1
|
Xiong W, Tian A, Qian Z, Li J, Mao X. Disulfiram in liver diseases: a double-edged sword. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4875-4889. [PMID: 39680099 DOI: 10.1007/s00210-024-03710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Disulfiram, a synthetic drug, has historically played a significant role in the treatment of alcoholic liver disease as the first medication approved by the U.S. Food and Drug Administration for alcohol use disorders. Beyond its efficacy in inhibiting alcohol addiction and treating alcoholic liver disease, disulfiram has also demonstrated potential in managing various liver conditions, including certain metabolic liver injuries and liver cancer. As an established, cost-effective drug with well-documented synthesis methods, disulfiram holds promise for broader application in liver disease treatment. However, its clinical use is hindered by the risk of inducing pharmacologic liver injury. This potential for liver toxicity necessitates careful patient selection, monitoring, and consultation with healthcare providers, which can limit its practicality in treating patients with existing liver conditions. This review aims to analyze the multifaceted role of disulfiram in liver diseases comprehensively. By exploring its therapeutic efficacy, potential benefits, and inherent limitations, we seek to provide a balanced perspective that maximizes disulfiram's therapeutic potential while ensuring the safety and well-being of patients. This thorough examination will also highlight areas for future research, paving the way for optimized treatment protocols that incorporate disulfiram in the context of liver disease management.
Collapse
Affiliation(s)
- Wanyuan Xiong
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Infectious Disease, The First Hospital of Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Aiping Tian
- Department of Infectious Disease, The First Hospital of Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Zibing Qian
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Infectious Disease, The First Hospital of Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | - Junfeng Li
- Institute of Infectious Diseases, Department of Liver Disease, The First Hospital of Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China.
| | - Xiaorong Mao
- Department of Infectious Disease, The First Hospital of Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China.
| |
Collapse
|
2
|
Wang F, Huang X, Wang W, Li X, Hao M, Taylor EW, Zhang J. L-Theanine Effectively Protects Against Copper-Facilitated Dopamine Oxidation: Implication for Relieving Dopamine Overflow-Associated Neurotoxicities. Mol Neurobiol 2025; 62:4993-5005. [PMID: 39499422 DOI: 10.1007/s12035-024-04601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
Non-physiological disorders release dopamine into extracellular brain fluid to induce neurodegenerative brain diseases. The harmful mechanism of dopamine overflow is attributed to the dopamine-mediated production of hydroxyl radicals, suggesting that transition metal copper which is high in the brain is involved in promoting dopamine oxidation. MPP+ , an intermediate formed from the conversion of MPTP, is one of the most potent dopamine-releasing agents. It has been reported that L-theanine could improve motor dysfunction in MPTP-treated mice, suggesting that L-theanine may restrain copper-mediated oxidation of released dopamine. The present study examined the influences of L-theanine on extracellular dopamine-mediated cytotoxicity in the absence and presence of copper in SH-SY5Y cells. L-theanine significantly but only moderately suppressed cytotoxicity caused by dopamine alone. Surprisingly, dopamine together with copper rapidly and dramatically caused apoptotic responses by massively disrupting redox homeostasis. Nonetheless, L-theanine exhibited an extraordinary protective effect against these devastating events by chelating copper. The above great contrast in terms of copper could be recapitulated in a cell-free system. Though L-theanine reduced dopamine autoxidation as detected by HPLC, the capacity was not impressive, since a molar ratio of 10,000 (L-theanine to dopamine) was required for fully suppressing dopamine decrease. However, HPLC measurement showed that L-theanine was highly efficient in suppressing copper-mediated dopamine oxidation because only a molar ratio of 10 was required for fully suppressing dopamine decrease. Since copper plays a crucial role in promoting extracellular dopamine oxidation, our results suggest that L-theanine by chelating copper is an attractive food-based protective agent against dopamine overflow.
Collapse
Affiliation(s)
- Fuming Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoyu Huang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, China
| | - Wenping Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, China
| | - Xiuli Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, China
| | - Meng Hao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
3
|
Jiang K, Yin Z, Gong W, Liang YX, Tu J, Tao X, Liu Z, Hu Y, Li J, Guo X, Ou J, Zheng J, Zhu B, Ou S. Acrolein scavengers and detoxification: From high-throughput screening of flavonoids to mechanistic study of epigallocatechin gallate. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135873. [PMID: 39305594 DOI: 10.1016/j.jhazmat.2024.135873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 12/01/2024]
Abstract
Acrolein (ACR) is a widespread, highly toxic substance that poses significant health risks. Flavonoids have been recognized as effective ACR scavengers, offering a possible way to reduce these risks. However, the lack of specific high-throughput screening methods has limited the identification of ACR scavengers, and their actual detoxifying capacity on ACR remains unknown. To address this, we developed a high-throughput screening platform to assess the ACR scavenging capacity of 322 flavonoids. Our results showed that 80.7 % of the flavonoids could scavenge ACR, but only 34.4 % exhibited detoxifying effects in an ACR-injured QSG7701 cell model. Some flavonoids even increased toxicity. Structure-activity relationship (SAR) analysis indicated that galloyl and pyrogallol units enhance scavenging but worsen ACR-induced cytotoxicity. Further investigation revealed that epigallocatechin gallate (EGCG) could exacerbate ACR-induced redox disorder, leading to cell apoptosis. Our findings provide crucial data on the scavenging and detoxifying capacities of 322 flavonoids, highlighting that ACR scavengers might not mitigate ACR-induced toxicity and could pose additional safety risks.
