1
|
Wei X, He Y, Yu Y, Tang S, Liu R, Guo J, Jiang Q, Zhi X, Wang X, Meng D. The Multifaceted Roles of BACH1 in Disease: Implications for Biological Functions and Therapeutic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412850. [PMID: 39887888 PMCID: PMC11905017 DOI: 10.1002/advs.202412850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/22/2024] [Indexed: 02/01/2025]
Abstract
BTB domain and CNC homolog 1 (BACH1) belongs to the family of basic leucine zipper proteins and is expressed in most mammalian tissues. It can regulate its own expression and play a role in transcriptionally activating or inhibiting downstream target genes. It has a crucial role in various biological processes, such as oxidative stress, cell cycle, heme homeostasis, and immune regulation. Recent research highlights BACH1's significant regulatory roles in a series of conditions, including stem cell pluripotency maintenance and differentiation, growth, senescence, and apoptosis. BACH1 is closely associated with cardiovascular diseases and contributes to angiogenesis, atherosclerosis, restenosis, pathological cardiac hypertrophy, myocardial infarction, and ischemia/reperfusion (I/R) injury. BACH1 promotes tumor cell proliferation and metastasis by altering tumor metabolism and the epithelial-mesenchymal transition phenotype. Moreover, BACH1 appears to show an adverse role in diseases such as neurodegenerative diseases, gastrointestinal disorders, leukemia, pulmonary fibrosis, and skin diseases. Inhibiting BACH1 may be beneficial for treating these diseases. This review summarizes the role of BACH1 and its regulatory mechanism in different cell types and diseases, proposing that precise targeted intervention of BACH1 may provide new strategies for human disease prevention and treatment.
Collapse
Affiliation(s)
- Xiangxiang Wei
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Yunquan He
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Yueyang Yu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Sichong Tang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Ruiwen Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Jieyu Guo
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Qingjun Jiang
- Department of Vascular & Endovascular SurgeryChangzheng HospitalNaval Medical UniversityShanghai200003China
| | - Xiuling Zhi
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Xinhong Wang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| | - Dan Meng
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesDepartment of RheumatologyZhongshan HospitalZhongshan Hospital Immunotherapy Translational Research CenterFudan UniversityShanghai200032China
| |
Collapse
|
2
|
Lin Z, Li Y, Wu Z, Liu Q, Li X, Luo W. Eriodictyol-cisplatin coated nanomedicine synergistically promote osteosarcoma cells ferroptosis and chemosensitivity. J Nanobiotechnology 2025; 23:109. [PMID: 39953537 PMCID: PMC11829430 DOI: 10.1186/s12951-025-03206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
The ever-increasing chemoresistance of osteosarcoma (OS) has been observed in the recent decades, impeding OS therapeutic improvement and posing an urgency to exploit to the alternative and/or supplementary therapies for the optimization of OS chemotherapeutic regimen. Ferroptosis, a regulated cell death, has been identified as a natural anticancer mechanism as well as a synergist for chemotherapeutics in various cancers. Herein, we affirmed the tumor-suppressing properties of eriodictyol and illustrated that its antitumor effects might ascribe to the ferroptosis-inducing activity, in which eriodictyol could bind with BACH1 to repress the transcription and translation of GPX4 and eventually result in the GPX4-related ferroptosis. Further investigation found that eriodictyol could exhibit a synergistic effect with cisplatin, facilitating the antitumor effects of cisplatin. Lastly, through utilizing hollow mesoporous prussian blue nanocubes loaded with eriodictyol and cisplatin, we formed the ferroptosis-synergistic nanocomplexes to facilitate OS cells ferroptosis and cisplatin sensitivity. Through direct catalytic oxidation of unsaturated lipids, exogenous iron delivery, GSH exhaustion, and GPX4 transcriptional inhibition, this ferroptosis-synergistic nanocomplex could excellently enhance OS cells ferroptosis in both vitro and vivo, with no obvious organ injury observed. Therefore, our ferroptosis-synergistic nanocomplex may represent a promising alternative therapeutic strategy for OS patients.
