1
|
Li JT, Ou D, Shi YM, Bao L, Li YL, Xiong TT, Bai Y, Ding H. Post-cerebral ischemia energy crisis: the role of glucose metabolism in the energetic crisis. Brain Inj 2025:1-11. [PMID: 40237246 DOI: 10.1080/02699052.2025.2492751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/23/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Cells universally employ an efficiency-driven metabolic switch mechanism during nutritional changes, growth, and differentiation, transitioning from oxidative phosphorylation (OXPHOS) to glycolysis to ensure survival under hypoxic conditions or high energy demands. In cerebral ischemia, inadequate blood supply causes oxygen and energy deprivation, prompting brain cells to initiate glycolytic reprogramming to meet urgent energy needs. While this adaptation is a temporary solution, it may lead to lactic acidosis, aggravated inflammation, and increased free radical production. Prolonged reperfusion with sustained glycolysis can exacerbate brain cell damage, potentially causing irreversible harm. OBJECTIVES This review systematically examines the dynamic changes in glucose metabolic transport mechanisms and the roles of immediate, early, intermediate, and late responder cells, along with their regulatory factors, in glycolytic reprogramming. METHODS Using a temporal analysis framework based on the body's natural response sequence to pathological events, we elucidate how cells at different stages collaborate to address glucose metabolism reprogramming under pathological conditions. CONCLUSIONS Reversing glucose metabolism reprogramming and inhibiting glycolysis may improve the pathological processes of ischemic stroke, offering potential therapeutic benefits.
Collapse
Affiliation(s)
- Jia-Ting Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Dian Ou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yi-Ming Shi
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Le Bao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yan-Ling Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Ting-Ting Xiong
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yang Bai
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Liu Y, Hu P, Cheng H, Xu F, Ye Y. The impact of glycolysis on ischemic stroke: from molecular mechanisms to clinical applications. Front Neurol 2025; 16:1514394. [PMID: 39926015 PMCID: PMC11802445 DOI: 10.3389/fneur.2025.1514394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/10/2025] [Indexed: 02/11/2025] Open
Abstract
Ischemic stroke (IS), a leading cause of disability and mortality worldwide, remains a significant challenge due to its complex pathogenesis. Glycolysis, a central metabolic pathway, plays a critical role in bridging the gap between metabolic dysfunction and neurological impairment. During ischemic conditions, glycolysis replaces oxidative phosphorylation as the primary energy source for brain tissue. However, in the ischemia-reperfusion state, neuronal cells show a particular reliance on aerobic glycolysis. Immune cells, such as monocytes, also contribute to atheromatous plaque formation and thrombi through increased aerobic glycolysis. Given glycolysis's involvement in various pathological stages of IS, it offers the potential for improved diagnosis, treatment, and prevention. This review comprehensively explores the role of glycolysis in different phases of IS, addresses existing controversies, and discusses its diagnostic and therapeutic applications. By elucidating the intricate relationship between glycolysis and IS, this review aims to provide novel insights for future research and clinical advancements.
Collapse
Affiliation(s)
- Yingquan Liu
- The First Clinical College of Anhui University of Chinese Medicine, Hefei, China
| | - Peijia Hu
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hongliang Cheng
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Fangyuan Xu
- The First Clinical College of Anhui University of Chinese Medicine, Hefei, China
| | - Yu Ye
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
3
|
Cheng L, Lv S, Wei C, Li S, Liu H, Chen Y, Luo Z, Cui H. Nature's magic: how natural products work hand in hand with mitochondria to treat stroke. Front Pharmacol 2025; 15:1434948. [PMID: 39840113 PMCID: PMC11747497 DOI: 10.3389/fphar.2024.1434948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/29/2024] [Indexed: 01/23/2025] Open
Abstract
Background Mitochondria, as the energy factories of cells, are involved in a wide range of vital activities, including cell differentiation, signal transduction, the cell cycle, and apoptosis, while also regulating cell growth. However, current pharmacological treatments for stroke are challenged by issues such as drug resistance and side effects, necessitating the exploration of new therapeutic strategies. Objective This review aims to summarize the regulatory effects of natural compounds targeting mitochondria on neuronal mitochondrial function and metabolism, providing new perspectives for stroke treatment. Main findings Numerous in vitro and in vivo studies have shown that natural products such as berberine, ginsenosides, and baicalein protect neuronal mitochondrial function and reduce stroke-induced damage through multiple mechanisms. These compounds reduce neuronal apoptosis by modulating the expression of mitochondrial-associated apoptotic proteins. They inhibit the activation of the mitochondrial permeability transition pore (mPTP), thereby decreasing ROS production and cytochrome C release, which helps preserve mitochondrial function. Additionally, they regulate ferroptosis, mitochondrial fission, and promote mitochondrial autophagy and trafficking, further enhancing neuronal protection. Conclusion As multi-target chemical agents, natural products offer high efficacy with fewer side effects and present promising potential for innovative stroke therapies. Future research should further investigate the effectiveness and safety of these natural products in clinical applications, advancing their development as a new therapeutic strategy for stroke.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Neurology, Chongqing Kaizhou Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Shangbin Lv
- Chongqing Universty of Traditional Chinese Medicine, Chongqing, China
| | - Chengkai Wei
- Department of Neurology, Chongqing Kaizhou Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Sucheng Li
- Department of Neurology, Chongqing Kaizhou Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Hao Liu
- Department of Neurology, Chongqing Kaizhou Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yong Chen
- Department of Neurology, Chongqing Kaizhou Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Zhaoliang Luo
- Department of Encephalopathy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Hongyan Cui
- Department of Rehabilitation Medicine, The Fifth People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
4
|
Yu L, Jin W, Deng D, Wang Y, Chen Q, Zhang Y, Wan H, Chen Y, Chen Y, He Y, Zhang L. Investigation of Anti-Apoptotic Effects and Mechanisms of Astragaloside IV in a Rat Model of Cerebral Ischemia-Reperfusion Injury. CNS Neurosci Ther 2025; 31:e70209. [PMID: 39764606 PMCID: PMC11705586 DOI: 10.1111/cns.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/07/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Ischemic stroke is a prevalent and life-threatening cerebrovascular disease that is challenging to treat and associated with a poor prognosis. Astragaloside IV (AS-IV), a primary bioactive component of Astragali radix, has demonstrated neuroprotective benefits in previous studies. This study aimed to explore the mechanisms through which AS-IV may treat cerebral ischemia-reperfusion injury (CIRI). METHODS Network pharmacology was employed to identify key targets and pathways of AS-IV in CIRI therapy, combined with molecular docking to predict binding affinity. Male Sprague-Dawley rats were randomly assigned to sham, MCAO/R, AS-IV, SP600125 (JNK inhibitor), AS-IV + SP600125, and 3-n-Butylphthalide (NBP) groups. Neurobehavioral deficits were assessed, and brain tissue damage was visualized through 2,3,5-triphenyltetrazolium chloride, H&E, and TUNEL staining. Immunohistochemistry was employed to detect CytC- and caspase-3-positive cells, while Western blotting, qPCR, and ELISAs were used to analyze apoptosis-related markers. RESULTS A total of 48 key targets of AS-IV predicted to be involved in the treatment of CIRI were identified, enriched in 136 pathways. AS-IV was effectively bound to the top five targets from 48 targets, and those associated with the c-Jun N-terminal kinase (JNK)/Bid pathway, with binding energy values below -5.0 kJ·mol-1. JNK inhibition reduced infarcted brain areas, improved neurological function, reduced pathological brain tissue damage, and inhibited apoptosis, with AS-IV achieving similar neuroprotective effects. Both AS-IV and SP600125 reduced p-JNK, Bid, CytC, Apaf-1, caspase-3, and cleaved caspase-3 levels in rats while decreasing CytC, caspase-3, and caspase-9 levels in serum. CONCLUSION AS-IV may suppress apoptosis partly through the modulation of JNK/Bid signaling, exerting neuroprotective effects. These findings support the potential development of AS-IV-based therapies for stroke treatment.
Collapse
Affiliation(s)
- Li Yu
- Qingshan Lake Science and Technology Innovation CenterHangzhou Medical CollegeHangzhouChina
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Weifeng Jin
- School of PharmacyZhejiang Chinese Medical UniversityHangzhouChina
| | - Defang Deng
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Yiru Wang
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
- Faculty of Chinese MedicineMacau University of Science and TechnologyMacaoChina
| | - Qianqian Chen
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yangyang Zhang
- School of PharmacyZhejiang Chinese Medical UniversityHangzhouChina
| | - Haitong Wan
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yunxiang Chen
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Ying Chen
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Yu He
- School of PharmacyZhejiang Chinese Medical UniversityHangzhouChina
| | - Lijiang Zhang
- Qingshan Lake Science and Technology Innovation CenterHangzhou Medical CollegeHangzhouChina
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Center of Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| |
Collapse
|
5
|
Liu K, Wang L, Pang T. Research progress of small-molecule natural medicines for the treatment of ischemic stroke. Chin J Nat Med 2025; 23:21-30. [PMID: 39855828 DOI: 10.1016/s1875-5364(25)60801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/18/2024] [Accepted: 09/21/2024] [Indexed: 01/27/2025]
Abstract
Stroke is the second leading cause of disability and mortality worldwide, imposing a substantial socioeconomic burden on individuals and healthcare systems. Annually, approximately 14 million people experience stroke, with ischemic stroke comprising nearly 85% of cases, of which 10% to 20% involve large vessel occlusions. Currently, recombinant tissue plasminogen activator (tPA) remains the only approved pharmacological intervention. However, its utility is limited due to a narrow therapeutic window and low recanalization rates, making it applicable to only a minority of patients. Therefore, there is an urgent need for novel therapeutic strategies, including pharmacological advancements and combinatory treatments. Small-molecule natural medicines, particularly those derived from traditional Chinese herbs, have demonstrated significant therapeutic potential in ischemic stroke management. These compounds exert multiple neuroprotective effects, such as antioxidation, anti-inflammatory action, and inhibition of apoptosis, all of which are critical in mitigating stroke-induced cerebral damage. This review comprehensively examines the pathophysiology of acute ischemic stroke (AIS) and highlights the recent progress in the development of small-molecule natural medicines as promising therapeutic agents for cerebral ischemic stroke.
Collapse
Affiliation(s)
- Kui Liu
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Wang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Wang Z, Wang M, Zhao H. Acupuncture and its role in the treatment of ischemic stroke: A review. Medicine (Baltimore) 2024; 103:e39820. [PMID: 39465714 PMCID: PMC11460937 DOI: 10.1097/md.0000000000039820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 10/29/2024] Open
Abstract
Acupuncture is a traditional Chinese medicine therapy that is treatment by placing a needle or pressure in a specific position on the patient's skin. Although used in the treatment of various diseases, acupuncture is effective in the treatment of ischemic stroke (IS), and has made some progress in the mechanism of action of the treatment of this disease. IS is difficult to treat, and there is a high rate of disability. Drug therapy is usually the first line of treatment, but adjuvant therapy has outstanding efficacy in promoting the rehabilitation of the disease and preventing sequelae. Among them, acupuncture is getting more and more attention as a more popular treatment method. Therefore, this study excavates the high-quality randomized controlled trials and meta-analysis of acupuncture for IS in recent years to further summarize the efficacy of acupuncture for IS. In this review, we provide an overview of the current understanding of acupuncture and IS, and the current studies investigating the effectiveness of acupuncture in the treatment of IS.
