Paraoxonase-1 levels and Alzheimer's disease development. Minerva Med 2018; 110:238-250. [PMID: 30334443 DOI: 10.23736/s0026-4806.18.05875-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
At present, the etiopathogenesis of Alzheimer's disease (AD), the most common form of dementia, remains far to be fully deciphered. In the recent years, also the centrality of amyloid-β peptide in the pathogenesis of the neurodegenerative disease has been questioned and other hypotheses have been advanced. Notably, a common denominator of many of these theoretical models is represented by oxidative stress, which is widely proposed to play a role in the disease initiation and/or progression. Paraoxonase 1 (PON1) is a high-density lipoprotein (HDL)-associated enzyme that endows its carrier with multiple biological functions, including the ability to contrast oxidative damage to lipid components of lipoproteins and cells and protect from toxicity of specific organophosphorus pesticides. The peculiar multi-functionality nature of PON1 might be the key for explaining the vast epidemiological data showing a close association between low serum PON1 activity and risk of several diseases, including cardiovascular and neurodegenerative diseases, in particular AD. In this review, we discuss the possible link between PON1 with AD pathogenesis and we hypothesize eventual mechanistic pathways that could account from epidemiological observations. We also highlight the methodological issue limitation in PON1 studies that still impede to give a definitive and certain picture of its effective biological impact on human health including AD.
Collapse
Affiliation(s)
- Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy -
| | - Giuseppe Valacchi
- Plants for Human Health Institute, Department of Animal Sciences, NC Research Campus, North Carolina State University, Kannapolis, NC, USA.,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Giovanni Zuliani
- Department of Morphology, Surgery and Experimental Medicine and LTTA Center, University of Ferrara, Ferrara, Italy
| | - Judit Marsillach
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Muresan XM, Sticozzi C, Belmonte G, Cervellati F, Ferrara F, Lila MA, Valacchi G. SR-B1 involvement in keratinocytes in vitro wound closure. Arch Biochem Biophys 2018; 658:1-6. [PMID: 30240595 DOI: 10.1016/j.abb.2018.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
Abstract
Skin represents the most extended organ of human body, having as main function the protection of our body from outdoor stressors. Its protective ability is compromised when the skin is disrupted as a consequence of mechanical insults. For this purpose, cutaneous tissue is equipped with an efficient and fine mechanism involved in repairing the wounded area. Among the numerous players that take part in the wound healing process, SR-B1 has been recently shown to have a role in keratinocyte re-epithelialization. SR-B1 is a mediator of cholesterol uptake from HDLs, whereas it is implicated in other cellular processes such as vitamins absorption, vesicle trafficking or pathogen identification. The aim of this study was to investigate the mechanisms involved in SR-B1 role in skin wound closure. Our in vitro data demonstrated that SR-B1 influenced keratinocyte proliferation and migration through a downregulation of nuclear cyclin D1 levels and active MMP9 expression respectively possibly in an NF-kB-dependent mechanism. In addition, SR-B1 was also able to modulate keratinocyte morphology into a pro-migratory cytoskeleton rearrangement. The present in vitro study suggests a new role of SRB1 as a possible new key player in cutaneous wound healing mechanism.
Collapse
Affiliation(s)
- Ximena M Muresan
- Dept. Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Claudia Sticozzi
- Dept. Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Belmonte
- Dept. Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Dept. Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Dept. Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mary Ann Lila
- Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, NC, USA
| | - Giuseppe Valacchi
- Dept. Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, NC, USA.
| |
Collapse
|
14
|
Dréno B, Bettoli V, Araviiskaia E, Sanchez Viera M, Bouloc A. The influence of exposome on acne. J Eur Acad Dermatol Venereol 2018; 32:812-819. [PMID: 29377341 PMCID: PMC5947266 DOI: 10.1111/jdv.14820] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/10/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acne vulgaris is one of the main reasons for dermatological consultations. Severity and response to treatment may be impacted by various external factors or exposome. AIM To assess the impact of environmental factors on acne and to provide a comprehensive overview of the acne exposome. METHODS Two consensus meetings of five European dermatologists and a comprehensive literature search on exposome factors triggering acne served as a basis for this review. RESULTS Acne exposome was defined as the sum of all environmental factors influencing the occurrence, duration and severity of acne. Exposome factors impact on the response and the frequency of relapse to treatments by interacting with the skin barrier, sebaceous gland, innate immunity and cutaneous microbiota. They may be classified into the following six main categories: nutrition, psychological and lifestyle factors, occupational factors including cosmetics, as well as pollutants, medication and climatic factors. Moreover, practical considerations for the dermatologist's clinical practice are proposed. CONCLUSION Exposome factors including nutrition, medication, occupational factors, pollutants, climatic factors, and psychosocial and lifestyle factors may impact on the course and severity of acne and on treatment efficacy. Identifying and reducing the impact of exposome is important for an adequate acne disease management.
Collapse
Affiliation(s)
- B Dréno
- Service de Dermatologie, CIC 1413, CRCINA Inserm 1232, University Hospital Nantes, Nantes, France
| | - V Bettoli
- Department of Clinical and Experimental Medicine, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - E Araviiskaia
- Department of Dermatology, First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - M Sanchez Viera
- Skin Health, Aging and Cancer, Institute for Dermatology, Madrid, Spain
| | - A Bouloc
- Laboratoires Vichy, Levallois Perret, France
| |
Collapse
|
15
|
Muresan XM, Sticozzi C, Belmonte G, Savelli V, Evelson P, Valacchi G. Modulation of cutaneous scavenger receptor B1 levels by exogenous stressors impairs "in vitro" wound closure. Mech Ageing Dev 2017; 172:78-85. [PMID: 29102450 DOI: 10.1016/j.mad.2017.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/30/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Abstract
Scavenger receptor B1 (SR-B1) is a trans-membrane protein, involved in tissue reverse cholesterol transport. Several studies have demonstrated that SR-B1 is also implicated in other physiological processes, such as bacteria and apoptotic cells recognition and regulation of intracellular tocopherol and carotenoids levels. Among the tissues where it is localized, SR-B1 has been shown to be significantly expressed in human epidermis. Our group has demonstrated that SR-B1 levels are down-regulated in human cultured keratinocytes by environmental stressors, such as cigarette smoke, via cellular redox imbalance. Our present study aimed to investigate whether such down-regulation was confirmed in a 3D skin model and under other environmental challengers such as particulate matter and ozone. We also investigated the association between oxidation-induced SR-B1 modulation and impaired wound closure. The data obtained showed that not only cigarette, but also the other environmental stressors reduced SR-B1 expression in epidermal cutaneous tissues and that this effect might be involved in impaired wound healing.
Collapse
Affiliation(s)
| | - Claudia Sticozzi
- Dept. of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Belmonte
- Dept. of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Vinno Savelli
- Department of Medical, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Pablo Evelson
- Institute of Biochemistry and Molecular Medicine (IBIMOL-UBA-CONICET), Pharmacy and Biochemistry School, University of Buenos Aires, Buenos Aires, Argentina
| | - Giuseppe Valacchi
- Dept. of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, Animal Sciences Dept., NC Research Campus, NC State University, NC, USA.
| |
Collapse
|