Collapse
Affiliation(s)
- Kaiyu Jiang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National, Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Zhao Yin
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou 510317, China
| | - Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yu-Xuan Liang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National, Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Juncai Tu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xiaoya Tao
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Juanying Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Villani S, De Matteis V, Calcagnile M, Cascione M, Pellegrino P, Vincenti L, Demitri C, Alifano P, Rinaldi R. Tuning antibacterial efficacy against Pseudomonas aeruginosa by using green AgNPs in chitosan thin films as a plastic alternative. Int J Biol Macromol 2024; 285:138277. [PMID: 39631606 DOI: 10.1016/j.ijbiomac.2024.138277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Nanotechnology advancements have facilitated the development of eco-friendly strategies to combat bacterial infections caused by antibiotic-resistant pathogens. This study promotes a green method for the synthesis of silver nanoparticles (AgNPs) utilizing Eucalyptus globulus leaf extracts as an alternative to traditional colloidal AgNPs obtained through chemical synthesis, investigating their antibacterial efficacy against Pseudomonas aeruginosa and their impact on the expression of bacterial virulence factors (pyocyanin, pyoverdine, rhamnolipids). This work demonstrates that: i. while colloidal AgNPs showed ineffective up to 120 μM, green AgNPs had a bactericidal effect already at 20 μM, without impacting bacterial virulence factors at sub-inhibitory concentrations; ii. the polyphenolic shell surrounding green AgNPs could play a crucial role in the antibacterial mechanisms, with a pro-oxidant action confirmed by a greater sensitivity to hydrogen peroxide (H2O2); iii. AgNPs improved the antibacterial properties of chitosan when incorporated into thin films. Consequently, an environmentally friendly nanocomposite film with antibacterial and antibiofilm properties was produced, which holds promise for application in food packaging to mitigate the emergence of microbial contamination in food products.
Collapse
Affiliation(s)
- Stefania Villani
- Department of Engineering for Innovation (DII), Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Valeria De Matteis
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, 73100 Lecce, Italy; Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy.
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, 73100 Lecce, Italy; Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy
| | - Paolo Pellegrino
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, 73100 Lecce, Italy; Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy
| | - Lorenzo Vincenti
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Christian Demitri
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Rosaria Rinaldi
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, 73100 Lecce, Italy; Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
5
|
Yu R, Chen H, He J, Zhang Z, Zhou J, Zheng Q, Fu Z, Lu C, Lin Z, Caruso F, Zhang X. Engineering Antimicrobial Metal-Phenolic Network Nanoparticles with High Biocompatibility for Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307680. [PMID: 37997498 DOI: 10.1002/adma.202307680] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Antibiotic-resistant bacteria pose a global health threat by causing persistent and recurrent microbial infections. To address this issue, antimicrobial nanoparticles (NPs) with low drug resistance but potent bactericidal effects have been developed. However, many of the developed NPs display poor biosafety and their synthesis often involves complex procedures and the antimicrobial modes of action are unclear. Herein, a simple strategy is reported for designing antimicrobial metal-phenolic network (am-MPN) NPs through the one-step assembly of a seeding agent (diethyldithiocarbamate), natural polyphenols, and metal ions (e.g., Cu2+ ) in aqueous solution. The Cu2+ -based am-MPN NPs display lower Cu2+ antimicrobial concentrations (by 10-1000 times) lower than most reported nanomaterials and negligible toxicity across various models, including, cells, blood, zebrafish, and mice. Multiple antimicrobial modes of the NPs have been identified, including bacterial wall disruption, reactive oxygen species production, and quinoprotein formation, with the latter being a distinct pathway identified for the antimicrobial activity of the polyphenol-based am-MPN NPs. The NPs exhibit excellent performance against multidrug-resistant bacteria (e.g., methicillin-resistant Staphylococcus aureus (MRSA)), efficiently inhibit and destroy bacterial biofilms, and promote the healing of MRSA-infected skin wounds. This study provides insights on the antimicrobial properties of metal-phenolic materials and the rational design of antimicrobial metal-organic materials.
Collapse
Affiliation(s)
- Rongxin Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Jian He
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Zhichao Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qinqin Zheng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Zhouping Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| |
Collapse
|
6
|
Kanner J. Food Polyphenols as Preventive Medicine. Antioxidants (Basel) 2023; 12:2103. [PMID: 38136222 PMCID: PMC10740609 DOI: 10.3390/antiox12122103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Reactive oxygen species (ROS) are the initiators in foods and in the stomach of oxidized dietary lipids, proteins, and lipid-oxidation end-products (ALEs), inducing in humans the development of several chronic diseases and cancer. Epidemiological, human clinical and animal studies supported the role of dietary polyphenols and derivatives in prevention of development of such chronic diseases. There is much evidence that polyphenols/derivatives at the right timing and concentration, which is critical, acts mostly in the aerobic stomach and generally in the gastrointestinal tract as reducing agents, scavengers of free radicals, trappers of reactive carbonyls, modulators of enzyme activity, generators of beneficial gut microbiota and effectors of cellular signaling. In the blood system, at low concentration, they act as generators of electrophiles and low concentration of H2O2, acting mostly as cellular signaling, activating the PI3K/Akt-mediated Nrf2/eNOS pathways and inhibiting the inflammatory transcription factor NF-κB, inducing the cells, organs and organism for eustress, adaptation and surviving.
