1
|
Nicoletti RA, de Souza TP, Miotto DS, Duchatsch F, Tardelli LP, de Paula VF, Amaral SL, Zago AS. Aerobic Exercise Practiced Over Time Mitigates the Structural Effects on the Vascular System Caused by the Deleterious Effects of Aging. Vasc Health Risk Manag 2025; 21:125-138. [PMID: 40123737 PMCID: PMC11930239 DOI: 10.2147/vhrm.s478482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/08/2025] [Indexed: 03/25/2025] Open
Abstract
Background Aerobic training has been considered beneficial for determining the detrimental alterations in blood vessels caused by aging. Objective Evaluate the relationship between the preventive effects of aerobic exercise and time of practice on cardiovascular health, in aged Wistar rats. Methods Wistar rats (16 months) were divided into 3 groups: (1) sedentary (AGED); (2) long-term trained\61 weeks (LTT); and (3) short-term trained\final 8 weeks of life (STT). Body weight, maximum physical capacity, systolic blood pressure (SBP), pulse wave velocity (PWV), plasma nitrite (NO), oxidative stress (TBARS), wall thickness, the wall-to-lumen ratio, and collagen of the thoracic aorta, carotid, and femoral arteries were measured. Results Both trained groups showed an increase in physical capacity when compared to the AGED group (p=<0.001 for LTT and p=0.011 for STT), and the LTT group demonstrated higher values when compared to the STT group (p= 0.004). The LTT group presented attenuation of PWV (p= 0.002) and a reduction in the wall thickness and wall-to-lumen ratio of the thoracic aorta (p=0.032 and 0.008, respectively) and carotid arteries (p=0.019 and 0.012, respectively) when compared to the AGED group. The STT group presented a reduction in TBARS compared to the AGED group (p=0.046). Additionally, both trained groups (LTT and STT) presented a reduction in the percentage of arterial collagen compared to the AGED group in the thoracic aorta (p=<0.001 and p=0.001 respectively) and carotid arteries (p= <0.008 and p= 0.041 respectively). Conclusion This study demonstrated that long-term training decreased the level of collagen, PWV values, wall thickness, and the wall-to-lumen ratio of the aorta and carotid arteries compared to the AGED group. Moreover, short-term training reduced TBARS and collagen percentage in the aorta and carotid arteries compared to the AGED group.
Collapse
Affiliation(s)
- Rafael Antunes Nicoletti
- Department of Physical Education, School of Sciences, Sao Paulo State University (UNESP), Bauru, Brazil
- Graduate Program in Movement Science, Sao Paulo State University, UNESP, SP, Brazil
| | - Thiago Pereira de Souza
- Department of Physical Education, School of Sciences, Sao Paulo State University (UNESP), Bauru, Brazil
- Graduate Program in Movement Science, Sao Paulo State University, UNESP, SP, Brazil
| | - Danyelle S Miotto
- Joint Graduate Program in Physiological SciencesPIPGCF Ufscar/UNESP, São Carlos, Brazil
| | - Francine Duchatsch
- Joint Graduate Program in Physiological SciencesPIPGCF Ufscar/UNESP, São Carlos, Brazil
| | | | | | - Sandra Lia Amaral
- Department of Physical Education, School of Sciences, Sao Paulo State University (UNESP), Bauru, Brazil
- Joint Graduate Program in Physiological SciencesPIPGCF Ufscar/UNESP, São Carlos, Brazil
| | - Anderson Saranz Zago
- Department of Physical Education, School of Sciences, Sao Paulo State University (UNESP), Bauru, Brazil
- Graduate Program in Movement Science, Sao Paulo State University, UNESP, SP, Brazil
| |
Collapse
|
2
|
