1
|
Baidya R, Sarkar B. A systematic review of the traditional uses, chemistry, and curative aptitude of echinacoside-a phenylethanoid glycoside. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2071-2106. [PMID: 39361172 DOI: 10.1007/s00210-024-03460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/12/2024] [Indexed: 03/19/2025]
Abstract
Echinacoside (ECH), a naturally occurring water-soluble phenylethanoid glycoside, is one of the primary bioactive compounds present in several plant species, such as Echinacea, Cistanche, Plantago, Rosa, Buddleja, and Rehmannia. Research has revealed that these plants, rich in ECH, have diverse traditional uses and pharmacological activities, like anti-diabetic, anti-inflammatory, anti-fatigue, anti-allergic, anti-ageing, anti-skin glycation, analgesic, wound healing, and aphrodisiac properties. Among other activities, ophthalmic, haematopoiesis, pulmonary, anti-bacterial, anti-protozoal, anti-fungal, and anti-viral effects of ECH have been reported. Chemically, the compound comprises caffeic acid glycoside containing a trisaccharide that includes two glucose and one rhamnose unit. These units are linked through glycosidic bonds to a caffeic acid and a dihydroxyphenylethanol (hydroxytyrosol) residue, which are connected to the central rhamnose. The biosynthesis of ECH has been reported to start with forming L-phenylalanine and tyrosine precursors via the shikimic acid pathway. The structure-activity relationship of ECH has shown that various functional groups in the structure, particularly phenolic hydroxyl groups, are crucial for antioxidant activities. Similarly, in silico studies have revealed that ECH binds to different receptors, like Kelch-like ECH-associated protein 1 (Keap1), receptor for advanced glycation end products (RAGE), etc., to affect various pharmacological activities. The ECH contents in the reported plants often own these multifaceted properties, highlighting their importance in clinical research. Evident from its therapeutic efficacy, there is a huge potential for a comprehensive understanding of the mechanisms of actions of ECH, which underscores the need for more research in this area. Thus, this review is a compendium of the latest literature to analyse the existing knowledge on ECH, encompassing its distribution, traditional uses, extraction, chemical constituents, biosynthesis, pharmacological activities, structure-activity relationship, and in silico studies, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
Collapse
Affiliation(s)
- Ritika Baidya
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Biswatrish Sarkar
- Group Polyphenol-BIT, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
2
|
Zhu C, Zhang Z, Zhu Y, Du Y, Han C, Zhao Q, Li Q, Hou J, Zhang J, He W, Qin Y. Study on the role of Dihuang Yinzi in regulating the AMPK/SIRT1/PGC-1α pathway to promote mitochondrial biogenesis and improve Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118859. [PMID: 39341266 DOI: 10.1016/j.jep.2024.118859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dihuang Yinzi (DHYZ) is a classic prescription in traditional Chinese medicine. Its therapeutic effect on Alzheimer's disease (AD) has been widely validated. However, the underlying molecular mechanisms of DHYZ in AD treatment remain unclear and require further research. AIM OF THE STUDY Elucidating DHYZ's promotion of mitochondrial biogenesis through the AMPK/SIRT1/PGC-1α pathway improves neuronal loss, mitochondrial damage, and memory deficits in AD. MATERIALS AND METHODS Administering DHYZ by gavage to SAMP8 mice, after completing behavioral tests, the effects of DHYZ on hippocampal neuron loss and mitochondrial structural damage in AD model mice were assessed using Nissl staining and transmission electron microscopy. Western blot was used to detect the expression of mitochondrial biogenesis-related proteins PGC-1α, CREB, mitochondrial fusion protein MFN2, and mitochondrial fission proteins DRP1 and FIS1. At the same time, immunofluorescence (IF) was employed to measure the relative fluorescence intensity of mitochondrial fusion protein MFN1. After determining the optimal dose of DYHZ for treating AD, we conducted mechanistic studies. By intraperitoneally injecting SAMP8 mice with the AMPK inhibitor (Compound C) to inhibit AMPK protein expression and subsequently treating them with DHYZ, the impact of DHYZ on hippocampal neurons in AD model mice was evaluated using Nissl and hematoxylin-eosin staining. Western blot was used to detect the protein expression of AMPK, p-AMPK, SIRT1, PGC-1α, NRF1, and TFAM. In contrast, IF was used to measure the relative fluorescence intensity of PGC-1α, NRF1, and TFAM proteins in the hippocampal CA1 region. RESULTS DHYZ significantly improved AD model mice's cognitive impairment and memory deficits and mitigated hippocampal neuron loss and degeneration. Additionally, it ameliorated mitochondrial morphological structures. DHYZ upregulated the protein expression of mitochondrial biogenesis-related proteins PGC-1α, CREB, and mitochondrial fusion proteins MFN1 and MFN2 while inhibiting the expression of mitochondrial fission proteins DRP1 and FIS1. Further studies revealed that DHYZ could upregulate the expression of the AMPK/SIRT1/PGC-1α pathway proteins and their downstream proteins NRF1 and TFAM. CONCLUSION DHYZ promotes mitochondrial biogenesis by activating the AMPK/SIRT1/PGC-1α signaling pathway, thereby improving memory deficits, neuronal loss, and mitochondrial dysfunction in AD.