Collapse
Affiliation(s)
- Joseph Kanner
- Department of Food Science, ARO, Volcani Center, Bet-Dagan 7505101, Israel; or
- Institute of Biochemistry, Food Science and Nutrtion, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190501, Israel
| |
Collapse
|
7
|
Njenga LW, Mbugua SN, Odhiambo RA, Onani MO. Addressing the gaps in homeostatic mechanisms of copper and copper dithiocarbamate complexes in cancer therapy: a shift from classical platinum-drug mechanisms. Dalton Trans 2023; 52:5823-5847. [PMID: 37021641 DOI: 10.1039/d3dt00366c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The platinum drug, cisplatin, is considered as among the most successful medications in cancer treatment. However, due to its inherent toxicity and resistance limitations, research into other metal-based non-platinum anticancer medications with diverse mechanisms of action remains an active field. In this regard, copper complexes feature among non-platinum compounds which have shown promising potential as effective anticancer drugs. Moreover, the interesting discovery that cancer cells can alter their copper homeostatic processes to develop resistance to platinum-based treatments leads to suggestions that some copper compounds can indeed re-sensitize cancer cells to these drugs. In this work, we review copper and copper complexes bearing dithiocarbamate ligands which have shown promising results as anticancer agents. Dithiocarbamate ligands act as effective ionophores to convey the complexes of interest into cells thereby influencing the metal homeostatic balance and inducing apoptosis through various mechanisms. We focus on copper homeostasis in mammalian cells and on our current understanding of copper dysregulation in cancer and recent therapeutic breakthroughs using copper coordination complexes as anticancer drugs. We also discuss the molecular foundation of the mechanisms underlying their anticancer action. The opportunities that exist in research for these compounds and their potential as anticancer agents, especially when coupled with ligands such as dithiocarbamates, are also reviewed.
Collapse
Affiliation(s)
- Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Simon N Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Martin O Onani
- Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Belville, 7535, South Africa
| |
Collapse
|
8
|
He Y, Yang M, Yang L, Hao M, Wang F, Li X, Taylor EW, Zhang X, Zhang J. Preparation and anticancer actions of CuET-nanoparticles dispersed by bovine serum albumin. Colloids Surf B Biointerfaces 2023; 226:113329. [PMID: 37156027 DOI: 10.1016/j.colsurfb.2023.113329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Diethyldithiocarbamate-copper complex (CuET) shows promising anticancer effect; nonetheless, preclinical evaluations of CuET are hindered due to poor solubility. We prepared bovine serum albumin (BSA)-dispersed CuET nanoparticles (CuET-NPs) to overcome the shortcoming. Results from a cell-free redox system demonstrated that CuET-NPs reacted with glutathione, leading to form hydroxyl radical. Glutathione-mediated production of hydroxyl radicals may help explain why CuET selectively kills drug-resistant cancer cells with higher levels of glutathione. CuET-NPs dispersed by autoxidation products of green tea epigallocatechin gallate (EGCG) also reacted with glutathione; however, the autoxidation products eradicated hydroxyl radicals; consequently, such CuET-NPs exhibited largely compromised cytotoxicity, suggesting that hydroxyl radical is a crucial mediator of CuET anticancer activity. In cancer cells, BSA-dispersed CuET-NPs exhibited cytotoxic activities equivalent to CuET and induced protein poly-ubiquitination. Moreover, the reported powerful inhibition of CuET on colony formation and migration of cancer cells could be replicated by CuET-NPs. These similarities demonstrate BSA-dispersed CuET-NPs is identical to CuET. Thus, we advanced to pilot toxicological and pharmacological evaluations. CuET-NPs caused hematologic toxicities in mice and induced protein poly-ubiquitination and apoptosis of cancer cells inoculated in mice at a defined pharmacological dose. Given high interest in CuET and its poor solubility, BSA-dispersed CuET-NPs pave the way for preclinical evaluations.
Collapse
Affiliation(s)
- Yufeng He
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mingchuan Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Lumin Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Meng Hao
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Fuming Wang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiuli Li
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jinsong Zhang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
9
|
Zhang Z, Hao M, Zhang X, He Y, Chen X, Taylor EW, Zhang J. Potential of green tea EGCG in neutralizing SARS-CoV-2 Omicron variant with greater tropism toward the upper respiratory tract. Trends Food Sci Technol 2023; 132:40-53. [PMID: 36594074 PMCID: PMC9796359 DOI: 10.1016/j.tifs.2022.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Background COVID-19 due to SARS-CoV-2 infection has had an enormous adverse impact on global public health. As the COVID-19 pandemic evolves, the WHO declared several variants of concern (VOCs), including Alpha, Beta, Gamma, Delta, and Omicron. Compared with earlier variants, Omicron, now a dominant lineage, exhibits characteristics of enhanced transmissibility, tropism shift toward the upper respiratory tract, and attenuated disease severity. The robust transmission of Omicron despite attenuated disease severity still poses a great challenge for pandemic control. Under this circumstance, its tropism shift may be utilized for discovering effective preventive approaches. Scope and approach This review aims to estimate the potential of green tea epigallocatechin gallate (EGCG), the most potent antiviral catechin, in neutralizing SARS-CoV-2 Omicron variant, based on current knowledge concerning EGCG distribution in tissues and Omicron tropism. Key findings and conclusions EGCG has a low bioavailability. Plasma EGCG levels are in the range of submicromolar concentrations following green tea drinking, or reach at most low μM concentrations after pharmacological intervention. Nonetheless, its levels in the upper respiratory tract could reach concentrations as high as tens or even hundreds of μM following green tea consumption or pharmacological intervention. An approach for delivering sufficiently high concentrations of EGCG in the pharynx has been developed. Convincing data have demonstrated that EGCG at tens to hundreds of μM can dramatically neutralize SARS-CoV-2 and effectively eliminate SARS-CoV-2-induced cytopathic effects and plaque formation. Thus, EGCG, which exhibits hyperaccumulation in the upper respiratory tract, deserves closer investigation as an antiviral in the current global battle against COVID-19, given Omicron's greater tropism toward the upper respiratory tract.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- COVID-19
