1
|
Lash LH. Trichloroethylene: An Update on an Environmental Contaminant with Multiple Health Effects. Annu Rev Pharmacol Toxicol 2025; 65:507-527. [PMID: 39094062 PMCID: PMC11893042 DOI: 10.1146/annurev-pharmtox-022724-120525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The halogenated solvent trichloroethylene (TCE) has had many uses in medicine, construction, consumer products, and the military. Many of these uses have been discontinued or restricted due to its toxicity, which affects multiple target organs and includes both acute, high-dose toxicity and chronic, low-dose toxicity that also encompass several cancers. US and international agencies have conducted risk and hazard assessments for TCE, with comprehensive publications coming out in the last 10-15 years. Accordingly, the focus of this article is to review recently published data since that time (i.e., 2014) that clarify unsettled questions or provide additional insights into the metabolism and mechanisms of toxicity of TCE in several target organs. Besides metabolism, the review focuses on the kidneys, liver, immune system, nervous system, cardiovascular and pulmonary systems, the search for biomarkers, and recent analyses of human cancer risk and incidence from TCE exposure.
Collapse
Affiliation(s)
- Lawrence H Lash
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA;
| |
Collapse
|
2
|
Han Z, Liu C, Li M, Deng M, Ding Y, Li Y, Huo M, Xu H, Qiao H, Gao N. Discovery of CYP2E1 as a novel target in rheumatoid arthritis and validation by a new specific CYP2E1 inhibitor. Biochem Pharmacol 2024; 229:116501. [PMID: 39173843 DOI: 10.1016/j.bcp.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Considerable evidence indicates that CYP2E1 is associated with a variety of inflammatory diseases. Here we evaluated CYP2E1 as a potential therapeutic target for rheumatoid arthritis (RA) and established the protective effect of a new CYP2E1 inhibitor. Gene-expression datasets were used to analyze the change in expression of CYP2E1 in RA patients; CYP2E1 activity in collagen-induced arthritis (CIA) rats was determined by HPLC. We further evaluated the protective effects of Cyp2e1 knockout and a CYP2E1-specific inhibitor, Q11, synthesized by our group, in CIA and adjuvant-induced arthritis (AIA) rats. The expression of CYP2E1 in synovial tissue was elevated in RA patients and in CIA rats and the activity of CYP2E1 in vivo and in vitro in CIA rats was greater than that of controls. Cyp2e1 knockout significantly reduced the incidence of CIA and alleviated the severity of symptoms. Treatment with different doses of Q11 decreased paw thickness, volume and arthritis scores and reduced the serum levels of IL-6, TNF-α, IL-1β and MDA, and increased the level of GSH in CIA rats. A similar inhibitory effect was exhibited for Q11 in the AIA rats. Moreover, Q11 significantly impeded proliferation, migration, and invasion of human rheumatoid arthritis synovial fibroblasts cells. Q11 decreased the release of ROS and enhanced Nrf2 nuclear translocation and HO-1 expression in the cell nucleus. Overall, our results indicated that CYP2E1 may be a new target for RA and Q11 has potential protective effects against RA by reducing oxidative stress and opposing the inflammatory response via the ROS/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Zixinying Han
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxu Liu
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mingrui Li
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengyan Deng
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Ding
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yunchao Li
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Meidan Huo
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiwei Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hailing Qiao
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Na Gao
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Lin WY, Tu CP, Kuo HH, Kuo HW. Urinary Malondialdehyde (MDA) and N-Acetyl-β-D-Glucosaminidase (NAG) Associated with Exposure to Trichloroethylene (TCE) in Underground Water. TOXICS 2022; 10:toxics10060293. [PMID: 35736902 PMCID: PMC9228309 DOI: 10.3390/toxics10060293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
Trichloroethylene (TCE) is commonly used in various industries. If wastewater in factories is not effectively treated, the inflow into and subsequent contamination of underground water is likely. Our study assessed the association of exposure to TCE in underground water with oxidative stress and renal tubule damage. We selected 579 residents from areas with underground water contaminated with TCE. Each participant was interviewed via a questionnaire. We also assessed their urinary trichloroacetic acid (TCA) levels by gas chromatography (GC)-FID. Urinary malondialdehyde (MDA) and N-acetyl-β-D-glucosaminidase (NAG) were taken as indicators of oxidative stress and renal tubule damage. We found about 73% of the residents to have consumed underground water. The average duration of consumption was 26 years, with an average of 1.6 L per day. Currently, only 1.5% of the residents still continuously consume underground water. The consumption of underground water positively correlated with heightened urinary TCA levels (r = 0.554). Heightened urinary TCA levels, in turn, were positively associated with NAG levels (r = 0.180) but negatively associated with MDA levels (r = −0.193). The results held even after we had segmented urinary TCA levels into three groups of different levels. The elimination of the source of heightened TCE levels from various industrial effluents is essential. Residents exposed to TCE-laden underground water should periodically undergo health inspections.