Collapse
Affiliation(s)
- Chao Zhu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Zheng Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Yousong Zhu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Yuzhong Du
- School of Pharmaceutical Sciences, Shanxi Medical University, Jinzhong, Shanxi, 030607, China
| | - Cheng Han
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Qiong Zhao
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Qinqing Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Jiangqi Hou
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Junlong Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China.
| | - Wenbin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China.
| | - Yali Qin
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China.
| |
Collapse
|
3
|
Guo NK, Si LN, Li PQ, Gan GF. Nano Acacetin Mitigates Intestinal Mucosal Injury in Sepsis Rats by Protecting Mitochondrial Function and Regulating TRX1 to Inhibit the NLRP3 Pyroptosis Pathway. Int J Nanomedicine 2024; 19:14125-14141. [PMID: 39759963 PMCID: PMC11699839 DOI: 10.2147/ijn.s497081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025] Open
Abstract
Background Acacetin (AC) is a flavonoid compound with antiperoxidant, anti-inflammatory, and antiplasmodial activity. However, the solubility of AC is poor and nano acacetin (Nano AC) was synthesized. The intestinal mucosal barrier is impaired in sepsis rats, and the protective effects and mechanism of AC and Nano AC on the intestinal mucosal barrier are unclear. Methods Cecal ligation and perforation (CLP) was used to induce sepsis in rats, and lipopolysaccharide (LPS)-stimulated intestinal epithelial cells were used to observe the effects of AC and our synthesized Nano AC on the amelioration of intestinal mucosal damage. The molecular docking technique was used to predict the binding energy of AC to thioredoxin reductase 1 (TRX1) signaling pathway proteins. TRX1 inhibitor (PX-12) was employed to elucidate the protective signaling pathway of Nano AC in LPS-stimulated intestinal epithelial cells. Results Our synthesized Nano AC, with an average particle size of 17.18 ± 0.48 nm and an uptake rate of 95% in intestinal epithelial cells. The maximum binding capacity of AC to TRX1 was -6.82 kcal/mol, supporting the hypothesis that TRX1 is a potential target of AC. AC and Nano AC ameliorated the survival rate, intestinal mucosal damage score, pathological morphology, hepatic and renal function, and myocardial troponin levels, decreased serum levels of pyroptosis-related factors, upregulated TRX1, down-regulated NOD-like receptor protein 3 inflammasome (NLRP3), cysteinyl aspartate specific proteinase-11 (Caspase-11), Gasdermin D (GSDMD) in sepsis rats. They improved mitochondrial morphology and mitochondrial reactive oxygen species (ROS) levels, reduced pyroptosis levels, and upregulated TRX1, which adjusted NLRP3/ Caspase-11/ GSDMD signaling pathway in LPS-stimulated intestinal epithelial cells. Moreover, Nano AC was more effective. Conclusion AC and Nano-AC can inhibit the NLRP3/Caspase-11/GSDMD signaling pathway by upregulating TRX1 to ameliorate intestinal mucosal injury in sepsis rats, and the effect of Nano AC is more prominent.