- EGCG
- EGCG, epigallocatechin-3-gallate
- GRP78, glucose-regulated protein 78
- HO-1, hemeoxygenase 1
- IFN-β, interferon-β
- Mpro, main protease
- MxA, MxGTPases
- Nrf2, nuclear factor erythroid 2 p45-related factor 2
- Nsp15, nonstructural protein 15
- Omicron variant
- SARS-CoV-2
- TMPRSS2, transmembrane serine protease 2
- The upper respiratory tract
- Tropism
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Meng Hao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Xiongsheng Chen
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, 27402, USA
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
10
|
Li S, Yin S, Ding H, Shao Y, Zhou S, Pu W, Han L, Wang T, Yu H. Polyphenols as potential metabolism mechanisms regulators in liver protection and liver cancer prevention. Cell Prolif 2023; 56:e13346. [PMID: 36229407 DOI: 10.1111/cpr.13346] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Liver cancer is one of the common malignancies. The dysregulation of metabolism is a driver of accelerated tumourigenesis. Metabolic changes are well documented to maintain tumour growth, proliferation and survival. Recently, a variety of polyphenols have been shown to have a crucial role both in liver disease prevention and metabolism regulation. METHODS We conducted a literature search and combined recent data with systematic analysis to comprehensively describe the molecular mechanisms that link polyphenols to metabolic regulation and their contribution in liver protection and liver cancer prevention. RESULTS Targeting metabolic dysregulation in organisms prevents and resists the development of liver cancer, which has important implications for identifying new therapeutic strategies for the management and treatment of cancer. Polyphenols are a class of complex compounds composed of multiple phenolic hydroxyl groups and are the main active ingredients of many natural plants. They mediate a broad spectrum of biological and pharmacological functions containing complex lipid metabolism, glucose metabolism, iron metabolism, intestinal flora imbalance, as well as the direct interaction of their metabolites with key cell-signalling proteins. A large number of studies have found that polyphenols affect the metabolism of organisms by interfering with a variety of intracellular signals, thereby protecting the liver and reducing the risk of liver cancer. CONCLUSION This review systematically illustrates that various polyphenols, including resveratrol, chlorogenic acid, caffeic acid, dihydromyricetin, quercetin, catechins, curcumin, etc., improve metabolic disorders through direct or indirect pathways to protect the liver and fight liver cancer.
Collapse
Affiliation(s)
- Shuangfeng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shuangshuang Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Hui Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingying Shao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shiyue Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
11
|
Yang L, Jia L, Li X, Zhang K, Wang X, He Y, Hao M, Rayman MP, Zhang J. Prooxidant activity-based guideline for a beneficial combination of (-)-epigallocatechin-3-gallate and chlorogenic acid. Food Chem 2022; 386:132812. [PMID: 35364491 DOI: 10.1016/j.foodchem.2022.132812] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/04/2022]
Abstract
In the current study, the prooxidant activities of (-)-epigallocatechin-3-gallate (EGCG) and chlorogenic acid (CGA) were systematically compared both in multiple in vitro models and in mice. At equimolar concentrations in vitro and in vivo, EGCG displayed powerful prooxidant effects though CGA exhibited none. In vitro, though CGA and EGCG synergistically produced hydrogen peroxide, CGA was able to scavenge hydroxyl radicals generated by EGCG/copper. Consistent with the selective modulation of reactive oxygen species produced from EGCG, CGA lowered hepatotoxicity but did not perturb hepatic AMPK activation nor the increase of hepatic Nrf2-associated proteins induced by high-dose EGCG. CGA, along with low-dose EGCG, synergistically activated hepatic AMPK and increased hepatic Nrf2-associated proteins without causing toxicity in mice. This proof-of-principle study suggests that polyphenols with potent prooxidant activities (e.g., EGCG) together with antioxidant polyphenols with noticeably low prooxidant activities (e.g., CGA) may yield health benefits with a low risk of side effects.
Collapse
Affiliation(s)
- Lumin Yang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Lijie Jia
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Xiuli Li
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Ke Zhang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Xiaoxiao Wang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Yufeng He
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Meng Hao
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Jinsong Zhang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
12
|
Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG): A Time for a New Player in the Treatment of Respiratory Diseases? Antioxidants (Basel) 2022; 11:antiox11081566. [PMID: 36009285 PMCID: PMC9405266 DOI: 10.3390/antiox11081566] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol of green tea that possesses a wide variety of actions. EGCG acts as a strong antioxidant which effectively scavenges reactive oxygen species (ROS), inhibits pro-oxidant enzymes including NADPH oxidase, activates antioxidant systems including superoxide dismutase, catalase, or glutathione, and reduces abundant production of nitric oxide metabolites by inducible nitric oxide synthase. ECGC also exerts potent anti-inflammatory, anti-fibrotic, pro-apoptotic, anti-tumorous, and metabolic effects via modulation of a variety of intracellular signaling cascades. Based on this knowledge, the use of EGCG could be of benefit in respiratory diseases with acute or chronic inflammatory, oxidative, and fibrotizing processes in their pathogenesis. This article reviews current information on the biological effects of EGCG in those respiratory diseases or animal models in which EGCG has been administered, i.e., acute respiratory distress syndrome, respiratory infections, COVID-19, bronchial asthma, chronic obstructive pulmonary disease, lung fibrosis, silicosis, lung cancer, pulmonary hypertension, and lung embolism, and critically discusses effectiveness of EGCG administration in these respiratory disorders. For this review, articles in English language from the PubMed database were used.