Collapse
Affiliation(s)
- Zuoshan Wang
- Helen Hospital of Traditional Chinese Medicine, Suihua City, Heilongjiang Province, China
| | - Manya Wang
- Shanghai Pudong New Area Nanhui Xincheng Community Health Service Center, Pudong New Area, Shanghai Province, China
| | - Haishen Zhao
- Shanghai Pudong New Area Nanhui Xincheng Community Health Service Center, Pudong New Area, Shanghai Province, China
| |
Collapse
|
7
|
Hao W, Jialong Z, Jiuzhi Y, Yang Y, Chongning L, Jincai L. ADP-ribosylation, a multifaceted modification: Functions and mechanisms in aging and aging-related diseases. Ageing Res Rev 2024; 98:102347. [PMID: 38815933 DOI: 10.1016/j.arr.2024.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Aging, a complex biological process, plays key roles the development of multiple disorders referred as aging-related diseases involving cardiovascular diseases, stroke, neurodegenerative diseases, cancers, lipid metabolism-related diseases. ADP-ribosylation is a reversible modification onto proteins and nucleic acids to alter their structures and/or functions. Growing evidence support the importance of ADP-ribosylation and ADP-ribosylation-associated enzymes in aging and age-related diseases. In this review, we summarized ADP-ribosylation-associated proteins including ADP-ribosyl transferases, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. Furthermore, we outlined the latest knowledge about regulation of ADP-ribosylation in the pathogenesis and progression of main aging-related diseases, organism aging and cellular senescence, and we also speculated the underlying mechanisms to better disclose this novel molecular network. Moreover, we discussed current issues and provided an outlook for future research, aiming to revealing the unknown bio-properties of ADP-ribosylation, and establishing a novel therapeutic perspective in aging-related diseases and health aging via targeting ADP-ribosylation.
Collapse
Affiliation(s)
- Wu Hao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhao Jialong
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan Jiuzhi
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Yang
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Lv Chongning
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Lu Jincai
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
8
|
Chen HQ, Zhang QG, Zhang XY, Zeng XB, Xu JW, Ling S. 4'-O-methylbavachalcone alleviates ischemic stroke injury by inhibiting parthanatos and promoting SIRT3. Eur J Pharmacol 2024; 972:176557. [PMID: 38574839 DOI: 10.1016/j.ejphar.2024.176557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) can induce massive death of ischemic penumbra neurons via oxygen burst, exacerbating brain damage. Parthanatos is a form of caspase-independent cell death involving excessive activation of PARP-1, closely associated with intense oxidative stress following CIRI. 4'-O-methylbavachalcone (MeBavaC), an isoprenylated chalcone component in Fructus Psoraleae, has potential neuroprotective effects. This study primarily investigates whether MeBavaC can act on SIRT3 to alleviate parthanatos of ischemic penumbra neurons induced by CIRI. MeBavaC was oral gavaged to the middle cerebral artery occlusion-reperfusion (MCAO/R) rats after occlusion. The effects of MeBavaC on cerebral injury were detected by the neurological deficit score and cerebral infarct volume. In vitro, PC-12 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R), and assessed cell viability and cell injury. Also, the levels of ROS, mitochondrial membrane potential (MMP), and intracellular Ca2+ levels were detected to reflect mitochondrial function. We conducted western blotting analyses of proteins involved in parthanatos and related signaling pathways. Finally, the exact mechanism between the neuroprotection of MeBavaC and parthanatos was explored. Our results indicate that MeBavaC reduces the cerebral infarct volume and neurological deficit scores in MCAO/R rats, and inhibits the decreased viability of PC-12 cells induced by OGD/R. MeBavaC also downregulates the expression of parthanatos-related death proteins PARP-1, PAR, and AIF. However, this inhibitory effect is weakened after the use of a SIRT3 inhibitor. In conclusion, the protective effect of MeBavaC against CIRI may be achieved by inhibiting parthanatos of ischemic penumbra neurons through the SIRT3-PARP-1 axis.
Collapse
Affiliation(s)
- Hong-Qing Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qing-Guang Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin-Yuan Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiang-Bing Zeng
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jin-Wen Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shuang Ling
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Nehme J, Mesilmany L, Varela-Eirin M, Brandenburg S, Altulea A, Lin Y, Gaya da Costa M, Seelen M, Hillebrands JL, van Goor H, Saab R, Akl H, Prevarskaya N, Farfariello V, Demaria M. Converting cell death into senescence by PARP1 inhibition improves recovery from acute oxidative injury. NATURE AGING 2024; 4:771-782. [PMID: 38724734 DOI: 10.1038/s43587-024-00627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/05/2024] [Indexed: 06/21/2024]
Abstract
Excessive amounts of reactive oxygen species (ROS) lead to macromolecular damage and high levels of cell death with consequent pathological sequelae. We hypothesized that switching cell death to a tissue regenerative state could potentially improve the short-term and long-term detrimental effects of ROS-associated acute tissue injury, although the mechanisms regulating oxidative stress-induced cell fate decisions and their manipulation for improving repair are poorly understood. Here, we show that cells exposed to high oxidative stress enter a poly (ADP-ribose) polymerase 1 (PARP1)-mediated regulated cell death, and that blocking PARP1 activation promotes conversion of cell death into senescence (CODIS). We demonstrate that this conversion depends on reducing mitochondrial Ca2+ overload as a consequence of retaining the hexokinase II on mitochondria. In a mouse model of kidney ischemia-reperfusion damage, PARP inhibition reduces necrosis and increases transient senescence at the injury site, alongside improved recovery from damage. Together, these data provide evidence that converting cell death into transient senescence can therapeutically benefit tissue regeneration.
Collapse
Affiliation(s)
- Jamil Nehme
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen (RUG), University Medical Center Groningen, Groningen, the Netherlands
- Department of Biology, Lebanese University, Beirut, Lebanon
| | - Lina Mesilmany
- Department of Biology, Lebanese University, Beirut, Lebanon
- Université de Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Marta Varela-Eirin
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen (RUG), University Medical Center Groningen, Groningen, the Netherlands
| | - Simone Brandenburg
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen (RUG), University Medical Center Groningen, Groningen, the Netherlands
| | - Abdullah Altulea
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen (RUG), University Medical Center Groningen, Groningen, the Netherlands
| | - Yao Lin
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen (RUG), University Medical Center Groningen, Groningen, the Netherlands
| | - Mariana Gaya da Costa
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marc Seelen
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology & Medical Biology, Pathology Division, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology & Medical Biology, Pathology Division, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Raya Saab
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Haidar Akl
- Department of Biology, Lebanese University, Beirut, Lebanon
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Natacha Prevarskaya
- Université de Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Valerio Farfariello
- Université de Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen (RUG), University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Chen X, Yang T, Zhou Y, Mei Z, Zhang W. Astragaloside IV combined with ligustrazine ameliorates abnormal mitochondrial dynamics via Drp1 SUMO/deSUMOylation in cerebral ischemia-reperfusion injury. CNS Neurosci Ther 2024; 30:e14725. [PMID: 38615367 PMCID: PMC11016344 DOI: 10.1111/cns.14725] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/16/2024] Open
Abstract
OBJECTIVES Astragaloside IV (AST IV) and ligustrazine (Lig), the main ingredients of Astragali Radix and Chuanxiong Rhizoma respectively, have demonstrated significant benefits in treatment of cerebral ischemia -reperfusion injury (CIRI); however, the mechanisms underlying its benificial effects remain unclear. SUMO-1ylation and deSUMO-2/3ylation of dynamin-related protein 1 (Drp1) results in mitochondrial homeostasis imbalance following CIRI, which subsequently aggravates cell damage. This study investigates the mechanisms by which AST IV combined with Lig protects against CIRI, focusing on the involvement of SUMOylation in mitochondrial dynamics. METHODS Rats were administrated AST IV and Lig for 7 days, and middle cerebral artery occlusion was established to mimic CIRI. Neural function, cerebral infarction volume, cerebral blood flow, cognitive function, cortical pathological lesions, and mitochondrial morphology were measured. SH-SY5Y cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury. Mitochondrial membrane potential and lactic dehydrogenase (LDH), reactive oxygen species (ROS), and adenosine triphosphate (ATP) levels were assessed with commercial kits. Moreover, co-immunoprecipitation (Co-IP) was used to detect the binding of SUMO1 and SUMO2/3 to Drp1. The protein expressions of Drp1, Fis1, MFF, OPA1, Mfn1, Mfn2, SUMO1, SUMO2/3, SENP1, SENP2, SENP3, SENP5, and SENP6 were measured using western blot. RESULTS In rats with CIRI, AST IV and Lig improved neurological and cognitive functions, restored CBF, reduced brain infarct volume, and alleviated cortical neuron and mitochondrial damage. Moreover, in SH-SY5Y cells, the combination of AST IV and Lig enhanced cellular viability, decreased release of LDH and ROS, increased ATP content, and improved mitochondrial membrane potential. Furthermore, AST IV combined with Lig reduced the binding of Drp1 with SUMO1, increased the binding of Drp1 with SUMO2/3, suppressed the expressions of Drp1, Fis1, MFF, and SENP3, and increased the expressions of OPA1, Mfn1, Mfn2, SENP1, SENP2, and SENP5. SUMO1 overexpression promoted mitochondrial fission and inhibited mitochondrial fusion, whereas SUMO2/3 overexpression suppressed mitochondrial fission. AST IV combined with Lig could reverse the effects of SUMO1 overexpression while enhancing those of SUMO2/3 overexpression. CONCLUSIONS This study posits that the combination of AST IV and Lig has the potential to reduce the SUMO-1ylation of Drp1, augment the SUMO-2/3ylation of Drp1, and thereby exert a protective effect against CIRI.
Collapse
Affiliation(s)
- Xiangyu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
- The First Clinical Medicine School of Guangdong Pharmaceutical UniversityGuangzhouGuangdongChina
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western MedicineChangshaHunanChina
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
- Third‐Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese MedicineCollege of Medicine and Health SciencesChina Three Gorges UniversityYichangHubeiChina
| | - Wenli Zhang
- School of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| |
Collapse
|
11
|
Gong Z, Guo J, Liu B, Guo Y, Cheng C, Jiang Y, Liang N, Hu M, Song T, Yang L, Li H, Zhang H, Zong X, Che Q, Shi N. Mechanisms of immune response and cell death in ischemic stroke and their regulation by natural compounds. Front Immunol 2024; 14:1287857. [PMID: 38274789 PMCID: PMC10808662 DOI: 10.3389/fimmu.2023.1287857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke (IS), which is the third foremost cause of disability and death worldwide, has inflammation and cell death as its main pathological features. IS can lead to neuronal cell death and release factors such as damage-related molecular patterns, stimulating the immune system to release inflammatory mediators, thereby resulting in inflammation and exacerbating brain damage. Currently, there are a limited number of treatment methods for IS, which is a fact necessitating the discovery of new treatment targets. For this review, current research on inflammation and cell death in ischemic stroke was summarized. The complex roles and pathways of the principal immune cells (microglia, astrocyte, neutrophils, T lymphocytes, and monocytes/macrophage) in the immune system after IS in inflammation are discussed. The mechanisms of immune cell interactions and the cytokines involved in these interactions are summarized. Moreover, the cell death mechanisms (pyroptosis, apoptosis, necroptosis, PANoptosis, and ferroptosis) and pathways after IS are explored. Finally, a summary is provided of the mechanism of action of natural pharmacological active ingredients in the treatment of IS. Despite significant recent progress in research on IS, there remain many challenges that need to be overcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Qianzi Che
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Ren K, Pei J, Guo Y, Jiao Y, Xing H, Xie Y, Yang Y, Feng Q, Yang J. Regulated necrosis pathways: a potential target for ischemic stroke. BURNS & TRAUMA 2023; 11:tkad016. [PMID: 38026442 PMCID: PMC10656754 DOI: 10.1093/burnst/tkad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/24/2022] [Indexed: 12/01/2023]
Abstract
Globally, ischemic stroke causes millions of deaths per year. The outcomes of ischemic stroke are largely determined by the amount of ischemia-related and reperfusion-related neuronal death in the infarct region. In the infarct region, cell injuries follow either the regulated pathway involving precise signaling cascades, such as apoptosis and autophagy, or the nonregulated pathway, which is uncontrolled by any molecularly defined effector mechanisms such as necrosis. However, numerous studies have recently found that a certain type of necrosis can be regulated and potentially modified by drugs and is nonapoptotic; this type of necrosis is referred to as regulated necrosis. Depending on the signaling pathway, various elements of regulated necrosis contribute to the development of ischemic stroke, such as necroptosis, pyroptosis, ferroptosis, pathanatos, mitochondrial permeability transition pore-mediated necrosis and oncosis. In this review, we aim to summarize the underlying molecular mechanisms of regulated necrosis in ischemic stroke and explore the crosstalk and interplay among the diverse types of regulated necrosis. We believe that targeting these regulated necrosis pathways both pharmacologically and genetically in ischemia-induced neuronal death and protection could be an efficient strategy to increase neuronal survival and regeneration in ischemic stroke.