Dasgupta S, Barui A. Coculture to vascularization transition in bioengineered skin grafts through VEGF-associated pathways tracked by exosomal biomarkers. Biomater Sci 2025; 13:1464-1481. [PMID: 39902980 DOI: 10.1039/d4bm01544d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Inadequate vasculature poses a significant challenge in the clinical translation of tissue engineering constructs. Current strategies for vascularization typically recruit short-lived endothelial cells or induce mesenchymal stem cells (MSC) to differentiate into the endothelial lineage, often in combination with supporting pericytes or fibroblasts. However, endothelial-associated cocultures lack adaptive ability and form limited vasculature. In this study, we investigated the endothelial transdifferentiation of an MSC-fibroblast coculture loaded on a bioengineered graft and utilized the exosomes released by the coculture model as a biomarker to monitor the progress of vascularization inside the graft. To develop the pre-vascularized skin graft, dermal fibroblasts and MSC were seeded on a biocomposite chitosan/collagen/fibrinogen/D3 (CCF-D3) scaffold. The cocultured graft facilitated the differentiation of MSC to endothelial cells (MEnDoT). Additionally, it promoted vasculogenic sprouting through the VEGF-eNOS pathways, as evidenced by the expression of F-actin, VEGF-A, and downstream transcriptomic markers (CD31, CD34, eNOS, VEGF-A, VEGF-R2, PI3 K, and PLC-γ). Exosomes (∼130 nm diameter) were isolated from the coculture, and their spectral analysis revealed significant differences (p < 0.05) in the intensity ratio of nucleotides (952 cm-1), polysaccharides (1071 cm-1) and lipoproteins (1417 cm-1), corresponding to vasculogenesis. The activation of the VEGF-associated pathway in the coculture model was validated using an inhibitor (dexamethasone), which was used to treat the coculture graft as a control. Thus, this study elucidated the vascularization of coculture constructs via the VEGF-associated pathway. It demonstrated the potential of exosome spectral fingerprints as promising biomarkers to monitor the vascularization progression inside the graft, paving the way for the development of standardized grafts for full-thickness skin tissue regeneration.
Collapse
Affiliation(s)
- Shalini Dasgupta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India.
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India.
| |
Collapse
|
3
|
Souza TP, Tardelli LP, Nicoletti RA, Jacomini AM, Martins GFDM, Pinheiro LC, Tanus-Santos JE, Amaral SLD, Zago AS. Short-term Oral Nitrite Administration Decreases Arterial Stiffness in Both Trained and Sedentary Wistar Rats. Arq Bras Cardiol 2024; 121:e20230783. [PMID: 39699451 DOI: 10.36660/abc.20230783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 10/16/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Nitric Oxide (NO) plays an important role in blood pressure (BP) regulation, acting directly on peripheral vascular resistance through vasodilation. Physical training (via eNOS/NO) and intake of nitrite have been considered major stimuli to increase NO. OBJECTIVE We examined the effects of oral nitrite administration and aerobic exercise training on BP and arterial stiffness in Wistar rats. METHODS Thirty-nine (39) young male Wistar rats were divided into the following groups (n = 9 or 10 per group): Sedentary-Control (SC), Sedentary-Nitrite (SN), Trained-Control (TC), and Trained-Nitrite (TN). They were submitted to aerobic physical training on treadmills for 8 weeks (50-60% of physical capacity, 1h/day, 5 days/week) or kept sedentary. In the last 6 days of training, oral nitrite was administered (15 mg/Kg by gavage). BP, arterial stiffness, and plasma and tissue nitrite concentrations were assessed after the training and oral nitrite administration period. The significant level was defined as p < 0.05. RESULTS Oral administration of nitrite was effective in reducing arterial stiffness values (TN, -23%; and SN, -15%). Both groups that had only one type of intervention showed lower systolic BP compared with control (TC vs. SC, -14.23; and SN vs. SC, - 12.46). CONCLUSION We conclude that short-term oral administration for 6 days and an aerobic physical training program promote several hemodynamic benefits in male Wistar rats, such as improvements in arterial stiffness and BP. These responses suggest that physical training and sodium nitrite supplementation can be alternatives for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Thiago Pereira Souza