Collapse
Affiliation(s)
- Zili Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
| | - Ziyi Wu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Qing Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
| | - Xiangyao Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Sawicka D, Maciak S, Sadowska A, Sokołowska E, Gohal S, Guzińska-Ustymowicz K, Niemirowicz-Laskowska K, Car H. Metabolic Rate and Oxidative Stress as a Risk Factors in the Development of Colorectal Cancer. Int J Mol Sci 2024; 25:10713. [PMID: 39409042 PMCID: PMC11476475 DOI: 10.3390/ijms251910713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
There is growing evidence that the body's energy expenditures constitute a significant risk factor for the development of most deadly diseases, including cancer. Our aim was to investigate the impact of basal metabolic rate (BMR) on the growth and progression of colorectal cancer (CRC). To do so, we used a unique model consisting of three lines of laboratory mice (Mus musculus) artificially selected for high (HBMR) and low (LBMR) basal metabolic rate and randomly bred individuals (non-selected, NSBMR). The experimental individuals were implanted with human colorectal cancer cells DLD-1. The variation in BMR between the lines allowed for testing the impact of whole-body metabolism on oxidative and antioxidant parameters in the liver throughout the cancerogenesis process. We investigated the dependence between metabolic values, reactive oxygen species (ROS) levels, and Kelch-like ECH-associated protein 1-based E3 ligase complexes (Keap1) gene activity in these animals. We found that the HBMR strain had a higher concentration of oxidative enzymes compared to the LBMR and NSBMR. Furthermore, the growth rate of CRC tumors was associated with alterations in the levels of oxidative stress enzymes and Keap1 expression in animals with a high metabolic rate. Our results indicate that a faster growth and development of CRC line DLD-1 is associated with enzymatic redox imbalance in animals with a high BMR.
Collapse
Affiliation(s)
- Diana Sawicka
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna Street 37, 15-295 Bialystok, Poland; (A.S.); (S.G.); (K.N.-L.); (H.C.)
| | - Sebastian Maciak
- Department of Evolutionary and Physiological Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego Street 1J, 15-245 Bialystok, Poland;
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna Street 37, 15-295 Bialystok, Poland; (A.S.); (S.G.); (K.N.-L.); (H.C.)
| | - Emilia Sokołowska
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona Street 15A, 15-274 Bialystok, Poland;
| | - Sylwia Gohal
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna Street 37, 15-295 Bialystok, Poland; (A.S.); (S.G.); (K.N.-L.); (H.C.)
| | - Katarzyna Guzińska-Ustymowicz
- Department of General Pathomorphology, Medical University of Bialystok, Waszyngtona Street 13, 15-269 Bialystok, Poland;
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna Street 37, 15-295 Bialystok, Poland; (A.S.); (S.G.); (K.N.-L.); (H.C.)
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna Street 37, 15-295 Bialystok, Poland; (A.S.); (S.G.); (K.N.-L.); (H.C.)
| |
Collapse
|
4
|
Xiao S, Li G, Tan M, Liu W, Li W. Loss of BACH1 improves osteogenic differentiation in glucocorticoid-induced hBMSCs through restoring autophagy. BMC Musculoskelet Disord 2024; 25:665. [PMID: 39182017 PMCID: PMC11344390 DOI: 10.1186/s12891-024-07761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Glucocorticoid-induced osteoporosis (GIOP) is the most common type of secondary osteoporosis. Recently, autophagy has been found to be related with the development of various diseases, including osteoporosis and osteoblast differentiation regulations. BTB and CNC homology 1 (BACH1) was a previously confirmed regulator for osteoblast differentiation, but whether it's could involve in glucocorticoid-induced human bone mesenchymal stem cells (hBMSCs) differentiation and autophagy regulation remain not been elucidated. METHODS hBMSCs were identified by flow cytometry method, and its differentiation ability were measured by ARS staining, oil O red, and Alcian blue staining assays. Gene and proteins were quantified via qRT-PCR and western blot assays, respectively. Autophagy activity was determined using immunofluorescence. ChIP and dual luciferase assay validated the molecular interactions. RESULTS The data revealed that isolated hBMSCs exhibited positive of CD29/CD44 and negative CD45/CD34. Moreover, BACH1 was abated gradually during osteoblast differentiation of hBMSCs, while dexamethasone (Dex) treatment led to BACH1 upregulation. Loss of BACH1 improved osteoblast differentiation and activated autophagy activity in Dex-challenged hBMSCs. Autophagy-related proteins (ATG3, ATG4, ATG5, ATG7, ATG12) were repressed after Dex treatment, while ATG3, ATG7 and BECN1 could be elevated by BACH1 knockdown, especially ATG7. Moreover, BACH1 could interact ATG7 promoter region to inhibit its transcription. Co-inhibition of ATG7 greatly overturned the protective roles of BACH1 loss on osteoblast differentiation and autophagy in Dex-induced hBMSCs. CONCLUSION Taken together, our results demonstrated that silencing of BACH1 mitigated Dex-triggered osteogenic differentiation inhibition by transcriptionally activating ATG7-mediated autophagy, suggesting that BACH1 may be a therapeutic target for GIOP treatment.