Collapse
|
13
|
Jia L, Wang F, Zhang K, Wang D, Wang X, Li X, Zhang J. l-Theanine Inhibits (-)-Epigallocatechin-3-gallate Oxidation via Chelating Copper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7751-7761. [PMID: 35696521 DOI: 10.1021/acs.jafc.2c01379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Our recent study showed that glutamate can inhibit dopamine oxidation via chelating copper. l-Theanine is an amino acid analogue of glutamate, whereas tea (-)-epigallocatechin-3-gallate (EGCG) is similar to dopamine in avidly undergoing oxidation. We thus hypothesized that l-theanine could also restrain EGCG oxidation via chelating copper. The current study scrutinized influences of l-theanine on EGCG oxidation in vitro and in vivo. The in vitro results showed that l-theanine and copper formed an l-theanine-copper complex with impaired redox activity of copper. Accordingly, l-theanine effectively suppressed copper-facilitated EGCG oxidation, hydroxyl radical production, and DNA damage; inhibited EGCG autoxidation which in essence involves catalysis of transition metals such as copper; and reduced EGCG oxidation-associated formation of a quinone adduct with proteins known as quinoproteins. Consistently, l-theanine significantly increased hepatic EGCG levels and reduced hepatic quinoprotein levels and liver injury in mice treated with EGCG. These lines of evidence together suggest that tea l-theanine can protect against tea catechin oxidation.
Collapse
Affiliation(s)
- Lijie Jia
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Fuming Wang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Ke Zhang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Dongxu Wang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoxiao Wang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiuli Li
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Jinsong Zhang
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
14
|
Wang Y, He Y, Rayman MP, Zhang J. Prospective Selective Mechanism of Emerging Senolytic Agents Derived from Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12418-12423. [PMID: 34662116 DOI: 10.1021/acs.jafc.1c04379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Senescent cells (SCs) are associated with the onset and development of multiple chronic diseases. Selective clearance of SCs by senolytic drugs is a potential therapeutic option for a number of age-related diseases. Among senolytic candidates, only dasatinib with quercetin and fisetin meet the rigorous criteria for senolytic drugs, according to a modified version of Koch's postulates. It is astonishing that two of the three agents, i.e., quercetin and fisetin, are flavonoids, although the mechanism by which they preferentially eliminate SCs is unclear. Herein, we propose a possible selective mechanism; prooxidant activities of quercetin or fisetin are inevitably involved in killing apoptosis-resistant SCs. Among the dietary flavonoids, quercetin is a potent redox-active flavonoid with strong prooxidant activities, and transition metals, such as copper and iron, hugely amplify its prooxidant activities. Fisetin, which has higher senolytic activities than quercetin, has higher prooxidant effects than quercetin in the absence or presence of copper. It appears that the prooxidant activity of flavonoids is an important consideration for screening senolytics. SCs accumulate high levels of copper and iron, and the selective mechanism of quercetin or fisetin is probably associated with copper/iron-promoted oxidative damage in SCs. Copper and iron dramatically enhanced the prooxidant effects of the flavonoid, epigallocatechin-3-gallate, having shown a depletion effect on SCs in rats and high therapeutic efficacy in patients with idiopathic pulmonary fibrosis, largely caused by SCs. Further investigation to evaluate whether epigallocatechin-3-gallate is a senolytic drug, according to Koch's postulates, is warranted.
Collapse
Affiliation(s)
- Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Margaret P Rayman
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| |
Collapse
|
15
|
Zhang Z, Zhang X, Bi K, He Y, Yan W, Yang CS, Zhang J. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends Food Sci Technol 2021; 114:11-24. [PMID: 34054222 PMCID: PMC8146271 DOI: 10.1016/j.tifs.2021.05.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
Background The world is in the midst of the COVID-19 pandemic. In this comprehensive review, we discuss the potential protective effects of (−)-epigallocatechin-3-gallate (EGCG), a major constituent of green tea, against COVID-19. Scope and approach Information from literature of clinical symptoms and molecular pathology of COVID-19 as well as relevant publications in which EGCG shows potential protective activities against COVID-19 is integrated and evaluated. Key findings and conclusions EGCG, via activating Nrf2, can suppress ACE2 (a cellular receptor for SARS-CoV-2) and TMPRSS2, which mediate cell entry of the virus. Through inhibition of SARS-CoV-2 main protease, EGCG may inhibit viral reproduction. EGCG via its broad antioxidant activity may protect against SARS-CoV-2 evoked mitochondrial ROS (which promote SARS-CoV-2 replication) and against ROS burst inflicted by neutrophil extracellular traps. By suppressing ER-resident GRP78 activity and expression, EGCG can potentially inhibit SARS-CoV-2 life cycle. EGCG also shows protective effects against 1) cytokine storm-associated acute lung injury/acute respiratory distress syndrome, 2) thrombosis via suppressing tissue factors and activating platelets, 3) sepsis by inactivating redox-sensitive HMGB1, and 4) lung fibrosis through augmenting Nrf2 and suppressing NF-κB. These activities remain to be further substantiated in animals and humans. The possible concerted actions of EGCG suggest the importance of further studies on the prevention and treatment of COVID-19 in humans. These results also call for epidemiological studies on potential preventive effects of green tea drinking on COVID-19.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Keyi Bi
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Yufeng He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| | - Wangjun Yan
- Department of Musculoskeletal Tumor, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854-8020, USA