- Universidade Estadual Paulista (UNESP) - Departamento de Educação Física, Bauru, SP - Brasil
| | - Lidieli Pazin Tardelli
- Universidade Federal de São Carlos (UFSCar) - Programa Interinstitucional de Pós-Graduação em Ciências Fisiológicas, PIPGCF UFSCar/UNESP, São Carlos, SP - Brasil
| | | | - André Mourão Jacomini
- Universidade Estadual Paulista (UNESP) - Departamento de Educação Física, Bauru, SP - Brasil
| | | | - Lucas Cézar Pinheiro
- Universidade Federal de Santa Catarina (UFSC) - Departamento de Farmacologia, Florianópolis, SC - Brasil
| | | | - Sandra Lia do Amaral
- Universidade Estadual Paulista (UNESP) - Departamento de Educação Física, Bauru, SP - Brasil
| | - Anderson Saranz Zago
- Universidade Estadual Paulista (UNESP) - Departamento de Educação Física, Bauru, SP - Brasil
| |
Collapse
|
4
|
Kyriakou S, Acosta S, El Maachi I, Rütten S, Jockenhoevel S. A Dexamethasone-Loaded Polymeric Electrospun Construct as a Tubular Cardiovascular Implant. Polymers (Basel) 2023; 15:4332. [PMID: 37960012 PMCID: PMC10649717 DOI: 10.3390/polym15214332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular tissue engineering is providing many solutions to cardiovascular diseases. The complex disease demands necessitating tissue-engineered constructs with enhanced functionality. In this study, we are presenting the production of a dexamethasone (DEX)-loaded electrospun tubular polymeric poly(l-lactide) (PLA) or poly(d,l-lactide-co-glycolide) (PLGA) construct which contains iPSC-CMs (induced pluripotent stem cell cardiomyocytes), HUVSMCs (human umbilical vein smooth muscle cells), and HUVECs (human umbilical vein endothelial cells) embedded in fibrin gel. The electrospun tube diameter was calculated, as well as the DEX release for 50 days for 2 different DEX concentrations. Furthermore, we investigated the influence of the polymer composition and concentration on the function of the fibrin gels by imaging and quantification of CD31, alpha-smooth muscle actin (αSMA), collagen I (col I), sarcomeric alpha actinin (SAA), and Connexin 43 (Cx43). We evaluated the cytotoxicity and cell proliferation of HUVECs and HUVSMCs cultivated in PLA and PLGA polymeric sheets. The immunohistochemistry results showed efficient iPSC-CM marker expression, while the HUVEC toxicity was higher than the respective HUVSMC value. In total, our study emphasizes the combination of fibrin gel and electrospinning in a functionalized construct, which includes three cell types and provides useful insights of the DEX release and cytotoxicity in a tissue engineering perspective.
Collapse
Affiliation(s)
- Stavroula Kyriakou
- Department of Biohybrid & Medical Textiles (BioTex), AME—Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (S.A.); (I.E.M.)
| | - Sergio Acosta
- Department of Biohybrid & Medical Textiles (BioTex), AME—Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (S.A.); (I.E.M.)
| | - Ikram El Maachi
- Department of Biohybrid & Medical Textiles (BioTex), AME—Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (S.A.); (I.E.M.)
| | - Stephan Rütten
- Electron Microscopy Facility, University Hospital RWTH Aachen, 52074 Aachen, Germany;
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME—Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, 52074 Aachen, Germany; (S.K.); (S.A.); (I.E.M.)