Collapse
Affiliation(s)
- ShuYing Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, NO. 336, Dongfeng South Road, Zhuhui District, Hengyang, Hunan Province, 421002, China
| | - GuoJuan Li
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, NO. 336, Dongfeng South Road, Zhuhui District, Hengyang, Hunan Province, 421002, China
| | - MeiHua Tan
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, NO. 336, Dongfeng South Road, Zhuhui District, Hengyang, Hunan Province, 421002, China
| | - Wen Liu
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, NO. 336, Dongfeng South Road, Zhuhui District, Hengyang, Hunan Province, 421002, China
| | - WenJin Li
- Department of Nutrition, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
5
|
Sri Hari A, Banerji R, Liang LP, Fulton RE, Huynh CQ, Fabisiak T, McElroy PB, Roede JR, Patel M. Increasing glutathione levels by a novel posttranslational mechanism inhibits neuronal hyperexcitability. Redox Biol 2023; 67:102895. [PMID: 37769522 PMCID: PMC10539966 DOI: 10.1016/j.redox.2023.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Glutathione (GSH) depletion, and impaired redox homeostasis have been observed in experimental animal models and patients with epilepsy. Pleiotropic strategies that elevate GSH levels via transcriptional regulation have been shown to significantly decrease oxidative stress and seizure frequency, increase seizure threshold, and rescue certain cognitive deficits. Whether elevation of GSH per se alters neuronal hyperexcitability remains unanswered. We previously showed that thiols such as dimercaprol (DMP) elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme. Here, we asked if elevation of cellular GSH by DMP altered neuronal hyperexcitability in-vitro and in-vivo. Treatment of primary neuronal-glial cerebrocortical cultures with DMP elevated GSH and inhibited a voltage-gated potassium channel blocker (4-aminopyridine, 4AP) induced neuronal hyperexcitability. DMP increased GSH in wildtype (WT) zebrafish larvae and significantly attenuated convulsant pentylenetetrazol (PTZ)-induced acute 'seizure-like' swim behavior. DMP treatment increased GSH and inhibited convulsive, spontaneous 'seizure-like' swim behavior in the Dravet Syndrome (DS) zebrafish larvae (scn1Lab). Furthermore, DMP treatment significantly decreased spontaneous electrographic seizures and associated seizure parameters in scn1Lab zebrafish larvae. We investigated the role of the redox-sensitive mammalian target of rapamycin (mTOR) pathway due to the presence of several cysteine-rich proteins and their involvement in regulating neuronal excitability. Treatment of primary neuronal-glial cerebrocortical cultures with 4AP or l-buthionine-(S,R)-sulfoximine (BSO), an irreversible inhibitor of GSH biosynthesis, significantly increased mTOR complex I (mTORC1) activity which was rescued by pre-treatment with DMP. Furthermore, BSO-mediated GSH depletion oxidatively modified the tuberous sclerosis protein complex (TSC) consisting of hamartin (TSC1), tuberin (TSC2), and TBC1 domain family member 7 (TBC1D7) which are critical negative regulators of mTORC1. In summary, our results suggest that DMP-mediated GSH elevation by a novel post-translational mechanism can inhibit neuronal hyperexcitability both in-vitro and in-vivo and a plausible link is the redox sensitive mTORC1 pathway.
Collapse
Affiliation(s)
- Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajeswari Banerji
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ruth E Fulton
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christopher Quoc Huynh
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Timothy Fabisiak
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pallavi Bhuyan McElroy
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Greater Philadelphia Area, Horsham, PA, 19044, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Liu C, Rokavec M, Huang Z, Hermeking H. Salicylate induces AMPK and inhibits c-MYC to activate a NRF2/ARE/miR-34a/b/c cascade resulting in suppression of colorectal cancer metastasis. Cell Death Dis 2023; 14:707. [PMID: 37898661 PMCID: PMC10613307 DOI: 10.1038/s41419-023-06226-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Aspirin and its active metabolite salicylate have emerged as promising agents for the chemoprevention of colorectal cancer (CRC). Moreover, aspirin suppresses the progression of established CRCs. However, the underlying molecular mechanisms are not completely understood. Here we found that salicylate induces the expression of the miR-34a and miR-34b/c genes, which encode tumor suppressive microRNAs, in a p53-independent manner. Salicylate activated AMPK, thereby activating NRF2, which directly induced miR-34a/b/c expression via ARE motifs. In addition, salicylate suppressed c-MYC, a known repressor of NRF2-mediated transactivation, via activating AMPK. The suppression of c-MYC by salicylate was necessary for NRF2-mediated activation of miR-34a/b/c. Inactivation of miR-34a/b/c largely abrogated the inhibitory effects of salicylate on migration, invasion and metastasis formation by CRC cells. In the future, aspirin and its derivates may be used therapeutically to activate miR-34a and miR-34b/c in tumors that have lost p53.