Collapse
Affiliation(s)
- Wen-Yu Lin
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (W.-Y.L.); (C.-P.T.)
- Environmental Protection Administration Executive Yuan, Taipei 100006, Taiwan
| | - Chun-Ping Tu
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (W.-Y.L.); (C.-P.T.)
| | - Hsien-Hua Kuo
- Nursing Department, Taipei Hospital Ministry of Health and Welfare, Taipei 242033, Taiwan;
| | - Hsien-Wen Kuo
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (W.-Y.L.); (C.-P.T.)
- School of Public Health, National Defense Medical Center, Taipei 114201, Taiwan
- Correspondence: ; Tel.: +886-2-2826-7000
| |
Collapse
|
4
|
Fang Y, Yang H, Hu G, Lu J, Zhou J, Gao N, Gu Y, Zhang C, Qiu J, Guo Y, Zhang Y, Wen Q, Qiao H. The POR rs10954732 polymorphism decreases susceptibility to hepatocellular carcinoma and hepsin as a prognostic biomarker correlated with immune infiltration based on proteomics. J Transl Med 2022; 20:88. [PMID: 35164791 PMCID: PMC8842912 DOI: 10.1186/s12967-022-03282-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/25/2022] [Indexed: 11/10/2022] Open
Abstract
The effect of the cytochrome P450 oxidoreductase (POR) rs10954732 (G > A) polymorphism on hepatocellular carcinoma (HCC) susceptibility is unknown. Here we found that A allele carriers showed a 69% decrease in susceptibility to HCC with overall survival (OS) prolonged to 199%, accompanied by lower activity for cytochrome P450 2E1. A total of 222 differentially expressed proteins were mainly enriched in neutrophil and T cell activation and involved in the immune and inflammatory responses, constituting the altered immune tumor microenvironment related with A allele by proteomics analysis. Hepsin (HPN) showed significant down-regulation in HCC and up-regulation in A allele carriers. A lower HPN level was associated with increased susceptibility to HCC and a worse prognosis. Moreover, HPN is a potential independent prognostic biomarker for HCC and is strongly associated with clinicopathological features, tumor-infiltrating status of immune cells both in our discovery cohort and database surveys. Our findings provide a new potential mechanism by which HPN may play an important role in the susceptibility of rs10954732 A allele carriers to HCC and their prognosis through tumor immune infiltration, thus offering potential insights for future studies on tumor immunotherapy.