- AMIBM—Aachen-Maastricht-Institute for Biobased Materials, Maastricht University, 6167 RD Geleen, The Netherlands
| |
Collapse
|
5
|
Macedo AG, Almeida TAF, Massini DA, De Paula VF, De Oliveira DM, Pessôa Filho DM. Effects of exercise training on glucocorticoid-induced muscle atrophy: literature review. Steroids 2023; 195:109240. [PMID: 37061112 DOI: 10.1016/j.steroids.2023.109240] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Glucocorticoids (GCs) administration, such as cortisol acetate (CA) and dexamethasone (DEXA), is used worldwide due to their anti-inflammatory, anti-allergic, and immunosuppressive properties. However, muscle atrophy is one of the primary deleterious induced responses from the chronic treatment with GCs since it stimulates muscle degradation inhibiting muscle protein synthesis. Animal models allow a better understanding of the molecular pathways involved in this process of gene modulation and production of hypertrophic and atrophic proteins. The treatment with GCs, such as DEXA, promotes the reduction of hypertrophic proteins such as serine/threonine tyrosine kinase (AKT), protein kinase mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase (p70S6K) and increased gene expression or production of atrophic proteins, such as myostatin, muscle atrophic F-box (atrogin-1), or muscle ring finger protein-1 (MuRF-1). In both continuous exercise (CE) and resistance exercise (RE) forms, exercise training is used to mitigate muscle atrophy induced by GCs. The CE attenuated muscle atrophy induced by CA or DEXA in the plantaris and extensor digitorum longus muscle, while RE mitigated the DEXA-induced atrophy in plantaris and flexor hallux longus muscles. The RE response appears to have occurred by modulation of hypertrophic proteins through increased protein production or phosphorylated/total ratio of mTOR and p70S6K and decreased atrophic protein production of atrogin-1 and MuRF-1. CE needs future research to understand the molecular pathways of its protective response. Abreviations: GCs, glucocorticoids; CA, cortisol acetate. DEXA, dexamethason; ET, exercise training; CE, continuous exercise; RE, resistance exercise; AKT, serine/threonine tyrosine kinase; mTOR, protein kinase mammalian target of rapamycin; p70S6K, ribosomal protein S6 kinase; FOXO3A, forkead box 3A; atrogin-1, muscle atrophic F-box; MuRF-1, muscle ring finger protein; PI3K, phosphatidylinositol 3 kinase; IGF-I, Insulin-like Growth Factor-I; IRS-1, insulin receptor substrate; REDD1, regulated in development and DNA damage responses 1; HSP70, heat shock protein 70; GR, glucocorticoid receptor; Smad2, Cytoplasmic Smad2; Smad3, Cytoplasmic Smad3; CS, Cushing's syndrome.
Collapse
Affiliation(s)
- Anderson G Macedo
- Department of Physical Education, Science Faculty, São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, Bauru, São Paulo, Brazil; Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), 13506-900, São Paulo, Rio Claro, Brazil.
| | - Tiago A F Almeida
- Department of Physical Education, Science Faculty, São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, Bauru, São Paulo, Brazil; Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), 13506-900, São Paulo, Rio Claro, Brazil; CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - Danilo A Massini
- Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), 13506-900, São Paulo, Rio Claro, Brazil
| | - Vinícius F De Paula
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235 Monjolinho, 676, São Carlos, SP, Brazil
| | - David M De Oliveira
- Federal University Jataí, Department of Physical Education, km 195, 3900, Goiás, Jataí, Brazil
| | - Dalton M Pessôa Filho
- Department of Physical Education, Science Faculty, São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, Bauru, São Paulo, Brazil; Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), 13506-900, São Paulo, Rio Claro, Brazil
| |
Collapse
|
6
|
Gantzel M, Gasbjerg KS, Hägi-Pedersen D, Meyhoff CS, Olsen MH, Mathiesen O, Jakobsen JC, Lunn TH. Effect of dexamethasone on intraoperative remifentanil dose in total knee arthroplasty surgery under general anaesthesia. Acta Anaesthesiol Scand 2022; 66:1070-1076. [PMID: 35908167 PMCID: PMC9543467 DOI: 10.1111/aas.14118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
Background The effects of glucocorticoids may include both genomic and rapid nongenomic effects. The potential rapid analgesic effect during surgery has not previously been investigated. We aimed to explore the effect of dexamethasone on intraoperative infusion rate of remifentanil in patients undergoing total knee arthroplasty (TKA) surgery under general anaesthesia. Methods In this post hoc subgroup analysis, we included patients randomised in the DEX‐2‐TKA trial, who were operated under total intravenous anaesthesia with remifentanil and propofol. Trial medication, intravenous dexamethasone 24 mg or placebo, was administered immediately after anaesthesia onset. The primary outcome was the median weight‐corrected infusion rate of remifentanil during surgery. Secondary outcomes included median weight‐corrected infusion rate of propofol, median intraoperative bispectral index and time spent in the post‐anaesthesia care unit. Results Eighty‐seven patients were included in the analysis of the primary outcome. A significantly higher remifentanil infusion rate was observed in the dexamethasone group compared with the placebo group, p = .02. None of the secondary outcomes resulted in statistically significant differences between groups. Conclusion This explorative post hoc analysis of the randomised DEX‐2‐TKA trail showed that patients undergoing TKA surgery under general anaesthesia and who received dexamethasone seemed to have a higher remifentanil infusion rate compared with patients who received placebo. The clinical implications of the potentially increased remifentanil infusion rate need to be validated and explored further. Clinical trial registration ClinicalTrials.gov Identifier: NCT05002361 (12 August 2021).