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
16
|
Talebi M, Talebi M, Farkhondeh T, Mishra G, İlgün S, Samarghandian S. New insights into the role of the Nrf2 signaling pathway in green tea catechin applications. Phytother Res 2021; 35:3078-3112. [PMID: 33569875 DOI: 10.1002/ptr.7033] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/13/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcriptional signaling pathway that plays a crucial role in numerous clinical complications. Pivotal roles of Nrf2 have been proved in cancer, autoimmune diseases, neurodegeneration, cardiovascular diseases, diabetes mellitus, renal injuries, respiratory conditions, gastrointestinal disturbances, and general disorders related to oxidative stress, inflammation, apoptosis, gelatinolysis, autophagy, and fibrogenesis processes. Green tea catechins as a rich source of phenolic compounds can deal with various clinical problems and manifestations. In this review, we attempted to focus on intervention between green tea catechins and Nrf2. Green tea catechins especially epigallocatechin gallate (EGCG) elucidated the protective role of Nrf2 and its downstream molecules in various disorders through Keap-1, HO-1, NQO-1, GPx, GCLc, GCLm, NF-kB cross-link, kinases, and apoptotic proteins. Subsequently, we compiled an updated expansions of the Nrf2 role as a gate to manage and protect different disorders and feasible indications of green tea catechins through this signaling pathway. The present review highlighted recent evidence-based data in silico, in vitro, and in vivo studies on an outline for future clinical trials.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA.,Department of Research & Development, Viatris Pharmaceuticals Inc., San Antonio, Texas, USA
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.,Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Gaurav Mishra
- Institute of Medical Sciences, Faculty of Ayurveda, Department of Medicinal Chemistry, Banaras Hindu University, Varanasi, India
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
17
|
Gao J, Gong Z, Montesano D, Glazer E, Liegner K. "Repurposing" Disulfiram in the Treatment of Lyme Disease and Babesiosis: Retrospective Review of First 3 Years' Experience in One Medical Practice. Antibiotics (Basel) 2020; 9:antibiotics9120868. [PMID: 33291557 PMCID: PMC7761882 DOI: 10.3390/antibiotics9120868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
A total of 71 patients with Lyme disease were identified for analysis in whom treatment with disulfiram was initiated between 15 March 2017 and 15 March 2020. Four patients were lost to follow-up, leaving 67 evaluable patients. Our retrospective review found patients to fall into a “high-dose” group (≥4 mg/kg/day) and a “low-dose” group (<4 mg/kg/day). In total, 62 of 67 (92.5%) patients treated with disulfiram were able to endorse a net benefit of the treatment with regard to their symptoms. Moreover, 12 of 33 (36.4%) patients who completed one or two courses of “high-dose” therapy enjoyed an “enduring remission”, defined as remaining clinically well for ≥6 months without further anti-infective treatment. The most common adverse reactions from disulfiram treatment in the high-dose group were fatigue (66.7%), psychiatric symptoms (48.5%), peripheral neuropathy (27.3%), and mild to moderate elevation of liver enzymes (15.2%). We observed that although patients on high dose experienced a higher risk for adverse reactions than those on a low dose, high-dose patients were significantly more likely to achieve enduring remission.
Collapse
Affiliation(s)
- Jiachen Gao
- College of Arts and Sciences, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA;
| | - Zhaodi Gong
- CT Integrated Pain Consultants, LLC, 60 Katona Drive, Suite 25, Fairfield, CT 06824, USA;
| | - Dawn Montesano
- P.C. Lyme Borreliosis & Related Disorders, 592 Route 22, Suite 1B, Pawling, NY 12564, USA; (D.M.); (E.G.)
| | - Erica Glazer
- P.C. Lyme Borreliosis & Related Disorders, 592 Route 22, Suite 1B, Pawling, NY 12564, USA; (D.M.); (E.G.)
| | - Kenneth Liegner
- P.C. Lyme Borreliosis & Related Disorders, 592 Route 22, Suite 1B, Pawling, NY 12564, USA; (D.M.); (E.G.)
- Northwell System, Northern Westchester Hospital Center, Mount Kisco, NY 10549, USA
- Nuvance Health System, Sharon Hospital, Sharon, CT 06069, USA
- Correspondence:
| |
Collapse
|
18
|
Polyphenols by Generating H 2O 2, Affect Cell Redox Signaling, Inhibit PTPs and Activate Nrf2 Axis for Adaptation and Cell Surviving: In Vitro, In Vivo and Human Health. Antioxidants (Basel) 2020; 9:antiox9090797. [PMID: 32867057 PMCID: PMC7555200 DOI: 10.3390/antiox9090797] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022] Open
Abstract
Human health benefits from different polyphenols molecules consumption in the diet, derived mainly by their common activities in the gastrointestinal tract and at the level of blood micro-capillary. In the stomach, intestine and colon, polyphenols act as reducing agents preventing lipid peroxidation, generation and absorption of AGEs/ALEs (advanced glycation end products/advanced lipid oxidation end products) and postprandial oxidative stress. The low absorption of polyphenols in blood does not support their activity as antioxidants and their mechanism of activity is not fully understood. The results are from in vitro, animal and human studies, detected by relevant oxidative stress markers. The review carries evidences that polyphenols, by generating H2O2 at nM concentration, exogenous to cells and organs, act as activators of signaling factors increasing cell Eustress. When polyphenols attain high concentration in the blood system, they generate H2O2 at µM concentration, acting as cytotoxic agents and Distress. Pre-treatment of cells or organisms with polyphenols, by generating H2O2 at low levels, inhibits cellular PTPs (protein tyrosine phosphatases), inducing cell signaling through transcription of the Nrf2 (nuclear factor erythroid 2-related factor 2) axis of adaptation and protection to oxidation stress. Polyphenols ingestion at the right amount and time during the meal acts synergistically at the level of the gastrointestinal tract (GIT) and blood system, for keeping the redox homeostasis in our organism and better balancing human health.