Collapse
Affiliation(s)
- Kaidi Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No. 3 Provincial People’s Hospital, Henan No. 3 Provincial People’s Hospital, Zhengzhou 450052, China
| | - Yuanyuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yuxue Jiao
- Quality Management Department, Henan No. 3 Provincial People’s Hospital, Henan No. 3 Provincial People’s Hospital, Zhengzhou 450052, China
| | - Han Xing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Research Center for Clinical System Biology, Translational Medicine Center, No. 1 Jianshe Dong Road, ErQi District, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qi Feng
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
13
|
Shan H, Lin Y, Yin F, Pan C, Hou J, Wu T, Xia W, Zuo R, Cao B, Jiang C, Zhou Z, Yu X. Effects of astragaloside IV on glucocorticoid-induced avascular necrosis of the femoral head via regulating Akt-related pathways. Cell Prolif 2023; 56:e13485. [PMID: 37186483 PMCID: PMC10623974 DOI: 10.1111/cpr.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
We investigated the role of astragaloside IV (AS-IV) in preventing glucocorticoid-induced avascular necrosis of the femoral head (ANFH) and the underlying molecular mechanisms. Network pharmacology was used to predict the molecular targets of AS-IV. Molecular dynamic simulations were performed to explore the binding mechanism and interaction mode between AS-IV and Akt. Rat models of glucocorticoid-induced ANFH with AS-IV intervention were established, and osteogenesis, angiogenesis, apoptosis and oxidative stress were evaluated before and after blocking the PI3K/Akt pathway with LY294002. The effects of glucocorticoid and AS-IV on bone marrow mesenchymal stem cells and human umbilical vein endothelial cells incubated with and without LY294002 were determined. Downregulated p-Akt expression could be detected in the femoral heads of glucocorticoid-induced ANFH patients and rats. AS-IV increased trabecular bone integrity and vessel density of the femoral head in the model rats. AS-IV increased Akt phosphorylation and upregulated osteogenesis-, angiogenesis-, apoptosis- and oxidative stress-related proteins and mRNA and downregulated Bax, cleaved caspase-3 and cytochrome c levels. AS-IV promoted human umbilical vein endothelial cell migration, proliferation and tube formation ability; bone marrow mesenchymal stem cell proliferation; and osteogenic differentiation under glucocorticoid influence. AS-IV inhibited apoptosis. LY294002 inhibited these effects. AS-IV prevented glucocorticoid-induced ANFH by promoting osteogenesis and angiogenesis via the Akt/Runx2 and Akt/HIF-1α/VEGF pathways, respectively, and suppressing apoptosis and oxidative stress via the Akt/Bad/Bcl-2 and Akt/Nrf2/HO-1 pathways, respectively.
Collapse
Affiliation(s)
- Haojie Shan
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yiwei Lin
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fuli Yin
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chenhao Pan
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
| | - Jianzhong Hou
- Department of General Surgery, Shanghai Fengxian Central HospitalShanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghaiChina
| | - Tianyi Wu
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenyang Xia
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rongtai Zuo
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bojun Cao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chaolai Jiang
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zubin Zhou
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaowei Yu
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
14
|
Jin Z, Gao W, Guo F, Liao S, Hu M, Yu T, Yu S, Shi Q. Astragaloside IV alleviates neuronal ferroptosis in ischemic stroke by regulating fat mass and obesity-associated-N6-methyladenosine-acyl-CoA synthetase long-chain family member 4 axis. J Neurochem 2023. [PMID: 37300304 DOI: 10.1111/jnc.15871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Ischemic stroke (IS) is a detrimental neurological disease with limited treatment options. Astragaloside IV (As-IV) was a promising bioactive constituent in the treatment of IS. However, the functional mechanism remains unclear. Here, IS cell and mouse models were established by oxygen glucose deprivation/re-oxygenation (OGD/R) and middle cerebral artery occlusion (MCAO). Quantitative reverse transcription PCR (RT-qPCR), Western blotting, or Immunofluorescence staining measured related gene and protein expression of cells or mice brain tissues, and the results revealed altered expression of acyl-CoA synthetase long-chain family member 4 (Acsl4), fat mass and obesity-associated (Fto), and activation transcription factor 3 (Atf3) after treatment with As-IV. Then, increased N6 -methyladenosine (m6 A) levels caused OGD/R or MCAO were reduced by As-IV according to the data from methylated RNA immunoprecipitation (MeRIP)-qPCR and dot blot assays. Moreover, through a series of functional experiments such as observing mitochondrial changes under transmission electron microscopy (TEM), evaluating cell viability by cell counting kit-8 (CCK-8), analyzing infract area of brain tissues by 2,3,5-triphenyltetrazolium chloride (TTC) staining, measuring levels of malondialdehyde (MDA), lactate dehydrogenase (LDH), Fe2+ , solute carrier family 7 member 11 (Slc7a11) and glutathione peroxidase 4 (Gpx4) and concentration of glutathione (GSH), we found that Fto knockdown, Acsl4 overexpression or Atf3 knockdown promoted the viability of OGD/R cells, inhibited cell ferroptosis, reduced infract size, while As-IV treatment or Fto overexpression reversed these changes. In mechanism, the interplays of YTH N6 -methyladenosine RNA-binding protein 3 (Ythdf3)/Acsl4 and Atf3/Fto were analyzed by RNA-pull down, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assay. Fto regulated the m6 A levels of Acsl4. Ythdf3 bound to Acsl4, and modulated its levels through m6 A modification. Atf3 bound to Fto and positively regulated its levels. Overall, As-IV promoted the transcription of Fto by upregulating Atf3, resulting in decreased m6 A levels of Acsl4, thus, improving neuronal injury in IS by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Zhenglong Jin
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen, China
| | - Wenying Gao
- Department of TCM Pediatrics, Jiangmen Maternal and Child Health Hospital, Jiangmen, China
| | - Fu Guo
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen, China
| | - Shaojun Liao
- Department of Spine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Mingzhe Hu
- Department of Neurology, The Affiliated Hospital of Shandong University of TCM, Jinan, China
| | - Tao Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen, China
| | - Shangzhen Yu
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen, China
| | - Qing Shi
- Department of Neurology, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Ji'nan University, Jiangmen, China
| |
Collapse
|
15
|
Wei X, He Y, Wan H, Yin J, Lin B, Ding Z, Yang J, Zhou H. Integrated transcriptomics, proteomics and metabolomics to identify biomarkers of astragaloside IV against cerebral ischemic injury in rats. Food Funct 2023; 14:3588-3599. [PMID: 36946308 DOI: 10.1039/d2fo03030f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The herb Astragali Radix is a food-medicine herb. A major component of Astragali Radix, astragaloside IV (AS-IV), has neuroprotective effects in IS, but its mechanisms are not well understood. Our research used a transient middle cerebral artery occlusion (MCAO) rat model for longitudinal multi-omics analyses of the side of the brain affected by ischemia. Based on transcriptomic and proteomic analysis, we found that 396 differential expression targets were up-regulated and 114 differential expression targets were down-regulated. A total of 117 differential metabolites were identified based on metabonomics. Finally, we found 8 hub genes corresponding to the compound-reaction-enzyme-gene network using the Metscape plug-in for Cytoscape 3.7.1. We found that the related key metabolites were 3,4-dihydroxy-L-phenylalanine, 2-aminomuconate semialdehyde, (R)-3-hydroxybutanoate, etc., and the affected pathways were tyrosine metabolism, tryptophan metabolism, butanoate metabolism, purine metabolism, etc. We further validated these targets using 4D-PRM proteomics and found that seven targets were significantly different, including Aprt, Atic, Gaa, Galk1, Glb1, Me2, and Hexa. We aimed to uncover the mechanism of AS-IV in the treatment of ischemic brain injury through a comprehensive strategy combining transcriptomics, proteomics, and metabolomics.
Collapse
Affiliation(s)
- Xiaoyu Wei
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Junjun Yin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Bingying Lin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Zhishan Ding
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| |
Collapse
|
16
|
Li W, Huo J, Berik E, Wu W, Hou J, Long H, Lei M, Li Z, Zhang Z, Wu W. Determination of the intermediates in glycolysis and tricarboxylic acid cycle with an improved derivatization strategy using gas chromatography-mass spectrometry in complex samples. J Chromatogr A 2023; 1692:463856. [PMID: 36803770 DOI: 10.1016/j.chroma.2023.463856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Traditional Chinese medicine (TCM) is recognized as a complex matrix, and improved analytical methods are crucial to extract the key indicators and depict the interaction and alteration of the complex matrix. Shenqi Fuzheng Injection (SQ), a water extract of Radix Codonopsis and Radix Astragali, has demonstrated preventative effects on myotube atrophy induced by chemotherapeutic agents. To achieve the improved analytical capability of complex biological samples, we established a highly reproducible, sensitive, specific, and robust gas chromatography-tandem mass spectrometry (GC-MS) method to detect glycolysis and tricarboxylic acid (TCA) cycle intermediates with optimized factors in the extraction and derivatization process. Our method detected fifteen metabolites and covered most intermediate metabolites in glycolysis and TCA cycles, including glucose, glucose-6-phosphate, fructose-6-phosphate, dihydroxyacetone phosphate, 3-diphosphoglycerate, phosphoenolpyruvate, pyruvate, lactate, citrate, cis-aconitate, isocitrate, α-ketoglutarate, succinate, fumarate, and malate. Through methodological verification of the method, it was found that the linear correlation coefficients of each compound in the method were greater than 0.98, all of which had lower limits of quantification, the recovery rate was 84.94-104.45%, and the accuracy was 77.72-104.92%. The intraday precision was 3.72-15.37%, the interday precision was 5.00-18.02%, and the stability was 7.85-15.51%. Therefore, the method has good linearity, accuracy, precision, and stability. The method was further applied to study the attenuating effects of the SQ in a chemotherapeutic agents-induced C2C12 myotube atrophy model to evaluate the changes in the tricarboxylic acid cycle and glycolytic products under the action by the complex systems of TCM and disease model. Our study provided an improved method to explore TCM's pharmacodynamic constituents and action mechanisms.
Collapse
Affiliation(s)
- Wei Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangyan Huo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Entezar Berik
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Wenyong Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jinjun Hou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huali Long
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Lei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoxia Li
- Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| | - Zijia Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Wanying Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Guo D, Meng Y, Jiang X, Lu Z. Hexokinases in cancer and other pathologies. CELL INSIGHT 2023; 2:100077. [PMID: 37192912 PMCID: PMC10120283 DOI: 10.1016/j.cellin.2023.100077] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 05/18/2023]
Abstract
Glucose metabolism is indispensable for cell growth and survival. Hexokinases play pivotal roles in glucose metabolism through canonical functions of hexokinases as well as in immune response, cell stemness, autophagy, and other cellular activities through noncanonical functions. The aberrant regulation of hexokinases contributes to the development and progression of pathologies, including cancer and immune diseases.