Collapse
Affiliation(s)
- Chunfeng Liu
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337, Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337, Munich, Germany
| | - Zekai Huang
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337, Munich, Germany.
- German Cancer Consortium (DKTK), Partner site Munich, D-80336, Munich, Germany.
- German Cancer Research Center (DKFZ), D-69210, Heidelberg, Germany.
| |
Collapse
|
7
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. A review of how the saffron (Crocus sativus) petal and its main constituents interact with the Nrf2 and NF-κB signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1879-1909. [PMID: 37067583 DOI: 10.1007/s00210-023-02487-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
The primary by-product of saffron (Crocus sativus) processing is saffron petals, which are produced in large quantities but are discarded. The saffron petals contain a variety of substances, including alkaloids, anthocyanins, flavonoids, glycosides, kaempferol, and minerals. Pharmacological investigations revealed the antibacterial, antidepressant, antidiabetic, antihypertensive, antinociceptive, antispasmodic, antitussive, hepatoprotective, immunomodulatory, and renoprotective properties of saffron petals, which are based on their antioxidant, anti-inflammatory, and antiapoptotic effects. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway protects against oxidative stress, carcinogenesis, and inflammation. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) is a protein complex involved in approximately all animal cells and participates in different biological procedures such as apoptosis, cell growth, development, deoxyribonucleic acid (DNA) transcription, immune response, and inflammation. The pharmacological properties of saffron and its compounds are discussed in this review, along with their associated modes of action, particularly the Nrf2 and NF-ĸB signaling pathways. Without considering a time constraint, our team conducted this review using search engines or electronic databases like PubMed, Scopus, and Web of Science. Saffron petals and their main constituents may have protective effects in numerous organs such as the brain, colon, heart, joints, liver, lung, and pancreas through several mechanisms, including the Nrf2/heme oxygenase-1 (HO-1)/Kelch-like ECH-associated protein 1 (Keap1) signaling cascade, which would then result in its antioxidant, anti-inflammatory, antiapoptotic, and therapeutic effects.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Xu J, Zhu K, Wang Y, Chen J. The dual role and mutual dependence of heme/HO-1/Bach1 axis in the carcinogenic and anti-carcinogenic intersection. J Cancer Res Clin Oncol 2023; 149:483-501. [PMID: 36310300 DOI: 10.1007/s00432-022-04447-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION In physiological concentrations, heme is nontoxic to the cell and is essential for cell survival and proliferation. Increasing intracellular heme concentrations beyond normal levels, however, will lead to carcinogenesis and facilitate the survival of tumor cells. Simultaneously, heme in an abnormally high quantity is also a potent inducer of tumor cell death, contributing to its ability to generate oxidative stress on the cells by boosting oxidative phosphorylation and suppressing tumors through ferroptosis. During tumorigenesis and progression, therefore, heme works as a double-edged sword. Heme oxygenase 1 (HO-1) is the rate-limiting enzyme in heme catabolism, which converts heme into physiologically active catabolites of carbon monoxide (CO), biliverdin, and ferrous iron (Fe2+). HO-1 maintains redox equilibrium in healthy cells and functions as a carcinogenesis inhibitor. It is widely recognized that HO-1 is involved in the adaptive response to cellular stress and the anti-inflammation effect. Notably, its expression level in cancer cells corresponds with tumor growth, aggressiveness, metastasis, and angiogenesis. Besides, heme-binding transcription factor BTB and CNC homology 1 (Bach1) play a critical regulatory role in heme homeostasis, oxidative stress and senescence, cell cycle, angiogenesis, immune cell differentiation, and autoimmune disorders. Moreover, it was found that Bach1 influences cancer cells' metabolism and metastatic capacity. Bach1 controls heme level by adjusting HO-1 expression, establishing a negative feedback loop. MATERIALS AND METHODS Herein, the authors review recent studies on heme, HO-1, and Bach1 in cancer. Specifically, they cover the following areas: (1) the carcinogenic and anticarcinogenic aspects of heme; (2) the carcinogenic and anticarcinogenic aspects of HO-1; (3) the carcinogenic and anticarcinogenic aspects of Bach1; (4) the interactions of the heme/HO-1/Bach1 axis involved in tumor progression. CONCLUSION This review summarized the literature about the dual role of the heme/HO-1/Bach1 axis and their mutual dependence in the carcinogenesis and anti-carcinogenesis intersection.