Collapse
Affiliation(s)
- Ning-ke Guo
- Graduate School, Qinghai University, Xining, Qinghai, People’s Republic of China
| | - Li-ning Si
- Graduate School, Qinghai University, Xining, Qinghai, People’s Republic of China
- Affiliated Hospital, Qinghai University, Xining, Qinghai, People’s Republic of China
| | - Pei-qing Li
- Graduate School, Qinghai University, Xining, Qinghai, People’s Republic of China
| | - Gui-fen Gan
- Affiliated Hospital, Qinghai University, Xining, Qinghai, People’s Republic of China
| |
Collapse
|
4
|
Qiu X, Feng Y. Echinacoside activates Nrf2/PPARγ signaling pathway to modulate mitochondrial fusion-fission balance to ameliorate ox-LDL-induced dysfunction of coronary artery endothelial cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9767-9776. [PMID: 38916831 DOI: 10.1007/s00210-024-03233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/08/2024] [Indexed: 06/26/2024]
Abstract
As a cardiovascular disease, coronary heart disease (CHD) is characterized by poor prognosis and increasing morbidity and mortality rates. Echinacoside (ECH) can protect against multiple cardiovascular diseases due to its antioxidant and anti-inflammatory properties. However, the role of ECH in CHD remains unclear. In ECH-treated human coronary artery endothelial cells (HCAECs), cell viability, NO production, endothelial nitric oxide synthase (eNOS) expression, and angiogenesis ability were detected using cell counting kit-8 (CCK-8) assay, diaminofluorescein-FM diacetate (DAF-FM DA) staining, western blot, and tube formation assay, respectively. The activities of oxidative stress markers were detected using dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay and corresponding assay kits. Cell apoptosis was detected utilizing flow cytometry and caspase3 assay. Western blot was used to detect the expressions of Nrf2/PPARγ signaling pathway- and mitochondrial dynamics-related proteins. Mitochondrial membrane potential and mitochondrial fusion and fission were detected using JC-1 staining and immunofluorescence (IF) assay. In this study, ECH was found to revive the viability, ameliorate the endothelial dysfunction, suppress oxidative stress, and inhibit the apoptosis in ox-LDL-induced HCAECs via activating Nrf2/PPARγ signaling pathway, which were all abolished following the treatment of Nrf2 inhibitor ML385. It was also identified that ECH regulated mitochondrial fusion-fission balance in ox-LDL-induced HCAECs through the activation of Nrf2/PPARγ signaling pathway. In summary, ECH activated Nrf2/PPARγ signaling pathway to regulate mitochondrial fusion-fission balance, thereby improving ox-LDL-induced dysfunction of HCAECs.
Collapse
Affiliation(s)
- Xiandi Qiu
- Department of Cardiovascular Medicine, The Ninth People's Hospital of Chongqing, Chongqing, China
| | - Yuxing Feng
- Department of Neurology, The Ninth People's Hospital of Chongqing, No. 69 Jialing Village, Beibei District, Chongqing, 400700, China.
| |
Collapse
|
5
|
Gai X, Xia Q, Wang H, Bi H, Wang J, Zhao Y. Study on the mechanism of echinacoside in preventing and treating hypoxic pulmonary hypertension based on proteomic analyses. Pharmacol Res Perspect 2024; 12:e70025. [PMID: 39401152 PMCID: PMC11472809 DOI: 10.1002/prp2.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/17/2024] Open
Abstract
Hypoxic pulmonary hypertension (HPH), a chronic condition affecting the cardiopulmonary system, has high mortality. Echinacoside (ECH) is a phenylethanoid glycoside, which is used to ameliorate pulmonary vascular remodeling and pulmonary vasoconstriction in rats. Accordingly, we aimed to explore the mechanism of ECH in preventing and treating HPH. Sprague Dawley rats were housed in a hypobaric hypoxia chamber for 28 days to obtain the HPH model. The experimental rats were randomly allocated into the following several groups: normoxia group, chronic hypoxia group, and ECH group. The therapeutic results of ECH (10, 20, and 40 mg/kg) showed that ECH reduced mPAP, Hb, Hct, and RVHI in HPH rats. Then this work employed label-free quantitative proteomic analysis, western blotting, and RT-PCR to investigate the mechanism by which ECH prevents HPH. The results found that in the chronic hypoxia group, the levels of ACSL1, COL6A1, COL4A2, COL1A1, and PC increased compared to the normoxia group. However, the opposite effect was observed in the chronic hypoxia group treated with ECH. The study indicates that the administration of ECH may slow the pathological progression of HPH by suppressing the inflammatory response, inhibiting smooth muscle cell proliferation, and minimizing the deposition of extracellular matrix.