Collapse
Affiliation(s)
- Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoming Jiang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Tang X, Xie S, Wang H, Li Y, Lai Z, Sun S, Pan R, Huang Y, Cai J. The combination of Astragalus membranaceus and ligustrazine mitigates cerebral ischemia-reperfusion injury via regulating NR2B-ERK/CREB signaling. Brain Behav 2023; 13:e2867. [PMID: 36585899 PMCID: PMC9927841 DOI: 10.1002/brb3.2867] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/17/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Cerebral ischemia-reperfusion (I/R) injury is a major factor underlying the high mortality and morbidity rates in stroke patients. Our previous study found that the combination of Astragalus membranaceus extract and ligustrazine (Ast+Lig) treatment could protect brain tissues against inflammation in rats with thrombolytic cerebral ischemia. Activation of N-methyl-D-aspartate receptors (NMDAR) is implicated in brain damage induced by cerebral I/R injury. METHODS We used in vivo and in vitro models of cerebral I/R injury for middle cerebral artery occlusion/reperfusion in mice and oxygen-glucose deprivation/reoxygenation in primary rat cerebral cortical neurons to evaluate the protective effects of Ast+Lig on cerebral I/R injury, and whether the protective mechanism was related to the regulation of NMDAR-ERK/CREB signaling. RESULTS Treatment with Ast+Lig, or MK-801 (an inhibitor of NMDAR) significantly ameliorated neurological deficits, decreased infarct volumes, suppressed neuronal damage and Ca2+ influx, and maintained the mitochondrial membrane potential in vivo and in vitro following cerebral I/R injury based on 2,3,5-triphenyl tetrazolium chloride staining, immunohistochemistry, and immunofluorescent staining. Furthermore, treatment with Ast+Lig evidently prevented the upregulation of NR2B, but not NR2A, in vivo and in vitro following cerebral I/R injury based on western blotting and reverse transcription-quantitative PCR analyses. Moreover, treatment with Ast+Lig significantly increased the phosphorylation of ERK and CREB, as well as increasing their mRNA expression levels in vivo and in vitro following cerebral I/R injury. CONCLUSIONS The overall results thus suggest that the Ast+Lig combination conferred neuroprotective properties against cerebral I/R injury via regulation of the NR2B-ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Xialing Tang
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Diagnosis and Treatment Center of Encephalopathy, Hubei Provincial Hospital of Chinese Medicine, Wuhan, China
| | - Shanshan Xie
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huajun Wang
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yingbin Li
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Department of Neurosurgery, Hospital of Guangzhou University Mega Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhiyu Lai
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shuangxi Sun
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ruanhuan Pan
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yan Huang
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jun Cai
- The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Department of Neurosurgery, Hospital of Guangzhou University Mega Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Wu H, Li Y, Zhang Q, Wang H, Xiu W, Xu P, Deng Y, Huang W, Wang DO. Crocetin antagonizes parthanatos in ischemic stroke via inhibiting NOX2 and preserving mitochondrial hexokinase-I. Cell Death Dis 2023; 14:50. [PMID: 36681688 PMCID: PMC9867762 DOI: 10.1038/s41419-023-05581-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
Parthanatos is one of the major pathways of programmed cell death in ischemic stroke characterized by DNA damage, poly (ADP-ribose) polymerases (PARP) activation, and poly (ADP-ribose) (PAR) formation. Here we demonstrate that crocetin, a natural potent antioxidant compound from Crocus sativus, antagonizes parthanatos in ischemic stroke. We reveal that mechanistically, crocetin inhibits NADPH oxidase 2 (NOX2) activation to reduce reactive oxygen species (ROS) and PAR production at the early stage of parthanatos. Meanwhile we demonstrate that PARylated hexokinase-I (HK-I) is a novel substrate of E3 ligase RNF146 and that crocetin interacts with HK-I to suppress RNF146-mediated HK-I degradation at the later stage of parthanatos, preventing mitochondrial dysfunction and DNA damage that ultimately trigger the irreversible cell death. Our study supports further development of crocetin as a potential drug candidate for preventing and/or treating ischemic stroke.
Collapse
Affiliation(s)
- Hao Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qian Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hanxun Wang
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenyu Xiu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Pu Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yujie Deng
- Guangzhou National Laboratory, Guangzhou, Guangdong, 510530, China
| | - Wanxu Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, China.
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China.
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.
- Graduate School of Biostudies, Kyoto University, Yoshida Hon-Machi, Kyoto, 606-8501, Japan.
| |
Collapse
|
20
|
Yang Y, Wu J, Lu W, Dai Y, Zhang Y, Sun X. Mitochondria-associated endoplasmic reticulum membranes dysfunction contributes to PARP-1-dependent cell death under oxidative stress in retinal precursor cells. J Biochem Mol Toxicol 2023; 37:e23303. [PMID: 36639873 DOI: 10.1002/jbt.23303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/20/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Persistent poly (ADP-ribose) polymerase 1 (PARP-1) activation has proven detrimental and can lead to PARP-1-dependent cell death. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) serve as essential hubs for many biological pathways, such as autophagy and mitochondria fission and fusion. This study aimed to alleviate the effects of hydrogen peroxide (H2 O2 )-induced persistent PARP-1 activation and MAM dysregulation by the usage of a PARP-1 inhibitor. Results showed that receptor-interacting protein kinase (RIPK) 1 inhibitor (necrostatin-1) and PARP-1 inhibitor (olaparib) protected retinal precursor cells from H2 O2 -induced death, while a pan-caspase inhibitor (Z-VAD-FMK) failed to protect R28 cells. Olaparib also alleviated H2 O2 -induced MAM dysregulation, as evidenced by decreased VDAC1/ITPR3 interactions and reduced mitochondrial membrane potential collapse. Additionally, olaparib also inhibited H2 O2 -induced autophagy. Inhibiting autophagic flux increased MAM signaling under both normal and oxidative conditions. Furthermore, H2 O2 treatment caused a reduction in the protein level of mitofusin-2 (MFN2) in a dose- and time-dependent manner. Mfn2 knockdown was found to further magnify MAM dysregulation and mitochondrial dysfunction under normal and oxidative conditions. Mfn2 overexpression surprisingly enhanced H2 O2 -induced MAM signaling and failed to rescue H2 O2 -induced mitochondrial dysfunction. These results indicate that MAMs probably serve as a membrane source for oxidative stress-associated autophagy. MAM dysregulation also contributed to H2 O2 -induced PARP-1-dependent cell death. However, more studies are required to decipher the link between the modulation of Mfn2 expression, changes in MAM integrity, and alterations in mitochondrial performances.
Collapse
Affiliation(s)
- Yuting Yang
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jihong Wu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Wei Lu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiqin Dai
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youjia Zhang
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Liu A, Hu J, Yeh TS, Wang C, Tang J, Huang X, Chen B, Huangfu L, Yu W, Zhang L. Neuroprotective Strategies for Stroke by Natural Products: Advances and Perspectives. Curr Neuropharmacol 2023; 21:2283-2309. [PMID: 37458258 PMCID: PMC10556387 DOI: 10.2174/1570159x21666230717144752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 09/09/2023] Open
Abstract
Cerebral ischemic stroke is a disease with high prevalence and incidence. Its management focuses on rapid reperfusion with intravenous thrombolysis and endovascular thrombectomy. Both therapeutic strategies reduce disability, but the therapy time window is short, and the risk of bleeding is high. Natural products (NPs) have played a key role in drug discovery, especially for cancer and infectious diseases. However, they have made little progress in clinical translation and pose challenges to the treatment of stroke. Recently, with the investigation of precise mechanisms in cerebral ischemic stroke and the technological development of NP-based drug discovery, NPs are addressing these challenges and opening up new opportunities in cerebral stroke. Thus, in this review, we first summarize the structure and function of diverse NPs, including flavonoids, phenols, terpenes, lactones, quinones, alkaloids, and glycosides. Then we propose the comprehensive neuroprotective mechanism of NPs in cerebral ischemic stroke, which involves complex cascade processes of oxidative stress, mitochondrial damage, apoptosis or ferroptosis-related cell death, inflammatory response, and disruption of the blood-brain barrier (BBB). Overall, we stress the neuroprotective effect of NPs and their mechanism on cerebral ischemic stroke for a better understanding of the advances and perspective in NPs application that may provide a rationale for the development of innovative therapeutic regimens in ischemic stroke.
Collapse
Affiliation(s)
- Aifen Liu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Jingyan Hu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Tzu-Shao Yeh
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Chengniu Wang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Jilong Tang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaohong Huang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Bin Chen
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Liexiang Huangfu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Weili Yu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Lei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
22
|
Peng JF, Salami OM, Habimana O, Xie YX, Yao H, Yi GH. Targeted Mitochondrial Drugs for Treatment of Ischemia-Reperfusion Injury. Curr Drug Targets 2022; 23:1526-1536. [PMID: 36100990 DOI: 10.2174/1389450123666220913121422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 08/04/2022] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury is a complex hemodynamic pathology that is a leading cause of death worldwide and occurs in many body organs. Numerous studies have shown that mitochondria play an important role in the occurrence mechanism of ischemia-reperfusion injury and that mitochondrial structural abnormalities and dysfunction lead to the disruption of the homeostasis of the whole mitochondria. At this time, mitochondria are not just sub-organelles to produce ATP but also important targets for regulating ischemia-reperfusion injury; therefore, drugs targeting mitochondria can serve as a new strategy to treat ischemia-reperfusion injury. Based on this view, in this review, we discuss potential therapeutic agents for both mitochondrial structural abnormalities and mitochondrial dysfunction, highlighting the application and prospects of targeted mitochondrial drugs in the treatment of ischemia-reperfusion injury, and try to provide new ideas for the clinical treatment of the ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Jin-Fu Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | | | - Olive Habimana
- International College, University of South China, 28 W Chang-sheng Road, Hengyang, Hunan, 421001, China
| | - Yu-Xin Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Hui Yao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Guang-Hui Yi
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
23
|
Du Y, Li C, Xu S, Yang J, Wan H, He Y. LC-MS/MS combined with blood-brain dual channel microdialysis for simultaneous determination of active components of astragali radix-safflower combination and neurotransmitters in rats with cerebral ischemia reperfusion injury: Application in pharmacokinetic and pharmacodynamic study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154432. [PMID: 36113188 DOI: 10.1016/j.phymed.2022.154432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Astragali Radix-Safflower combination (ARSC) is widely utilized in clinic to treat cerebral ischemia/reperfusion injury (CI/RI). Whereas, there is no in-depth research of the pharmacokinetics (PK) and pharmacodynamics (PD) analysis of ARSC after intragastric administration in rats with CI/RI. PURPOSE The purpose of this research is to investigate the PK characteristics of eight active ingredients (astragaloside IV, calycosin, calycosin-7-O-β-glucoside, formononetin, ononin, hydroxysafflor yellow A, syringin and vernine) of ARSC, and the regulation of neurotransmitters disorders, revealing the pharmacodynamic substance basis and the mechanism of ARSC in treating CI/RI from the molecular level. METHODS We established a new method which based on blood-brain dual channel microdialysis (MD) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to continuously gather, and determine the components of ARSC and neurotransmitters related to CI/RI in vivo. The collected data were analyzed by sigmoid-Emax function. The neurotransmitters primarily regulated in CI/RI rat were discussed by principal component analysis and the compound most associated with total pharmacodynamics was chosen by partial least squares regression. RESULTS The validated LC-MS/MS method had specificity and selectivity to simultaneously analyze the concentration of eight active components of ARSC extract and five neurotransmitters of CI/RI rats. The recovery rates of brain MD probe and blood MD probe were stable within six hours. The MD probes recovery rates decreased with the increase of flow rates, but the solution concentration had little effect on the probes recovery rates. It was feasible to correct the recovery rates of probes in vivo by using reverse dialysis method. All eight active ingredients of ARSC could pass across the blood brain barrier after CI/RI. ARSC regulated the release of glutamate (Glu), γ-aminobutyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT) and aspartic acid (Asp). Notably, astragaloside IV and hydroxysafflor yellow A might have better regulatory effect on neurotransmitters in comparison with other six measured components of ARSC, and Glu was the neurotransmitter mainly regulated in CI/RI rats. CONCLUSION The ARSC was able to treat CI/RI through ameliorating neurotransmitters disorders. There was a hysteresis between the peaked drug concentration and maximum therapeutic effect of ARSC. The drug effective concentrations range of ASIV, calycosin, calycosin-7-O-β-glucoside, syringin and vernine in blood microdialysate and calycosin, syringin, vernine in brain microdialysate were narrow, which need be paid attention in clinical use.