Collapse
Affiliation(s)
- Jinjing Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China
| | | | - Yali Wang
- Jiangsu Huai'an Maternity and Children Hospital, Huai'an, 223001, China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225009, China. .,College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Tan C, Wei Y, Ding X, Han C, Sun Z, Wang C. Cell senescence-associated genes predict the malignant characteristics of glioblastoma. Cancer Cell Int 2022; 22:411. [PMID: 36527013 PMCID: PMC9758946 DOI: 10.1186/s12935-022-02834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant, aggressive and recurrent primary brain tumor. Cell senescence can cause irreversible cessation of cell division in normally proliferating cells. According to studies, senescence is a primary anti-tumor mechanism that may be seen in a variety of tumor types. It halts the growth and spread of tumors. Tumor suppressive functions held by cellular senescence provide new directions and pathways to promote cancer therapy. METHODS We comprehensively analyzed the cell senescence-associated genes expression patterns. The potential molecular subtypes were acquired based on unsupervised cluster analysis. The tumor immune microenvironment (TME) variations, immune cell infiltration, and stemness index between 3 subtypes were analyzed. To identify genes linked with GBM prognosis and build a risk score model, we used weighted gene co-expression network analysis (WGCNA), univariate Cox regression, Least absolute shrinkage and selection operator regression (LASSO), and multivariate Cox regression analysis. And the correlation between risk scores and clinical traits, TME, GBM subtypes, as well as immunotherapy responses were estimated. Immunohistochemistry (IHC) and cellular experiments were performed to evaluate the expression and function of representative genes. Then the 2 risk scoring models were constructed based on the same method of calculation whose samples were acquired from the CGGA dataset and TCGA datasets to verify the rationality and the reliability of the risk scoring model. Finally, we conducted a pan-cancer analysis of the risk score, assessed drug sensitivity based on risk scores, and analyzed the pathways of sensitive drug action. RESULTS The 3 potential molecular subtypes were acquired based on cell senescence-associated genes expression. The Log-rank test showed the difference in GBM patient survival between 3 potential molecular subtypes (P = 0.0027). Then, 11 cell senescence-associated genes were obtained to construct a risk-scoring model, which was systematically randomized to distinguish the train set (n = 293) and the test set (n = 292). The Kaplan-Meier (K-M) analyses indicated that the high-risk score in the train set (P < 0.0001), as well as the test set (P = 0.0053), corresponded with poorer survival. In addition, the high-risk score group showed a poor response to immunotherapy. The reliability and credibility of the risk scoring model were confirmed according to the CGGA dataset, TCGA datasets, and Pan-cancer analysis. According to drug sensitivity analysis, it was discovered that LJI308, a potent selective inhibitor of RSK pathways, has the highest drug sensitivity. Moreover, the GBM patients with higher risk scores may potentially be more beneficial from drugs that target cell cycle, mitosis, microtubule, DNA replication and apoptosis regulation signaling. CONCLUSION We identified potential associations between clinical characteristics, TME, stemness, subtypes, and immunotherapy, and we clarified the therapeutic usefulness of cell senescence-associated genes.