Collapse
Affiliation(s)
- Maria Gantzel
- Department of Anaesthesia and Intensive Care, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Kasper Smidt Gasbjerg
- Research Centre of Anaesthesiology and Intensive Care Medicine, Department of Anaesthesiology, Naestved-Slagelse- Ringsted Hospitals, Denmark
| | - Daniel Hägi-Pedersen
- Research Centre of Anaesthesiology and Intensive Care Medicine, Department of Anaesthesiology, Naestved-Slagelse- Ringsted Hospitals, Denmark.,Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Christian Sylvest Meyhoff
- Department of Anaesthesia and Intensive Care, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| | - Markus Harboe Olsen
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.,Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Ole Mathiesen
- Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark.,Centre for Anaesthesiological Research, Department of Anaesthesiology, Zealand University Hospital, Køge, Denmark
| | - Janus Christian Jakobsen
- Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark.,Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Troels Haxholdt Lunn
- Department of Anaesthesia and Intensive Care, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Department of Clinical Medicine, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
7
|
Shang L, Liu Y, Li J, Pan G, Zhou F, Yang S. Emodin Protects Sepsis Associated Damage to the Intestinal Mucosal Barrier Through the VDR/ Nrf2 /HO-1 Pathway. Front Pharmacol 2022; 12:724511. [PMID: 34987380 PMCID: PMC8721668 DOI: 10.3389/fphar.2021.724511] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Aims: Emodin is an anthraquinone extracted from Polygonum multiflorum, which has potential anti-inflammatory and anti-oxidative stress effects. However, the possible protective mechanism of emodin is unclear. The purpose of this study was to investigate the protective mechanism of emodin against cecal ligation and puncture and LPS-induced intestinal mucosal barrier injury through the VDR/ Nrf2 /HO-1 signaling pathway. Methods: We established a mouse model of sepsis by cecal ligation and puncture (CLP), and stimulated normal intestinal epithelial cells with lipopolysaccharide (LPS). VDR in cellswas down-regulated by small interfering ribonucleic acid (siRNA) technology.Mice were perfused with VDR antagonists ZK168281 to reduce VDR expression and mRNA and protein levels of VDR and downstream molecules were detected in cells and tissue. Inflammation markers (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6)) and oxidative stress markers (superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH)) were measured in serum and intestinal tissueby enzym-linked immunosorbent assay. The expression of VDR in intestinal tissue was detected by immunofluorescence. Histopathological changes were assessed by hematoxylin and eosin staining. Results: In NCM460 cells and animal models, emodin increased mRNA and protein expression of VDR and its downstream molecules. In addition, emodin could inhibit the expressions of TNF-α, IL-6 and MDA in serum and tissue, and increase the levels of SOD and GSH. The protective effect of emodin was confirmed in NCM460 cells and mice, where VDR was suppressed. In addition, emodin could alleviate the histopathological damage of intestinal mucosal barrier caused by cecal ligation and puncture. Conclusion: Emodin has a good protective effect against sepsis related intestinal mucosal barrier injury, possibly through the VDR/ Nrf2 /HO-1 pathway.