Collapse
Affiliation(s)
- Yu Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chang Li
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shouchao Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
24
|
Wang Q, Han B, Man X, Gu H, Sun J. Chuanzhitongluo regulates microglia polarization and inflammatory response in acute ischemic stroke. Brain Res Bull 2022; 190:97-104. [PMID: 36152772 DOI: 10.1016/j.brainresbull.2022.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND PURPOSE Chuanzhitongluo (CZTL), a traditional Chinese medicine mixture, is used in the recovery period of acute ischemic stroke (AIS), and effectively improves the prognosis of AIS patients. This study aims to evaluate whether CZTL regulates microglia polarization and inflammatory response to reduce brain damage in the acute phase of AIS. METHODS A mouse model of AIS was prepared by the photochemical method. Cerebral infarct volume was detected by 2,3,5-Triphenyltetrazolium chloride (TTC) staining. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to assess neuronal apoptosis. Gene expression profile change was explored by Gene chip. Inflammatory factors were analyzed by Protein microarray. The Immunofluorescence double-labeling assay was executed to elucidate the effects of CD16+ / Iba-1+ and CD206+ / Iba-1+ in the peripheral area of cerebral ischemia. RESULTS Results revealed that CZTL treatment alleviated the neurological impairment, reduced cerebral infarct volume, and inhibited neuronal apoptosis. CZTL altered gene expression profiles, which indicate that CZTL may be involved in regulating neuroinflammation. CZTL restrained inflammatory responses by down-regulated pro-inflammatory cytokines expression and enhanced anti-inflammatory cytokines level. Further experiments demonstrated that CZTL inhibited the activation of NLRP3 inflammasome, which decreasing the inflammatory response. In addition, CZTL promoted the transformation of microglia from M1 to M2 phenotype. CONCLUSIONS These results indicate that CZTL alleviates neuroinflammation and brain damage after AIS in mice, which may be mediated by modulating microglia polarization.
Collapse
Affiliation(s)
- Qingqing Wang
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Bin Han
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xu Man
- Department of Integrated Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Huali Gu
- Department of Emergency Internal Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jinping Sun
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao 266000, China; Department of Emergency Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
25
|
Yang Y, Wu J, Lu W, Dai Y, Zhang Y, Sun X. Olaparib, a PARP-1 inhibitor, protects retinal cells from ocular hypertension-associated oxidative damage. Front Cell Dev Biol 2022; 10:925835. [PMID: 36092711 PMCID: PMC9459396 DOI: 10.3389/fcell.2022.925835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Glaucoma is the most common cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) and relative hypoxia in the retina stimulate the production of reactive oxygen species (ROS), which, in turn, puts the retina and optic nerve under chronic oxidative stress. Emerging evidence has shown that oxidative stress can trigger PARP-1 overactivation, mitochondrial-associated endoplasmic reticulum membrane (MAM) dysregulation, and NLRP3 activation. Oxidative damage can trigger inflammasome activation, and NLRP3 is the only inflammasome associated with MAM dysregulation. In addition, multiple transcription factors are located on the MAM. This study aimed to investigate the protective effects and underlying mechanisms of a PARP-1 inhibitor (olaparib) against chronic ocular hypertension-associated retinal cell damage. We also mimicked hypoxic stimulation of a retinal precursor cell line by exposing the cells to 0.2% O2in vitro. We discovered that chronic ocular hypertension (COH) induces oxidative damage and MAM dysregulation in the retinal ganglion cells (RGCs). The protein levels of cleaved-PARP and NLRP3 were upregulated in the retinas of the COH rats. Olaparib, a PARP-1 inhibitor, alleviated COH-induced RGC loss, retinal morphological alterations, and photopic negative response amplitude reduction. Olaparib also relieved hypoxic stimulation-induced loss of cell viability and MAM dysregulation. Additionally, some indicators of mitochondrial performance, such as reactive oxygen species accumulation, mitochondrial Ca2+ influx, and mitochondrial membrane potential collapse, decreased after olaparib treatment. Olaparib attenuated the hypoxia-induced upregulation of NLRP3 protein levels as well as the phosphorylation of ERK1/2 and histone H2A.X. These results suggest that olaparib protects RGCs from chronic intraocular pressure elevation in vivo and alleviates the abnormal MAM dysregulation and mitochondrial dysfunction caused by hypoxia in vitro. This protection may be achieved by inhibiting PARP-1 overactivation, NLRP3 upregulation, and phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Yuting Yang
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jihong Wu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Wei Lu
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiqin Dai
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youjia Zhang
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Xinghuai Sun,
| |
Collapse
|
26
|
Luo JS, Ning JQ, Chen ZY, Li WJ, Zhou RL, Yan RY, Chen MJ, Ding LL. The Role of Mitochondrial Quality Control in Cognitive Dysfunction in Diabetes. Neurochem Res 2022; 47:2158-2172. [PMID: 35661963 PMCID: PMC9352619 DOI: 10.1007/s11064-022-03631-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 12/26/2022]
Abstract
Type 2 diabetes (T2DM) is a well known risk factor for Alzheimer's disease. Mitochondria are the center of intracellular energy metabolism and the main source of reactive oxygen species. Mitochondrial dysfunction has been identified as a key factor in diabetes-associated brain alterations contributing to neurodegenerative events. Defective insulin signaling may act in concert with neurodegenerative mechanisms leading to abnormalities in mitochondrial structure and function. Mitochondrial dysfunction triggers neuronal energy exhaustion and oxidative stress, leading to brain neuronal damage and cognitive impairment. The normality of mitochondrial function is basically maintained by mitochondrial quality control mechanisms. In T2DM, defects in the mitochondrial quality control pathway in the brain have been found to lead to mitochondrial dysfunction and cognitive impairment. Here, we discuss the association of mitochondrial dysfunction with T2DM and cognitive impairment. We also review the molecular mechanisms of mitochondrial quality control and impacts of mitochondrial quality control on the progression of cognitive impairment in T2DM.
Collapse
Affiliation(s)
- Jian-Sheng Luo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jia-Qi Ning
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Zhuo-Ya Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Wen-Jing Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Rui-Ling Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ru-Yu Yan
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Meng-Jie Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ling-Ling Ding
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
27
|
Molecular Mechanisms of Parthanatos and Its Role in Diverse Diseases. Int J Mol Sci 2022; 23:ijms23137292. [PMID: 35806303 PMCID: PMC9266317 DOI: 10.3390/ijms23137292] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Differential evolution of apoptosis, programmed necrosis, and autophagy, parthanatos is a form of cell death mediated by poly(ADP-ribose) polymerase 1 (PARP1), which is caused by DNA damage. PARP1 hyper-activation stimulates apoptosis-inducing factor (AIF) nucleus translocation, and accelerates nicotinamide adenine dinucleotide (NAD+) and adenosine triphosphate (ATP) depletion, leading to DNA fragmentation. The mechanisms of parthanatos mainly include DNA damage, PARP1 hyper-activation, PAR accumulation, NAD+ and ATP depletion, and AIF nucleus translocation. Now, it is reported that parthanatos widely exists in different diseases (tumors, retinal diseases, neurological diseases, diabetes, renal diseases, cardiovascular diseases, ischemia-reperfusion injury...). Excessive or defective parthanatos contributes to pathological cell damage; therefore, parthanatos is critical in the therapy and prevention of many diseases. In this work, the hallmarks and molecular mechanisms of parthanatos and its related disorders are summarized. The questions raised by the recent findings are also presented. Further understanding of parthanatos will provide a new treatment option for associated conditions.
Collapse
|
28
|
Chen DQ, Guo Y, Li X, Zhang GQ, Li P. Small molecules as modulators of regulated cell death against ischemia/reperfusion injury. Med Res Rev 2022; 42:2067-2101. [PMID: 35730121 DOI: 10.1002/med.21917] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 11/11/2021] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion (IR) injury contributes to disability and mortality worldwide. Due to the complicated mechanisms and lack of proper therapeutic targets, few interventions are available that specifically target the pathogenesis of IR injury. Regulated cell death (RCD) of endothelial and parenchymal cells is recognized as the promising intervening target. Recent advances in IR injury suggest that small molecules exhibit beneficial effects on various RCD against IR injury, including apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis, and parthanatos. Here, we describe the mechanisms behind these novel promising therapeutic targets and explain the machinery powering the small molecules. These small molecules exert protection by targeting endothelial or parenchymal cells to alleviate IR injury. Therapies of the ideal combination of small molecules targeting multiple cell types have shown potent synergetic therapeutic effects, laying the foundation for novel strategies to attenuate IR injury.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China.,Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Xin Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Guo-Qiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
29
|
He J, Wang M, Yang L, Xin H, Bian F, Jiang G, Zhang X. Astragaloside IV Alleviates Intestinal Barrier Dysfunction via the AKT-GSK3β-β-Catenin Pathway in Peritoneal Dialysis. Front Pharmacol 2022; 13:873150. [PMID: 35571132 PMCID: PMC9091173 DOI: 10.3389/fphar.2022.873150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
Background and aims: Long-term peritoneal dialysis (PD) causes intestinal dysfunction, including constipation, diarrhea, or enteric peritonitis. However, the etiology and pathogenesis of these complications are still unclear and there are no specific drugs available in the clinic. This study aims to determine whether Astragaloside IV (AS IV) has therapeutic value on PD-induced intestinal epithelial barrier dysfunction in vivo and in vitro. Methods: We established two different long-term PD treatment mice models by intraperitoneally injecting 4.25% dextrose-containing peritoneal dialysis fluid (PDF) in uremia mice and normal mice, which were served as controls. In addition, PDF was applied to T84 cells in vitro. The therapeutic effects of AS IV on PD-induced intestinal dysfunction were then examined by histopathological staining, transmission electron microscopy, western blotting, and reverse transcription polymerase chain reaction. The protein levels of protein kinase B (AKT), glycogen synthase kinase 3β (GSK-3β) and β-catenin were examined after administration of AS IV. Results: In the present study, AS IV maintained the intestinal crypt, microvilli and desmosome structures in an orderly arrangement and improved intestinal epithelial permeability with the up-regulation of tight junction proteins in vivo. Furthermore, AS IV protected T84 cells from PD-induced damage by improving cell viability, promoting wound healing, and increasing the expression of tight junction proteins. Additionally, AS IV treatment significantly increased the levels of phosphorylation of AKT, inhibited the activity GSK-3β, and ultimately resulted in the nuclear translocation and accumulation of β-catenin. Conclusion: These findings provide novel insight into the AS IV-mediated protection of the intestinal epithelial barrier from damage via the AKT-GSK3β-β-catenin signal axis during peritoneal dialysis.