Collapse
Affiliation(s)
- Chenyang Tan
- grid.452704.00000 0004 7475 0672Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, Shandong People’s Republic of China
| | - Yan Wei
- grid.452704.00000 0004 7475 0672Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong People’s Republic of China
| | - Xuan Ding
- grid.452704.00000 0004 7475 0672Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, Shandong People’s Republic of China
| | - Chao Han
- grid.452704.00000 0004 7475 0672Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, Shandong People’s Republic of China
| | - Zhongzheng Sun
- grid.452704.00000 0004 7475 0672Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, Shandong People’s Republic of China
| | - Chengwei Wang
- grid.452704.00000 0004 7475 0672Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, Shandong People’s Republic of China
| |
Collapse
|
10
|
Hormesis and Oxidative Distress: Pathophysiology of Reactive Oxygen Species and the Open Question of Antioxidant Modulation and Supplementation. Antioxidants (Basel) 2022; 11:antiox11081613. [PMID: 36009331 PMCID: PMC9405171 DOI: 10.3390/antiox11081613] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Alterations of redox homeostasis leads to a condition of resilience known as hormesis that is due to the activation of redox-sensitive pathways stimulating cell proliferation, growth, differentiation, and angiogenesis. Instead, supraphysiological production of reactive oxygen species (ROS) exceeds antioxidant defence and leads to oxidative distress. This condition induces damage to biomolecules and is responsible or co-responsible for the onset of several chronic pathologies. Thus, a dietary antioxidant supplementation has been proposed in order to prevent aging, cardiovascular and degenerative diseases as well as carcinogenesis. However, this approach has failed to demonstrate efficacy, often leading to harmful side effects, in particular in patients affected by cancer. In this latter case, an approach based on endogenous antioxidant depletion, leading to ROS overproduction, has shown an interesting potential for enhancing susceptibility of patients to anticancer therapies. Therefore, a deep investigation of molecular pathways involved in redox balance is crucial in order to identify new molecular targets useful for the development of more effective therapeutic approaches. The review herein provides an overview of the pathophysiological role of ROS and focuses the attention on positive and negative aspects of antioxidant modulation with the intent to find new insights for a successful clinical application.
Collapse
|
11
|
Khoshandam A, Razavi BM, Hosseinzadeh H. Interaction of saffron and its constituents with Nrf2 signaling pathway: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:789-798. [PMID: 36033950 PMCID: PMC9392575 DOI: 10.22038/ijbms.2022.61986.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/26/2022] [Indexed: 11/09/2022]
Abstract
Saffron (Crocus sativus) is a natural compound and its constituents such as crocin, crocetin, and safranal have many pharmacological properties such as anti-oxidant, anti-inflammatory, antitumor, antigenotoxic, anti-depressant, hepatoprotective, cardioprotective, and neuroprotective. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway plays an important role against inflammation, oxidative stress, and carcinogenesis. In the regulation of the Nrf2 signaling pathway, kelch-like ECH-associated protein 1 (keap1) is the most studied pathway. In this review, we gathered various studies and describe the pharmacological effects of saffron and its constituents with their related mechanisms of action, particularly the Nrf2 signaling pathway. In this review, we used search engines or electronic databases including Scopus, Web of Science, and Pubmed, without time limitation. The search keywords contained saffron, "Crocus sativus", crocetin, crocin, safranal, picrocrocin, "nuclear factor erythroid 2-related factor 2", and Nrf2. Saffron and its constituents could have protective properties through various mechanisms particularly the Nrf2/HO-1/Keap1 signaling pathway in different tissues such as the liver, heart, brain, pancreas, lung, joints, colon, etc. The vast majority of studies discussed in this review indicate that saffron and its constituents could induce the Nrf2 signaling pathway leading to its anti-oxidant and therapeutic effects.
Collapse
Affiliation(s)
- Arian Khoshandam
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran , Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran , Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Hossein Hosseinzadeh. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Inhibiting BTB domain and CNC homolog 1 (Bach1) as an alternative to increase Nrf2 activation in chronic diseases. Biochim Biophys Acta Gen Subj 2022; 1866:130129. [DOI: 10.1016/j.bbagen.2022.130129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022]
|
13
|
Schiffers C, Reynaert NL, Wouters EFM, van der Vliet A. Redox Dysregulation in Aging and COPD: Role of NOX Enzymes and Implications for Antioxidant Strategies. Antioxidants (Basel) 2021; 10:antiox10111799. [PMID: 34829671 PMCID: PMC8615131 DOI: 10.3390/antiox10111799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/23/2022] Open
Abstract
With a rapidly growing elderly human population, the incidence of age-related lung diseases such as chronic obstructive pulmonary disease (COPD) continues to rise. It is widely believed that reactive oxygen species (ROS) play an important role in ageing and in age-related disease, and approaches of antioxidant supplementation have been touted as useful strategies to mitigate age-related disease progression, although success of such strategies has been very limited to date. Involvement of ROS in ageing is largely attributed to mitochondrial dysfunction and impaired adaptive antioxidant responses. NADPH oxidase (NOX) enzymes represent an important enzyme family that generates ROS in a regulated fashion for purposes of oxidative host defense and redox-based signalling, however, the associations of NOX enzymes with lung ageing or age-related lung disease have to date only been minimally addressed. The present review will focus on our current understanding of the impact of ageing on NOX biology and its consequences for age-related lung disease, particularly COPD, and will also discuss the implications of altered NOX biology for current and future antioxidant-based strategies aimed at treating these diseases.