Collapse
|
5
|
Blossom SJ, Gokulan K, Arnold M, Khare S. Sex-Dependent Effects on Liver Inflammation and Gut Microbial Dysbiosis After Continuous Developmental Exposure to Trichloroethylene in Autoimmune-Prone Mice. Front Pharmacol 2020; 11:569008. [PMID: 33250767 PMCID: PMC7673404 DOI: 10.3389/fphar.2020.569008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Trichloroethylene (TCE) is a common environmental toxicant linked with hypersensitivity and autoimmune responses in humans and animal models. While autoimmune diseases are more common in females, mechanisms behind this disparity are not clear. Recent evidence suggests that autoimmunity may be increasing in males, and occupational studies have shown that TCE-mediated hypersensitivity responses occur just as often in males. Previous experimental studies in autoimmune-prone MRL+/+ mice have focused on responses in females. However, it is important to include both males and females in order to better understand sex-disparity in autoimmune disease. In addition, because of an alarming increase in autoimmunity in adolescents, developmental and/or early life exposures to immune-enhancing environmental pollutants should also be considered. Using MRL+/+ mice, we hypothesized that TCE would alter markers related to autoimmunity to a greater degree in female mice relative to male mice, and that TCE would enhance these effects. Mice were continuously exposed to either TCE or vehicle beginning at gestation, continuing during lactation, and directly in the drinking water. Both male and female offspring were evaluated at 7 weeks of age. Sex-specific effects were evident. Female mice were more likely than males to show enhanced CD4+ T cell cytokine responses (e.g., IL-4 and IFN-γ). Although none of the animals developed pathological or serological signs of autoimmune hepatitis-like disease, TCE-exposed female mice were more likely than males in either group to express higher levels of biomarkers in the liver related to regeneration/repair and proliferation. Levels of bacterial populations in the intestinal ileum were also altered by TCE exposure and were more prominent in females as compared to males. Thus, our expectations were correct in that young adult female mice developmentally exposed to TCE were more likely to exhibit alterations in immunological and gut/liver endpoints compared to male mice.
Collapse
Affiliation(s)
- Sarah J Blossom
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Matthew Arnold
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| |
Collapse
|
6
|
Wang G, Wang H, Banerjee N, Khan MF. Interplay and roles of oxidative stress, toll-like receptor 4 and Nrf2 in trichloroethene-mediated autoimmunity. Toxicol Appl Pharmacol 2020; 408:115258. [PMID: 33007382 DOI: 10.1016/j.taap.2020.115258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023]
Abstract
Previous studies in MRL+/+ mice suggest involvement of oxidative stress (OS) in trichloroethene (TCE)-mediated autoimmunity. However, molecular mechanisms underlying the autoimmunity remain to be fully elucidated. Even though toll-like receptors (TLRs) and Nuclear factor (erythroid-derived 2)-like2 (Nrf2) pathways are implicated in autoimmune diseases (ADs), interplay of OS, TLR and Nrf2 in TCE-mediated autoimmune response remains unexplored. This study was, therefore, undertaken to clearly establish a link among OS, TLR4 and Nrf2 pathways in TCE-induced autoimmunity. Groups of female MRL+/+ mice were treated with TCE, sulforaphane (SFN, an antioxidant) or TCE + SFN (TCE, 10 mmol/kg, i.p., every 4th day; SFN, 8 mg/kg, i.p., every other day) for 6 weeks. TCE exposure led to greater formation of serum 4-hydroxynonenal (HNE)-protein adducts, HNE-specific circulating immune complexes (CICs) and protein carbonyls which were associated with significant increases in serum antinuclear antibodies (ANAs). Moreover, incubation of splenocytes from TCE-treated mice with HNE-modified proteins resulted in enhanced splenocyte proliferation and cytokine release evidenced by increased expression of cyclin D3, Cyclin-dependent kinase 6 (CDK6) and phospho-pRb as well as increased release of IL-6, TNF-α and INF-γ. More importantly, TCE exposure resulted in increased expression of TLR4, MyD88, IRAK4, NF-kB and reduced expression of Nrf2 and HO-1 in the spleen. Remarkably, SFN supplementation not only attenuated TCE-induced OS, upregulation in TLR4 and NF-kB signaling and downregulation of Nrf2, but also ANA levels. These results, in addition to providing further support to a role of OS, also suggest that an interplay among OS, TLR4 and Nrf2 pathways contributes to TCE-mediated autoimmune response. Attenuation of TCE-mediated autoimmunity by SFN provides an avenue for preventive and/or therapeutic strategies for ADs involving OS.
Collapse
Affiliation(s)
- Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, United States of America
| | - Hui Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, United States of America
| | - Nivedita Banerjee
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, United States of America
| | - M Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, United States of America.
| |
Collapse
|