Collapse
Affiliation(s)
- Jiaqi He
- Department of Pharmacology, School of Pharmacy and Minhang Hospital, Fudan University, Shanghai, China
| | - Mengling Wang
- Department of Pharmacology, School of Pharmacy and Minhang Hospital, Fudan University, Shanghai, China
| | - Licai Yang
- Department of Pharmacology, School of Pharmacy and Minhang Hospital, Fudan University, Shanghai, China
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy and Minhang Hospital, Fudan University, Shanghai, China
| | - Fan Bian
- Department of Nephrology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gengru Jiang
- Department of Nephrology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xuemei Zhang, ; Gengru Jiang,
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy and Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Xuemei Zhang, ; Gengru Jiang,
| |
Collapse
|
30
|
Zhu T, Wang L, Wang LP, Wan Q. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs. Biomed Pharmacother 2022; 148:112719. [DOI: 10.1016/j.biopha.2022.112719] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
|
31
|
Huang P, Wan H, Shao C, Li C, Zhang L, He Y. Recent Advances in Chinese Herbal Medicine for Cerebral Ischemic Reperfusion Injury. Front Pharmacol 2022; 12:688596. [PMID: 35111041 PMCID: PMC8801784 DOI: 10.3389/fphar.2021.688596] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cerebral ischemic reperfusion injury (CI/RI) is a critical factor that leads to a poor prognosis in patients with ischemic stroke. It is an extremely complicated pathological process that is clinically characterized by high rates of disability and mortality. Current available treatments for CI/RI, including mechanical and drug therapies, are often accompanied by significant side effects. Therefore, it is necessary to discovery new strategies for treating CI/RI. Many studies confirm that Chinese herbal medicine (CHM) was used as a potential drug for treatment of CI/RI with the advantages of abundant resources, good efficacy, and few side effects. In this paper, we investigate the latest drug discoveries and advancements on CI/RI, make an overview of relevant CHM, and systematically summarize the pathophysiology of CI/RI. In addition, the protective effect and mechanism of related CHM, which includes extraction of single CHM and CHM formulation and preparation, are discussed. Moreover, an outline of the limitations of CHM and the challenges we faced are also presented. This review will be helpful for researchers further propelling the advancement of drugs and supplying more knowledge to support the application of previous discoveries in clinical drug applications against CI/RI.
Collapse
Affiliation(s)
- Ping Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chongyu Shao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chang Li
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ling Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
32
|
Zaman Q, Zhang D, Reddy OS, Wong WT, Lai WF. Roles and Mechanisms of Astragaloside IV in Combating Neuronal Aging. Aging Dis 2022; 13:1845-1861. [DOI: 10.14336/ad.2022.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
|
33
|
Kang X, Su S, Hong W, Geng W, Tang H. Research Progress on the Ability of Astragaloside IV to Protect the Brain Against Ischemia-Reperfusion Injury. Front Neurosci 2021; 15:755902. [PMID: 34867166 PMCID: PMC8637115 DOI: 10.3389/fnins.2021.755902] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
Stroke, a disease with a sudden onset and high morbidity and mortality rates, is difficult to treat in the clinic. Traditional Chinese medicine has become increasingly widely used in clinical practice. Modern pharmacological studies have found that Radix Astragali has a variety of medicinal properties, i.e., immunoregulatory, antioxidative, anti-cancer, anti-diabetes, myocardial protective, hepatoprotective, and antiviral functions. This article reviews the protective effect and mechanism of astragaloside IV, which is extracted from Radix Astragali, on stroke, discusses the cerebroprotective effect of astragaloside IV against ischemia-reperfusion-related complications, offers insight into research prospects, and expands the idea of integrating traditional Chinese and Western medicine treatment strategies and drugs to provide a theoretical reference for the clinical treatment of cerebral ischemia-reperfusion injury and the improvement of stroke prognosis.
Collapse
Affiliation(s)
- Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuyue Su
- Wenzhou Medical University, Wenzhou, China
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, China
| | - Hongli Tang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Haga S, Kanno A, Morita N, Jin S, Matoba K, Ozawa T, Ozaki M. Poly(ADP-ribose) Polymerase (PARP) is Critically Involved in Liver Ischemia/reperfusion-injury. J Surg Res 2021; 270:124-138. [PMID: 34656890 DOI: 10.1016/j.jss.2021.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP) is a DNA-repairing enzyme activated by extreme genomic stress, and therefore is potently activated in the remnant liver suffering from ischemia after surgical resection. However, the impact of PARP on post-ischemic liver injury has not been elucidated yet. MATERIALS AND METHODS We investigated the impact of PARP on murine hepatocyte/liver injury induced by hypoxia/ischemia, respectively. RESULTS PJ34, a specific inhibitor of PARP, markedly protected against hypoxia/reoxygenation (H/R)-induced cell death, though z-VAD-fmk, a pan-caspase inhibitor similarly showed the protective effect. PJ34 did not affect H/R-induced caspase activity or caspase-mediated cell death. z-VAD-fmk also did not affect the production of PAR (i.e., PARP activity). Therefore, PARP- and caspase-mediated cell death occurred in a mechanism independent of each other in H/R. H/R immediately induced activation of PARP and cell death afterwards, both of which were suppressed by PJ34 or Trolox, an antioxidant. This suggests that H/R-induced cell death occurred redox-dependently through PARP activation. H/R and OS induced nuclear translocation of apoptosis inducing factor (AIF, a marker of parthanatos) and RIP1-RIP3 interaction (a marker of necroptosis), both of which were suppressed by PJ34. H/R induced PARP-mediated parthanatos and necroptosis redox-dependently. In mouse experiments, PJ34 significantly reduced serum levels of AST, ALT & LDH and areas of hepatic necrosis after liver ischemia/reperfusion, similar to z-VAD-fmk or Trolox. CONCLUSION PARP, activated by ischemic damage and/or oxidative stress, may play a critical role in post-ischemic liver injury by inducing programmed necrosis (parthanatos and necroptosis). PARP inhibition may be one of the promising strategies against post-ischemic liver injury.
Collapse
Affiliation(s)
- Sanae Haga
- Department of Biological Response and Regulation, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akira Kanno
- Department of Environmental Applied Chemistry, University of Toyama, Toyama, Toyama, Japan
| | - Naoki Morita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Shigeki Jin
- Department of Forensic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kotaro Matoba
- Department of Forensic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
| | - Michitaka Ozaki
- Department of Biological Response and Regulation, Hokkaido University, Sapporo, Hokkaido, Japan; Laboratory of Molecular and Functional Bio-Imaging, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
35
|
Emerging immune and cell death mechanisms in stroke: Saponins as therapeutic candidates. Brain Behav Immun Health 2021; 9:100152. [PMID: 34589895 PMCID: PMC8474497 DOI: 10.1016/j.bbih.2020.100152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
The complexity of the ischemic cascade is based on the integrated crosstalk of every cell type in the neurovascular unit. Depending on the features of the ischemic insult, several cell death mechanisms are triggered, such as apoptosis, necroptosis, ferroptosis/oxytosis, ETosis or pyroptosis, leading to reactive astrogliosis. However, emerging evidence demonstrates a dual role for the immune system in stroke pathophysiology, where it exerts both detrimental and also beneficial functions. In this review, we discuss the relevance of several cell death modalities and the dual role of the immune system in stroke pathophysiology. We also provide an overview of some emerging immunomodulatory therapeutic strategies, amongst which saponins, which are promising candidates that exert multiple pharmacological effects. Several cell death mechanisms coexist in stroke pathophysiology. Neurons are more vulnerable to necroptosis than glial cells. Inhibitors of receptor-interacting protein kinases and of ferroptosis induce neuroprotection. Saponins exert modulatory effects on inflammation and neuronal cell death in stroke.
Collapse
|
36
|
Zhao H, Tang J, Chen H, Gu W, Geng H, Wang L, Wang Y. 14,15-EET Reduced Brain Injury from Cerebral Ischemia and Reperfusion via Suppressing Neuronal Parthanatos. Int J Mol Sci 2021; 22:ijms22189660. [PMID: 34575823 PMCID: PMC8471287 DOI: 10.3390/ijms22189660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
To investigate the effect of 14,15-EET on the parthanatos in neurons induced by cerebral ischemia and reperfusion, middle cerebral artery occlusion and reperfusion (MCAO/R) and oxygen glucose deprivation/reoxygenation (OGD/R) were used to simulate cerebral ischemia reperfusion in vivo and in vitro, respectively. TTC staining and the Tunel method were used to detect cerebral infarct volume and neuronal apoptosis. Western blot and immunofluorescence were used to detect poly (ADP-ribose) polymerase-1 (PARP-1) activation and AIF nuclear translocation. The production of reactive oxygen species (ROS) and the expression of antioxidant genes were detected by Mito SOX, DCFH-DA and qPCR methods. MCAO/R increased cerebral infarct volume and neuronal apoptosis in mice, while 14,15-EET pretreatment increased cerebral infarct volume and neuronal apoptosis. OGD/R induced reactive oxygen species generation, PARP-1 cleavage, and AIF nuclear translocation in cortical neurons. 14,15-EET pretreatment could enhance the antioxidant gene expression of glutathione peroxidase (GSH-Px), heme oxygenase-1 (HO-1) and superoxide dismutase (SOD) in cortical neurons after ischemia and reperfusion. 14,15-EET inhibits the neuronal parthanatos induced by MCAO/R through upregulation of the expression of antioxidant genes and by reducing the generation of reactive oxygen species. This study advances the EET neuroprotection theory and provides a scientific basis for targeted clinical drugs that reduce neuronal parthanatos following cerebral ischemia and reperfusion.
Collapse
Affiliation(s)
- Haipeng Zhao
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
| | - Jing Tang
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
| | - Hongyang Chen
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
| | - Wei Gu
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
| | - Huixia Geng
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng 475000, China;
| | - Lai Wang
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health Sciences, Henan University, Kaifeng 475000, China;
- Correspondence: (L.W.); (Y.W.); Tel.: +86-371-23887799 (Y.W.)
| | - Yanming Wang
- School of Life Sciences, Henan University, Kaifeng 475000, China; (H.Z.); (J.T.); (H.C.); (W.G.)
- Correspondence: (L.W.); (Y.W.); Tel.: +86-371-23887799 (Y.W.)
| |
Collapse
|
37
|
Zhao C, Wang W, Yan K, Sun H, Han J, Hu Y. The therapeutic effect and mechanism of Qishen Yiqi dripping pills on cardiovascular and cerebrovascular diseases and diabetic complications. Curr Mol Pharmacol 2021; 15:547-556. [PMID: 34382512 DOI: 10.2174/1874467214666210811153610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
The alterations in vascular homeostasis is deeply involved in the development of numerous diseases, such as coronary heart disease, stroke, and diabetic complications. Changes in blood flow and endothelial permeability caused by vascular dysfunction are the common mechanisms for these three types of diseases. The disorders of glucose and lipid metabolism can result in changes of the energy production patterns in endothelium and surrounding cells which may consequently cause local energy metabolic disorders, oxidative stress and inflammatory responses. Traditional Chinese medicine (TCM) follows the principle of the "treatment by the syndrome differentiation". TCM considers of that coronary heart disease, stroke and diabetes complications all as the type of "Qi deficiency and Blood stasis" syndrome, which mainly happens to the vascular system. Therefore, the common pathogenesis of these three types of diseases suggests the treatment strategy by TCM should be in a close manner and named as "treating different diseases by the same treatment". Qishen Yiqi dripping pills is a modern Chinese herbal medicine which has been widely used for treatment of patients with coronary heart disease characterized as "Qi deficiency and blood stasis" in China. Recently, many clinical reports have demonstrated the potent therapeutic effects of Qishen Yiqi dripping pills on ischemic stroke and diabetic nephropathy. Based on these reports, we will summarize the clinical applications of Qishen Yiqi dripping pills on coronary heart disease, ischemic stroke and diabetic nephropathy, including the involved mechanisms with basic researches.