Collapse
Affiliation(s)
- Caspar Schiffers
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Niki L. Reynaert
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Emiel F. M. Wouters
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Ludwig Boltzmann Institute for Lung Health, 1140 Vienna, Austria
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6211 LK Maastricht, The Netherlands;
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT 05405, USA; (C.S.); (E.F.M.W.)
- Correspondence:
| |
Collapse
|
14
|
Yu C, Xiao JH. The Keap1-Nrf2 System: A Mediator between Oxidative Stress and Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6635460. [PMID: 34012501 PMCID: PMC8106771 DOI: 10.1155/2021/6635460] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Oxidative stress, a term that describes the imbalance between oxidants and antioxidants, leads to the disruption of redox signals and causes molecular damage. Increased oxidative stress from diverse sources has been implicated in most senescence-related diseases and in aging itself. The Kelch-like ECH-associated protein 1- (Keap1-) nuclear factor-erythroid 2-related factor 2 (Nrf2) system can be used to monitor oxidative stress; Keap1-Nrf2 is closely associated with aging and controls the transcription of multiple antioxidant enzymes. Simultaneously, Keap1-Nrf2 signaling is also modulated by a more complex regulatory network, including phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), protein kinase C, and mitogen-activated protein kinase. This review presents more information on aging-related molecular mechanisms involving Keap1-Nrf2. Furthermore, we highlight several major signals involved in Nrf2 unbinding from Keap1, including cysteine modification of Keap1 and phosphorylation of Nrf2, PI3K/Akt/glycogen synthase kinase 3β, sequestosome 1, Bach1, and c-Myc. Additionally, we discuss the direct interaction between Keap1-Nrf2 and the mammalian target of rapamycin pathway. In summary, we focus on recent progress in research on the Keap1-Nrf2 system involving oxidative stress and aging, providing an empirical basis for the development of antiaging drugs.
Collapse
Affiliation(s)
- Chao Yu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| |
Collapse
|
15
|
Smolková K, Mikó E, Kovács T, Leguina-Ruzzi A, Sipos A, Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid Redox Signal 2020; 33:966-997. [PMID: 31989830 PMCID: PMC7533893 DOI: 10.1089/ars.2020.8024] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Nuclear factor erythroid 2 (NFE2)-related factor 2 (NFE2L2, or NRF2) is a transcription factor predominantly affecting the expression of antioxidant genes. NRF2 plays a significant role in the control of redox balance, which is crucial in cancer cells. NRF2 activation regulates numerous cancer hallmarks, including metabolism, cancer stem cell characteristics, tumor aggressiveness, invasion, and metastasis formation. We review the molecular characteristics of the NRF2 pathway and discuss its interactions with the cancer hallmarks previously listed. Recent Advances: The noncanonical activation of NRF2 was recently discovered, and members of this pathway are involved in carcinogenesis. Further, cancer-related changes (e.g., metabolic flexibility) that support cancer progression were found to be redox- and NRF2 dependent. Critical Issues: NRF2 undergoes Janus-faced behavior in cancers. The pro- or antineoplastic effects of NRF2 are context dependent and essentially based on the specific molecular characteristics of the cancer in question. Therefore, systematic investigation of NRF2 signaling is necessary to clarify its role in cancer etiology. The biggest challenge in the NRF2 field is to determine which cancers can be targeted for better clinical outcomes. Further, large-scale genomic and transcriptomic studies are missing to correlate the clinical outcome with the activity of the NRF2 system. Future Directions: To exploit NRF2 in a clinical setting in the future, the druggable members of the NRF2 pathway should be identified. In addition, it will be important to study how the modulation of the NRF2 system interferes with cytostatic drugs and their combinations.