Collapse
Affiliation(s)
- Luorui Shang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxiao Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangtao Pan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangyuan Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenglan Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Li YL, Yao YX, Zhao YM, Di YQ, Zhao XF. The steroid hormone 20-hydroxyecdysone counteracts insulin signaling via insulin receptor dephosphorylation. J Biol Chem 2021; 296:100318. [PMID: 33484713 PMCID: PMC7949120 DOI: 10.1016/j.jbc.2021.100318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 11/30/2022] Open
Abstract
The insulin receptor (INSR) binds insulin to promote body growth and maintain normal blood glucose levels. While it is known that steroid hormones such as estrogen and 20-hydroxyecdysone counteract insulin function, the molecular mechanisms responsible for this attenuation remain unclear. In the present study, using the agricultural pest lepidopteran Helicoverpa armigera as a model, we proposed that the steroid hormone 20-hydroxyecdysone (20E) induces dephosphorylation of INSR to counteract insulin function. We observed high expression and phosphorylation of INSR during larval feeding stages that decreased during metamorphosis. Insulin upregulated INSR expression and phosphorylation, whereas 20E repressed INSR expression and induced INSR dephosphorylation in vivo. Protein tyrosine phosphatase 1B (PTP1B, encoded by Ptpn1) dephosphorylated INSR in vivo. PTEN (phosphatase and tensin homolog deleted on chromosome 10) was critical for 20E-induced INSR dephosphorylation by maintaining the transcription factor Forkhead box O (FoxO) in the nucleus, where FoxO promoted Ptpn1 expression and repressed Insr expression. Knockdown of Ptpn1 using RNA interference maintained INSR phosphorylation, increased 20E production, and accelerated pupation. RNA interference of Insr in larvae repressed larval growth, decreased 20E production, delayed pupation, and accumulated hemolymph glucose levels. Taken together, these results suggest that a high 20E titer counteracts the insulin pathway by dephosphorylating INSR to stop larval growth and accumulate glucose in the hemolymph.
Collapse
Affiliation(s)
- Yan-Li Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - You-Xiang Yao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yu-Meng Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yu-Qin Di
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
9
|
Dexamethasone Does Not Inhibit Treadmill Training-Induced Angiogenesis in Myocardium: Role of MicroRNA-126 Pathway. J Cardiovasc Pharmacol 2020; 76:708-714. [PMID: 33105326 DOI: 10.1097/fjc.0000000000000924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dexamethasone (DEX) has important anti-inflammatory activities; however, it induces hypertension and skeletal muscle microcirculation rarefaction. Nevertheless, nothing is known about DEX outcomes on cardiac microcirculation. By contrast, exercise training prevents skeletal and cardiac microvessel loss because of microRNA expression and a better balance between their related angiogenic and apoptotic proteins in spontaneously hypertensive rats. The purpose of this study was to investigate whether DEX and/or exercise training could induce microRNA alterations leading to cardiac angiogenesis or microvascular rarefaction. Animals performed 8 weeks of exercise training and were treated with DEX (50 μg/kg per day, subcutaneously) for 14 days. Cardiovascular parameters were measured, and the left ventricle muscle was collected for analyses. DEX treatment increased arterial pressure and did not cause cardiac microcirculation rarefaction. Treadmill training prevented the DEX-induced increase in arterial pressure. In addition, training, regardless of DEX treatment, increased microRNA-126 expression, phospho-protein kinase B/protein kinase B, and endothelial nitric oxide synthase levels associated with cardiac angiogenesis. In conclusion, this study suggests, for the first time, that treadmill training induces myocardial angiogenesis because of angiogenic pathway improvement associated with an increase in microRNA-126. Furthermore, DEX, per se, did not cause capillary density alterations and did not attenuate cardiac angiogenesis induced by training.
Collapse
|