Collapse
Affiliation(s)
- Chunlai Zhao
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| | - Wenjia Wang
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| | - Kaijing Yan
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| | - He Sun
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| | - Jihong Han
- Department of Biochemistry and Molecular Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin. China
| | - Yunhui Hu
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| |
Collapse
|
38
|
Zhang S, Lachance BB, Mattson MP, Jia X. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog Neurobiol 2021; 204:102089. [PMID: 34118354 DOI: 10.1016/j.pneurobio.2021.102089] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
Brain glucose metabolism, including glycolysis, the pentose phosphate pathway, and glycogen turnover, produces ATP for energetic support and provides the precursors for the synthesis of biological macromolecules. Although glucose metabolism in neurons and astrocytes has been extensively studied, the glucose metabolism of microglia and oligodendrocytes, and their interactions with neurons and astrocytes, remain critical to understand brain function. Brain regions with heterogeneous cell composition and cell-type-specific profiles of glucose metabolism suggest that metabolic networks within the brain are complex. Signal transduction proteins including those in the Wnt, GSK-3β, PI3K-AKT, and AMPK pathways are involved in regulating these networks. Additionally, glycolytic enzymes and metabolites, such as hexokinase 2, acetyl-CoA, and enolase 2, are implicated in the modulation of cellular function, microglial activation, glycation, and acetylation of biomolecules. Given these extensive networks, glucose metabolism dysfunction in the whole brain or specific cell types is strongly associated with neurologic pathology including ischemic brain injury and neurodegenerative disorders. This review characterizes the glucose metabolism networks of the brain based on molecular signaling and cellular and regional interactions, and elucidates glucose metabolism-based mechanisms of neurological diseases and therapeutic approaches that may ameliorate metabolic abnormalities in those diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
39
|
Fukai M, Nakayabu T, Ohtani S, Shibata K, Shimada S, Sakamoto S, Fuda H, Furukawa T, Watanabe M, Hui SP, Chiba H, Shimamura T, Taketomi A. The Phenolic Antioxidant 3,5-dihydroxy-4-methoxybenzyl Alcohol (DHMBA) Prevents Enterocyte Cell Death under Oxygen-Dissolving Cold Conditions through Polyphyletic Antioxidant Actions. J Clin Med 2021; 10:jcm10091972. [PMID: 34064340 PMCID: PMC8124816 DOI: 10.3390/jcm10091972] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/19/2022] Open
Abstract
Cold preservation in University of Wisconsin (UW) solution is not enough to maintain the viability of the small intestine, due to the oxidative stress. The novel phenolic antioxidant 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA) has dual properties to reduce oxidative stress, radical scavenging, and antioxidant protein induction, in other cells. This study was designed to determine whether DHMBA reduces cold preservation injury of enterocytes, and to identify the effector site. Enterocytes were subjected to 48-h cold preservation under atmosphere in UW solution (±DHMBA), and then returned to normal culture to replicate reperfusion of the small intestine after cold preservation. At the end of cold preservation (ECP) and at 1, 3, 6, and 72 h after rewarming (R1h, R3h, R6h, and R72h), we evaluated cell function and the injury mechanism. The results showed that DHMBA protected mitochondrial function mainly during cold preservation, and suppressed cell death after rewarming, as shown by the MTT, ATP, mitochondrial membrane potential, LDH, and lipid peroxidation assays, together with enhanced survival signals (PI3K, Akt, p70S6K) and induction of antioxidant proteins (HO-1, NQO-1, TRX-1). We found that DHMBA mitigates the cold-induced injury of enterocytes by protecting the mitochondria through direct and indirect antioxidative activities.
Collapse
Affiliation(s)
- Moto Fukai
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo 060-8638, Hokkaido, Japan; (T.N.); (S.O.); (K.S.); (S.S.); (S.S.); (A.T.)
- Correspondence: ; Tel.: +81-11-7065927; Fax: +81-11-7177515
| | - Takuya Nakayabu
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo 060-8638, Hokkaido, Japan; (T.N.); (S.O.); (K.S.); (S.S.); (S.S.); (A.T.)
| | - Shintaro Ohtani
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo 060-8638, Hokkaido, Japan; (T.N.); (S.O.); (K.S.); (S.S.); (S.S.); (A.T.)
| | - Kengo Shibata
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo 060-8638, Hokkaido, Japan; (T.N.); (S.O.); (K.S.); (S.S.); (S.S.); (A.T.)
| | - Shingo Shimada
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo 060-8638, Hokkaido, Japan; (T.N.); (S.O.); (K.S.); (S.S.); (S.S.); (A.T.)
| | - Soudai Sakamoto
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo 060-8638, Hokkaido, Japan; (T.N.); (S.O.); (K.S.); (S.S.); (S.S.); (A.T.)
| | - Hirotoshi Fuda
- Faculty of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Nishi5, Kita12, Kita-ku, Sapporo 060-0812, Hokkaido, Japan; (H.F.); (T.F.); (M.W.); (S.-P.H.); (H.C.)
| | - Takayuki Furukawa
- Faculty of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Nishi5, Kita12, Kita-ku, Sapporo 060-0812, Hokkaido, Japan; (H.F.); (T.F.); (M.W.); (S.-P.H.); (H.C.)
| | - Mitsugu Watanabe
- Faculty of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Nishi5, Kita12, Kita-ku, Sapporo 060-0812, Hokkaido, Japan; (H.F.); (T.F.); (M.W.); (S.-P.H.); (H.C.)
- Watanabe Oyster Laboratory Co. Ltd., 490-3, Shimoongata-cho, Hachioji 190-0154, Tokyo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Nishi5, Kita12, Kita-ku, Sapporo 060-0812, Hokkaido, Japan; (H.F.); (T.F.); (M.W.); (S.-P.H.); (H.C.)
| | - Hitoshi Chiba
- Faculty of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Nishi5, Kita12, Kita-ku, Sapporo 060-0812, Hokkaido, Japan; (H.F.); (T.F.); (M.W.); (S.-P.H.); (H.C.)
- Department of Nutrition, Sapporo University of Health Sciences, 1-15, 2 chome, Nakanumanishi4jou, Higashi-ku, Sapporo 007-0894, Hokkaido, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Central Clinical Facilities, Hokkaido University Hospital, Nishi5 Kita14, Kita-ku, Sapporo 060-8648, Hokkaido, Japan;
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Nishi 7, Kita 15, Kita-ku, Sapporo 060-8638, Hokkaido, Japan; (T.N.); (S.O.); (K.S.); (S.S.); (S.S.); (A.T.)
| |
Collapse
|
40
|
Ciscato F, Ferrone L, Masgras I, Laquatra C, Rasola A. Hexokinase 2 in Cancer: A Prima Donna Playing Multiple Characters. Int J Mol Sci 2021; 22:ijms22094716. [PMID: 33946854 PMCID: PMC8125560 DOI: 10.3390/ijms22094716] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hexokinases are a family of ubiquitous exose-phosphorylating enzymes that prime glucose for intracellular utilization. Hexokinase 2 (HK2) is the most active isozyme of the family, mainly expressed in insulin-sensitive tissues. HK2 induction in most neoplastic cells contributes to their metabolic rewiring towards aerobic glycolysis, and its genetic ablation inhibits malignant growth in mouse models. HK2 can dock to mitochondria, where it performs additional functions in autophagy regulation and cell death inhibition that are independent of its enzymatic activity. The recent definition of HK2 localization to contact points between mitochondria and endoplasmic reticulum called Mitochondria Associated Membranes (MAMs) has unveiled a novel HK2 role in regulating intracellular Ca2+ fluxes. Here, we propose that HK2 localization in MAMs of tumor cells is key in sustaining neoplastic progression, as it acts as an intersection node between metabolic and survival pathways. Disrupting these functions by targeting HK2 subcellular localization can constitute a promising anti-tumor strategy.
Collapse
Affiliation(s)
- Francesco Ciscato
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Correspondence: (F.C.); (A.R.)
| | - Lavinia Ferrone
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
| | - Ionica Masgras
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Institute of Neuroscience, National Research Council, 56124 Pias, Italy
| | - Claudio Laquatra
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, 35131 Padova, Italy; (L.F.); (I.M.); (C.L.)
- Correspondence: (F.C.); (A.R.)
| |
Collapse
|
41
|
Xu H, Wang E, Chen F, Xiao J, Wang M. Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
Affiliation(s)
- Hui Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 508060, China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
42
|
Wang F, Qian H, Kong L, Wang W, Wang X, Xu Z, Chai Y, Xu J, Kang Q. Accelerated Bone Regeneration by Astragaloside IV through Stimulating the Coupling of Osteogenesis and Angiogenesis. Int J Biol Sci 2021; 17:1821-1836. [PMID: 33994865 PMCID: PMC8120474 DOI: 10.7150/ijbs.57681] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/04/2021] [Indexed: 12/20/2022] Open
Abstract
Both osteoblasts and preosteoclasts contribute to the coupling of osteogenesis and angiogenesis, regulating bone regeneration. Astragaloside IV (AS-IV), a glycoside of cycloartane-type triterpene derived from the Chinese herb Astragalus membranaceus, exhibits various biological activities, including stimulating angiogenesis and attenuating ischemic-hypoxic injury. However, the effects and underlying mechanisms of AS-IV in osteogenesis, osteoclastogenesis, and bone regeneration remain poorly understood. In the present study, we found that AS-IV treatment inhibited osteoclastogenesis, preserved preosteoclasts, and enhanced platelet-derived growth factor-BB (PDGF-BB)-induced angiogenesis. Additionally, AS-IV promoted cell viability, osteogenic differentiation, and angiogenic gene expression in bone marrow mesenchymal stem cells (BMSCs). The activation of AKT/GSK-3β/β-catenin signaling was found to contribute to the effects of AS-IV on osteoclastogenesis and osteogenesis. Furthermore, AS-IV accelerated bone regeneration during distraction osteogenesis (DO), as evidenced from the improved radiological and histological manifestations and biomechanical parameters, accompanied by enhanced angiogenesis within the distraction zone. In summary, AS-IV accelerates bone regeneration during DO, by enhancing osteogenesis and preosteoclast-induced angiogenesis simultaneously, partially through AKT/GSK-3β/β-catenin signaling. These findings reveal that AS-IV may serve as a potential bioactive molecule for promoting the coupling of osteogenesis and angiogenesis, and imply that AKT/GSK-3β/β-catenin signaling may be a promising therapeutic target for patients during DO treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jia Xu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| | - Qinglin Kang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, PR China
| |
Collapse
|
43
|
Xie Q, Li H, Lu D, Yuan J, Ma R, Li J, Ren M, Li Y, Chen H, Wang J, Gong D. Neuroprotective Effect for Cerebral Ischemia by Natural Products: A Review. Front Pharmacol 2021; 12:607412. [PMID: 33967750 PMCID: PMC8102015 DOI: 10.3389/fphar.2021.607412] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. Stroke is a disease with high prevalence and incidence, the pathogenesis is a complex cascade reaction. In recent years, it’s reported that a vast number of natural products have demonstrated beneficial effects on stroke worldwide. Natural products have been discovered to modulate activities with multiple targets and signaling pathways to exert neuroprotection via direct or indirect effects on enzymes, such as kinases, regulatory receptors, and proteins. This review provides a comprehensive summary of the established pharmacological effects and multiple target mechanisms of natural products for cerebral ischemic injury in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications. In addition, the biological activity of natural products is closely related to their structure, and the structure-activity relationship of most natural products in neuroprotection is lacking, which should be further explored in future. Overall, we stress on natural products for their role in neuroprotection, and this wide band of pharmacological or biological activities has made them suitable candidates for the treatment of stroke.