Collapse
Affiliation(s)
- Katarína Smolková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alberto Leguina-Ruzzi
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.,Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
16
|
Fischhuber K, Matzinger M, Heiss EH. AMPK Enhances Transcription of Selected Nrf2 Target Genes via Negative Regulation of Bach1. Front Cell Dev Biol 2020; 8:628. [PMID: 32760724 PMCID: PMC7372114 DOI: 10.3389/fcell.2020.00628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
5'-AMP-activated protein kinase (AMPK) and the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) are main players in the cellular adaptive response to metabolic and oxidative/xenobiotic stress, respectively. AMPK does not only balance the rate of fuel catabolism versus anabolism but also emerges as regulator of gene expression. We here examined the influence of AMPK on Nrf2-dependent gene transcription and the potential interplay of the two cellular stress hubs. Using gene expression analyses in wt and AMPKα1 -/- or Nrf2 -/- mouse embryonal fibroblasts, we could show that AMPK only affected a portion of the entire of Nrf2-dependent transcriptome upon exposure to the Nrf2 activator sulforaphane (Sfn). Focusing on selected genes with positive regulation by Nrf2 and either positive or no further regulation by AMPK, we revealed that altered Nrf2 levels could not account for the distinct extent of transactivation of certain Nrf2 targets in wt and AMPK -/- cells (assessed by immunoblot). FAIRE-qPCR largely excluded distinct chromatin accessibility of selected Nrf2-responsive antioxidant response elements (ARE) within the regulatory gene regions in wt and AMPK-/- cells. However, expression analyses and ChIP-qPCR showed that in AMPK-/- cells, levels of BTB and CNC homology 1 (Bach1), a competitor of Nrf2 for ARE sites with predominant repressor function, were higher, and Bach1 also bound to a greater relative extent to the examined ARE sites when compared to Nrf2. The negative influence of AMPK on Bach1 was confirmed by pharmacological and genetic approaches and occurred at the level of mRNA synthesis. Overall, the observed AMPK-mediated boost in transactivation of a subset of Nrf2 target genes involves downregulation of Bach1 and subsequent favored binding of activating Nrf2 over repressing Bach1 to the examined ARE sites.
Collapse
Affiliation(s)
| | - Manuel Matzinger
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Hyttinen JMT, Kannan R, Felszeghy S, Niittykoski M, Salminen A, Kaarniranta K. The Regulation of NFE2L2 (NRF2) Signalling and Epithelial-to-Mesenchymal Transition in Age-Related Macular Degeneration Pathology. Int J Mol Sci 2019; 20:ijms20225800. [PMID: 31752195 PMCID: PMC6888570 DOI: 10.3390/ijms20225800] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a mounting cause of loss of sight in the elderly in the developed countries, a trend enhanced by the continual ageing of the population. AMD is a multifactorial and only partly understood, malady. Unfortunately, there is no effective treatment for most AMD patients. It is known that oxidative stress (OS) damages the retinal pigment epithelium (RPE) and contributes to the progression of AMD. We review here the potential importance of two OS-related cellular systems in relation to AMD. First, the nuclear factor erythroid 2-related factor 2 (NFE2L2; NRF2)-mediated OS response signalling pathway is important in the prevention of oxidative damage and a failure of this system could be critical in the development of AMD. Second, epithelial-to-mesenchymal transition (EMT) represents a change in the cellular phenotype, which ultimately leads to the fibrosis encountered in RPE, a characteristic of AMD. Many of the pathways triggering EMT are promoted by OS. The possible interconnections between these two signalling routes are discussed here. From a broader perspective, the control of NFE2L2 and EMT as ways of preventing OS-derived cellular damage could be potentially valuable in the therapy of AMD.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Correspondence:
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, DVRC 203, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Minna Niittykoski
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
| |
Collapse
|
18
|
Ashrafizadeh M, Fekri HS, Ahmadi Z, Farkhondeh T, Samarghandian S. Therapeutic and biological activities of berberine: The involvement of Nrf2 signaling pathway. J Cell Biochem 2019; 121:1575-1585. [PMID: 31609017 DOI: 10.1002/jcb.29392] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
Abstract
Since the beginning of the 21st century, studies have focused on developing drugs from naturally occurring compounds. Berberine (Brb) as a plant-derived compound is of interest. It is an isoquinone alkaloid which is derived from Berberis aristata, Berberis aquifolium and Berberis vulgaris. This plant-derived compound has a variety of pharmacological effects such as antioxidant, anti-inflammatory, antidiabetic, antidiarrheal, antitumor, antimicrobial, and anti-inflammatory. Various studies have demonstrated the therapeutic and biological activities of Brb, but there is a lack of a precise review to manifest the signaling pathway of action of Brb. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a highly conserved pathway which mainly involves in preservation of redox balance. At the present review, we describe the therapeutic and biological activities of Brb as well as the relevant mechanisms specially focused on the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hojjat Samareh Fekri
- Pharmaceutics Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.,Central Research Laboratory, Deputy of Research, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Science, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|