Collapse
|
19
|
Sergi CM. Epigallocatechin-3-Gallate Toxicity in Children: A Potential and Current Toxicological Event in the Differential Diagnosis With Virus-Triggered Fulminant Hepatic Failure. Front Pharmacol 2020; 10:1563. [PMID: 32063842 PMCID: PMC7000546 DOI: 10.3389/fphar.2019.01563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
The use of nutraceuticals is considerably increasing worldwide with a demand for organic and clean foods in the last two decades, which is probably incomparable with other periods of our civilization. The consistent application of nutraceuticals and so-called "superfood" may have remarkable effects on the prevention of several chronic diseases, including cancer. Moreover, the increased rate of overweight and obesity in Western countries does not spare childhood and youth, and the number of parents using natural remedies for preventing pediatric illness is vastly increasing worldwide. However, the overwhelming effects on diseases often overshadow the side effects of such nutrition, particularly in societies without millennial experience with botanicals and natural elements. Thus, the final result may be disastrous for some individuals. The liver is the most important and conspicuous target organ of numerous molecular compounds, and the cell damage is particularly striking on the infantile and pediatric liver due to the immaturity of the hepatocytes. Here, we target some generic data on fulminant hepatic failure, the benefits, and toxicity of epigallocatechin-3-gallate, which is one of the major components of green tea, and the histopathology of the "green-tea"-associated liver disease.
Collapse
Affiliation(s)
- Consolato M. Sergi
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology, Wuhan, China
- Stollery Children's Hospital, University Alberta Hospital, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
- Department of Orthopedics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Wang X, Yang L, Wang J, Zhang Y, Dong R, Wu X, Yang CS, Zhang Z, Zhang J. A mouse model of subacute liver failure with ascites induced by step-wise increased doses of (-)-epigallocatechin-3-gallate. Sci Rep 2019; 9:18102. [PMID: 31792332 PMCID: PMC6888815 DOI: 10.1038/s41598-019-54691-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022] Open
Abstract
Acute liver failure is divided into hyperacute, acute and subacute liver failure. Ascites is a common complication of subacute liver failure. Although animal models of acute liver failure have been established, the study of the pathogenesis of subacute liver failure with ascites complication is hampered by the lack of experimental animal model. The present study aimed at providing a mouse model of subacute liver failure with ascites complication. Kunming mice were intraperitoneally injected with (-)-epigallocatechin-3-gallate (EGCG), a redox-active polyphenol from green tea, for 32 consecutive days with step-wise increased dosage. The EGCG treatment resulted in liver failure as evidenced by extensive hepatocyte necrosis observed histologically along with significant elevation of serum alanine aminotransferase, aspartate aminotransferase, total bilirubin and direct bilirubin levels as well as significant reduction of serum albumin. Liver fibrosis was not observed by Masson staining and fibrosis-associated proteins were not increased. The mortality was less than 12% and the survival mice developed noticeable ascites. Hepatic thioredoxin and glutathione systems were activated by the EGCG. These adaptive responses might render most mice tolerable to the EGCG treatment. The EGCG treatment significantly up-regulated renal urea transporter A1 and promoted its trafficking to apical membrane. These alterations, known to increase water reabsorption, may be responsible, at least in part, for the formation of the ascites. Overall, the mice treated with gradually elevated doses of EGCG exhibits some of the features observed in patients with subacute liver failure, especially ascites. This mouse model is a useful tool for investigating the pathogenesis of subacute liver failure with ascites complication.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Lumin Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Jiajia Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Yafei Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Ruixia Dong
- Department of Forestry and Technology, Lishui Vocational and Technical College, Lishui, Zhejiang, China
| | - Ximing Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhenhua Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, P.R. China.
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei, Anhui, China.
- International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, China.
| |
Collapse
|
21
|
Wang J, Wang X, He Y, Jia L, Yang CS, Reiter RJ, Zhang J. Antioxidant and Pro-Oxidant Activities of Melatonin in the Presence of Copper and Polyphenols In Vitro and In Vivo. Cells 2019; 8:cells8080903. [PMID: 31443259 PMCID: PMC6721667 DOI: 10.3390/cells8080903] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Melatonin is a well-documented antioxidant. Physicochemical analysis using the density functional theory suggests that melatonin is a copper chelating agent; however, experimental evidence is still in demand. The present study investigated the influence of melatonin on reactive oxygen species (ROS) generated from polyphenol autoxidation in the presence of copper. Surprisingly, we found that melatonin paradoxically enhanced ROS formation in a redox system containing low concentrations of copper and quercetin (Que) or (−)-epigallocatechin-3-gallate (EGCG), due to reduction of cupric to cuprous ion by melatonin. Addition of DNA to this system inhibited ROS production, because DNA bound to copper and inhibited copper reduction by melatonin. When melatonin was added to a system containing high concentrations of copper and Que or EGCG, it diminished hydroxyl radical formation as expected. Upon addition of DNA to high concentrations of copper and Que, this pro-oxidative system generated ROS and caused DNA damage. The DNA damage was not prevented by typical scavengers of hydroxyl radical DMSO or mannitol. Under these conditions, melatonin or bathocuproine disulfonate (a copper chelator) protected the DNA from damage by chelating copper. When melatonin was administered intraperitoneally to mice, it inhibited hepatotoxicity and DNA damage evoked by EGCG plus diethyldithiocarbamate (a copper ionophore). Overall, the present study demonstrates the pro-oxidant and antioxidant activities of melatonin in the redox system of copper and polyphenols. The pro-oxidant effect is inhibited by the presence of DNA, which prevents copper reduction by melatonin. Interestingly, in-vivo melatonin protects against copper/polyphenol-induced DNA damage probably via acting as a copper-chelating agent rather than a hydroxyl radical scavenger. Melatonin with a dual function of scavenging hydroxyl radical and chelating copper is a more reliable DNA guardian than antioxidants that only have a single function of scavenging hydroxyl radical.