Collapse
Affiliation(s)
- Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daoyin Gong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
44
|
Ny V, Houška M, Pavela R, Tříska J. Potential benefits of incorporating Astragalus membranaceus into the diet of people undergoing disease treatment: An overview. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
45
|
Li L, Gan H, Jin H, Fang Y, Yang Y, Zhang J, Hu X, Chu L. Astragaloside IV promotes microglia/macrophages M2 polarization and enhances neurogenesis and angiogenesis through PPARγ pathway after cerebral ischemia/reperfusion injury in rats. Int Immunopharmacol 2021; 92:107335. [PMID: 33429332 DOI: 10.1016/j.intimp.2020.107335] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
Microglia/macrophages play a dual role in brain injury and repair following cerebral ischemia/reperfusion. Promoting microglia/macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotype has been considered as a potential treatment for ischemic stroke. Astragaloside IV (AS-IV) is a primary active ingredient of Chinese herb Radix Astragali, which protects against acute cerebral ischemic/reperfusion injury through its antioxidant, anti-inflammatory, and anti-apoptotic properties. However, it remains unknown whether AS-IV improves ischemic brain tissue repair and its underlying mechanism. A transient middle cerebral artery occlusion (tMCAO) rat model was used in this study. The results showed that AS-IV significantly improved long-term brain injury, reduced the expression of M1 microglia/macrophage markers and increased the expression of M2 microglia/macrophage markers 14 days after cerebral ischemia/reperfusion. AS-IV also increased peroxisome proliferator-activated receptor γ (PPARγ) mRNA and protein expression. Moreover, AS-IV promoted neurogenesis and angiogenesis, and increased the protein expression of brain-derived growth factor (BDNF), insulin-like growth factor-1 (IGF-1) and vascular endothelial growth factor (VEGF). However, these beneficial effects were greatly blocked by PPARγ antagonist T0070907. These results together suggest that AS-IV could enhance neurogenesis, angiogenesis and neurological functional recovery, which may be partially through transforming microglia/macrophage from M1 to M2 phenotype in a PPARγ-dependent manner after cerebral ischemia/reperfusion injury. Therefore, AS-IV can be considered as a promising therapeutic agent for ischemic stroke.
Collapse
Affiliation(s)
- Lin Li
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haiyan Gan
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huaqian Jin
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Fang
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Yang
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianping Zhang
- Department of Anatomy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaowei Hu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lisheng Chu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
46
|
Min YJ, Ling EA, Li F. Immunomodulatory Mechanism and Potential Therapies for Perinatal Hypoxic-Ischemic Brain Damage. Front Pharmacol 2020; 11:580428. [PMID: 33536907 PMCID: PMC7849181 DOI: 10.3389/fphar.2020.580428] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-ischemia (HI) is one of the most common causes of death and disability in neonates. Currently, the only available licensed treatment for perinatal HI is hypothermia. However, it alone is not sufficient to prevent the brain injuries and/or neurological dysfunction related to HI. Perinatal HI can activate the immune system and trigger the peripheral and central responses which involve the immune cell activation, increase in production of immune mediators and release of reactive oxygen species. There is mounting evidence indicating that regulation of immune response can effectively rescue the outcomes of brain injury in experimental perinatal HI models such as Rice-Vannucci model of newborn hypoxic-ischemic brain damage (HIBD), local transient cerebral ischemia and reperfusion model, perinatal asphyxia model, and intrauterine hypoxia model. This review summarizes the many studies about immunomodulatory mechanisms and therapies for HI. It highlights the important actions of some widely documented therapeutic agents for effective intervening of HI related brain damage, namely, HIBD, such as EPO, FTY720, Minocycline, Gastrodin, Breviscapine, Milkvetch etc. In this connection, it has been reported that the ameboid microglial cells featured prominently in the perinatal brain represent the key immune cells involved in HIBD. To this end, drugs, chemical agents and herbal compounds which have the properties to suppress microglia activation have recently been extensively explored and identified as potential therapeutic agents or strategies for amelioration of neonatal HIBD.
Collapse
Affiliation(s)
- Ying-Jun Min
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fan Li
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| |
Collapse
|
47
|
Wang X, Ge P. Parthanatos in the pathogenesis of nervous system diseases. Neuroscience 2020; 449:241-250. [DOI: 10.1016/j.neuroscience.2020.09.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
|
48
|
Sun L, Han R, Guo F, Chen H, Wang W, Chen Z, Liu W, Sun X, Gao C. Antagonistic effects of IL-17 and Astragaloside IV on cortical neurogenesis and cognitive behavior after stroke in adult mice through Akt/GSK-3β pathway. Cell Death Discov 2020; 6:74. [PMID: 32818074 PMCID: PMC7417740 DOI: 10.1038/s41420-020-00298-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/18/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
We aimed to investigate the exact effect of IL-17 on regulating neural stem cells (NSCs) stemness and adult neurogenesis in ischemic cortex after stroke, how Astragaloside IV(As-IV) regulated IL-17 expression and the underlying mechanism. Photochemical brain ischemia model was established and IL-17 protein expression was observed at different time after stroke in WT mice. At 3 days after stroke, when IL-17 expression peaked, IL-17 knock out (KO) mice were used to observe cell proliferation and neurogenesis in ischemic cortex. Then, As-IV was administered intravenously to assess cell apoptosis, proliferation, neurogenesis, and cognitive deficits by immunochemistry staining, western blots, and animal behavior tests in WT mice. Furthermore, IL-17 KO mice and As-IV were used simultaneously to evaluate the mechanism of cell apoptosis and proliferation after stroke in vivo. Besides, in vitro, As-IV and recombinant mouse IL-17A was administered, respectively, into NSCs culture, and then their diameters, viable cell proliferation and pathway relevant protein was assessed. The results showed knocking out IL-17 contributed to regulating PI3K/Akt pathway, promoting NSCs proliferation, and neurogenesis after ischemic stroke. Moreover, As-IV treatment helped inhibit neural apoptosis, promote the neurogenesis and eventually relieve mice anxiety after stroke. Unsurprisingly, IL-17 protein expression could be downregulated by As-IV in vivo and in vitro and they exerted antagonistic effect on neurogenesis by regulating Akt/GSK-3β pathway, with significant regulation for apoptosis. In conclusion, IL-17 exerts negative effect on promoting NSCs proliferation, neurogenesis and cognitive deficits after ischemic stroke, which could be reversed by As-IV.
Collapse
Affiliation(s)
- Li Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Ruili Han
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Fei Guo
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Hai Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Wen Wang
- School of Basic Medicine, Air Force Medical University, 710032 Xi’an, Shaanxi Province China
| | - Zhiyang Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Wei Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, 710038 Xi’an, Shaanxi Province China
| |
Collapse
|
49
|
In Silico Studies on Triterpenoid Saponins Permeation through the Blood-Brain Barrier Combined with Postmortem Research on the Brain Tissues of Mice Affected by Astragaloside IV Administration. Int J Mol Sci 2020; 21:ijms21072534. [PMID: 32260588 PMCID: PMC7177733 DOI: 10.3390/ijms21072534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
As the number of central nervous system (CNS) drug candidates is constantly growing, there is a strong need for precise a priori prediction of whether an administered compound is able to cross the blood–brain barrier (BBB). The aim of this study was to evaluate the ability to cross the BBB of triterpenoid saponins occurring in Astragalus mongholicus roots. The research was carried out using in silico methods combined with postmortem studies on the brain tissues of mice treated with isolated astragaloside IV (AIV). Firstly, to estimate the ability to cross the BBB by the tested saponins, new quantitative structure–activity relationship (QSAR) models were established. The reliability and predictability of the model based on the values of the blood–brain barrier penetration descriptor (logBB), the difference between the n-octanol/water and cyclohexane/water logP (ΔlogP), the logarithm of n-octanol/water partition coefficient (logPow), and the excess molar refraction (E) were both confirmed using the applicability domain (AD). The critical leverage value h* was found to be 0.128. The relationships between the standardized residuals and the leverages were investigated here. The application of an in vitro acetylcholinesterase-inhibition test showed that AIV can be recognized as the strongest inhibitor among the tested compounds. Therefore, it was isolated for the postmortem studies on brain tissues and blood using semi-preparative HPLC with the mobile phase composed of water, methanol, and ethyl acetate (1.7:2.1:16.2 v/v/v). The results of the postmortem studies on the brain tissues show a regular dependence of the final concentration of AIV in the analyzed brain samples of animals treated with 12.5 and 25 mg/kg b.w. of AIV (0.00012299 and 0.0002306 mg, respectively, per one brain). Moreover, the AIV logBB value was experimentally determined and found to be equal to 0.49 ± 0.03.
Collapse
|
50
|
Sun L, Zhang H, Wang W, Chen Z, Wang S, Li J, Li G, Gao C, Sun X. Astragaloside IV Exerts Cognitive Benefits and Promotes Hippocampal Neurogenesis in Stroke Mice by Downregulating Interleukin-17 Expression via Wnt Pathway. Front Pharmacol 2020; 11:421. [PMID: 32317974 PMCID: PMC7147333 DOI: 10.3389/fphar.2020.00421] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background Stroke remains a leading cause of adult disability and the demand for stroke rehabilitation services is growing, and Astragaloside IV (As IV), a primary bioactive compound of Radix Astragali : Astragalus mongholicus Bunge (Fabaceae), may be a promising stroke therapy. Methods To access the effect of As IV on adult mice after ischemic stroke, a photochemical ischemia model was established on C57BL/6 mice, which were intravenously administered As IV for three consecutive days later. And then the cognitive benefits and hippocampal neurogenesis were evaluated by Morris Water Maze (MWM) test, Golgi staining, and immunohistochemical staining in vivo and in vitro. Furthermore, to find out the underlying mechanism, interleukin-17 (IL-17) knockout (KO) mice were used, through RNA sequence (RNA-seq) analysis and immunohistochemistry. Then the mechanism of neurogenesis promoted by As IV was observed by western blot both in vivo and in vitro. Specifically, As IV, recombinant mouse IL-17A and IL-17F, and Wingless/integrated (Wnt)-expressing virus was administered respectively in neural stem cells (NSCs), and then their diameters and protein expression of Nestin, IL-17, and Wnt pathway relevant protein, were measured in vitro. Results Administering As IV resulted in significant amelioration of stroke-induced cognitive deficits. And more hippocampal neurons with normal morphology, significant increments in the length of the apical dendrites, and the density of their spines were observed in As IV-treated mice. Furthermore, the immunohistochemistry staining of DCX/BrdU and Sox2/Nestin showed As IV could promote hippocampal neurogenesis and NSC proliferation after ischemic stroke, as well as in vitro. For the mechanism underlying, IL-17 expression was downregulated significantly by As IV treatment and knocking out IL-17 was associated with nervous regeneration and synapse repair according to the analysis of RNA-seq. Consistent to As IV treatment, knocking out IL-17 showed some promotion on hippocampal neurogenesis and proliferation of NSCs, with activating Wnt pathway after stoke. Finally, in vitro, NSCs’ diameters and protein expression of Nestin, IL-17, and Wnt pathway were regulated by either administering As IV or inhibiting IL-17. Conclusion As IV stimulates hippocampal neurogenesis after stroke, thus potentially facilitates brain to remodel and repair by downregulating IL-17 expression via Wnt pathway.
Collapse
Affiliation(s)
- Li Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Heming Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Wen Wang
- School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Zhiyang Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Shuang Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jiangjing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Guangyao Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|