Collapse
Affiliation(s)
- Jiajia Wang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230000, China
| | - Xiaoxiao Wang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230000, China
| | - Yufeng He
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230000, China
| | - Lijie Jia
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230000, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230000, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA.
| | - Jinsong Zhang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230000, China.
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230000, China.
| |
Collapse
|
22
|
Zhang L, He Y, Wu X, Zhao G, Zhang K, Yang CS, Reiter RJ, Zhang J. Melatonin and (-)-Epigallocatechin-3-Gallate: Partners in Fighting Cancer. Cells 2019; 8:cells8070745. [PMID: 31331008 PMCID: PMC6678710 DOI: 10.3390/cells8070745] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
We have demonstrated previously that melatonin attenuates hepatotoxicity triggered by high doses of (−)-epigallocatechin-3-gallate (EGCG) in mice. The current work investigated the influence of melatonin on the oncostatic activity of EGCG in two cancer cell lines, wherein melatonin induced an opposite response of p21. In human tongue cancer TCA8113 cells, melatonin-induced p21 and EGCG-mediated formation of quinoproteins were positively associated with the oncostatic effects of melatonin and EGCG. Melatonin-stimulated an increase in p21 which was correlated with a pronounced nuclear translocation of thioredoxin 1 and thioredoxin reductase 1, both of which are known to induce p21 via promoting p53 trans-activation. Melatonin did not influence the EGCG-mediated increase of quinoprotein formation nor did EGCG impair melatonin-induced p21 up-regulation. Co-treatment with both agents enhanced the cell-killing effect as well as the inhibitory activities against cell migration and colony formation. It is known that p21 also plays a powerful anti-apoptotic role in some cancer cells and confers these cells with a survival advantage, making it a target for therapeutic suppression. In human hepatocellular carcinoma HepG2 cells, melatonin suppressed p21 along with the induction of pro-survival proteins, PI3K and COX-2. However, EGCG prevented against melatonin-induced PI3K and COX-2, and melatonin probably sensitized HepG2 cells to EGCG cytotoxicity via down-regulating p21, Moreover, COX-2 and HO-1 were significantly reduced only by the co-treatment, and melatonin aided EGCG to achieve an increased inhibition on Bcl2 and NFκB. These events occurring in the co-treatment collectively resulted in an enhanced cytotoxicity. In addition, the co-treatment also enhanced the inhibitory activities against cell migration and colony formation. Overall, the results gathered from these two cancer cell lines with a divergent p21 response to melatonin show that the various oncostatic activities of melatonin and EGCG together are more robust than each agent alone, suggesting that they may be useful partners in fighting cancer.
Collapse
Affiliation(s)
- Lingyun Zhang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Resources Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230000, China
| | - Yufeng He
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Resources Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230000, China
| | - Ximing Wu
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Resources Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230000, China
| | - Guangshan Zhao
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Resources Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230000, China
| | - Ke Zhang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Resources Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230000, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| | - Jinsong Zhang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Resources Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230000, China.
| |
Collapse
|
23
|
Yang CS, Zhang J. Studies on the Prevention of Cancer and Cardiometabolic Diseases by Tea: Issues on Mechanisms, Effective Doses, and Toxicities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5446-5456. [PMID: 30541286 DOI: 10.1021/acs.jafc.8b05242] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article presents a brief overview of studies on the prevention of cancer and cardiometabolic diseases by tea. The major focus is on green tea catechins concerning the effective doses used, the mechanisms of action, and possible toxic effects. In cancer prevention by tea, the laboratory results are strong; however, the human data are inconclusive, and the effective doses used in some human trials approached toxic levels. In studies of the alleviation of metabolic syndrome, diabetes, and prevention of cardiovascular diseases, the results from human studies are stronger in individuals who consume 3-4 cups of tea (600-900 mg of catechins) or more per day. The tolerable upper intake level of tea catechins has been set at 300 mg of (-)-epigallocatechin-3-gallate in a bolus dose per day in some European countries. The effects of doses and dosage forms on catechin toxicity, the mechanisms involved, and factors that may affect toxicity are discussed.
Collapse
Affiliation(s)
- Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , 164 Frelinghuysen Road , Piscataway , New Jersey 08854-8020 , United States
| | | |
Collapse
|
24
|
Dietary Copper Reduces the Hepatotoxicity of (-)-Epigallocatechin-3-Gallate in Mice. Molecules 2017; 23:molecules23010038. [PMID: 29295524 PMCID: PMC5943924 DOI: 10.3390/molecules23010038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 12/16/2022] Open
Abstract
We developed Cu-deficient, -sufficient and -super nutrition mice models by feeding them with diet containing 1.68, 11.72 or 51.69 mg of Cu/kg for 28 days, respectively. Then, the mice were treated to (−)-epigallocatechin-3-gallate (EGCG, 750 mg/kg BW) by oral in order to assess the acute toxicity of the drug. Following EGCG treatment, the survival rates were 12.5%, 50% and 100% in the Cu-deficient, -sufficient and Cu-super nutrition groups of mice, respectively. Cu level and ceruloplasmin activity in serum were significantly increased with the increase of dietary Cu. However, the Cu supplementation did not produce any obvious impact on serum superoxide dismutase activity. Furthermore, ceruloplasmin, in vitro, significantly promotes EGCG oxidation accompanied with increasing oxidation products and decreasing levels of reactive oxygen species. These results, therefore, suggest that Cu can relieve EGCG hepatotoxicity, possibly by up-regulating ceruloplasmin activity, which can be used to promote EGCG applications.
Collapse
|