Collapse
Affiliation(s)
- Xiangyun Gai
- Department of PharmacyQinghai Minzu UniversityXiningChina
| | - Qingqing Xia
- Department of PharmacyQinghai Minzu UniversityXiningChina
| | - Hongmai Wang
- Department of PharmacyQinghai Minzu UniversityXiningChina
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety EvaluationNorthwest Institute of Plateau Biology, Chinese Academy of ScienceXiningChina
| | - Jinyu Wang
- Department of PharmacyQinghai Minzu UniversityXiningChina
| | - Yuefu Zhao
- Department of PharmacyQinghai Minzu UniversityXiningChina
| |
Collapse
|
6
|
Hu D, Cheng C, Bian Z, Xu Y. The role of echinacoside-based cross-linker nanoparticles in the treatment of osteoporosis. PeerJ 2024; 12:e17229. [PMID: 38618561 PMCID: PMC11011595 DOI: 10.7717/peerj.17229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
Background Current drugs for treating osteoporosis may lead to toxic side effects. Echinacoside (ECH) is a natural small molecule drug. This study examined and compared the therapeutic effects of cross-linker (CL)-ECH and ECH-free nanoparticles on osteoporosis. Methods Echinocandin-based CL-ECH nanoparticles were prepared, and the nanoparticle size and drug loading were optimized and characterized by adjusting the ratio. The antioxidant effect of CL-ECH nanoparticles on bone marrow-derived macrophages (BMDMs) was analyzed using flow cytometry, immunofluorescence staining and quantitative real-time polymerase chain reaction (qRT-PCR). Bone marrow stromal cells (BMSCs)-based detection of bone-producing effects was conducted using alkaline phosphatase (ALP), Alizarin Red S (ARS) and qRT-PCR. TRAP, phalloidin staining, and qRT-PCR was performed to detect osteogenesis-inhibiting effect on BMDMs. CL-ECH nanoparticles were applied to treat an ovariectomized (OVX) mouse model at low doses. Results Compared to ECH, CL-ECH nanoparticles suppressed oxidative stress in BMDMs by promoting NRF-2 nuclear translocation, which inhibited the production of both reactive oxygen species (ROS) and osteoclast production through downregulating NF-κB expression, with limited effect on the osteogenesis of BMSCs. In vivo studies showed that low-dose CL-ECH nanoparticles markedly improved bone trabecular loss compared to ECH administration in the treatment of osteoporosis. Conclusions The current discoveries provided a solid theoretical foundation for the development of a new generation of anti-bone resorption drugs and antiosteoporosis drugs.
Collapse
Affiliation(s)
- Dandan Hu
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunan Cheng
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Zhen Bian
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yubo Xu
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Li ZY, Dai YX, Wu ZM, Li G, Pu PM, Hu CW, Zhou LY, Zhu K, Shu B, Wang YJ, Cui XJ, Yao M. Network pharmacology analysis and animal experiment validation of neuroinflammation inhibition by total ginsenoside in treating CSM. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155073. [PMID: 38417244 DOI: 10.1016/j.phymed.2023.155073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND Cervical spondylotic myelopathy (CSM) is a degenerative pathology that affects both upper and lower extremity mobility and sensory function, causing significant pressure on patients and society. Prior research has suggested that ginsenosides may have neuroprotective properties in central nervous system diseases. However, the efficacy and mechanism of ginsenosides for CSM have yet to be investigated. PURPOSE This study aims to analyze the composition of ginsenosides using UPLC-MS, identify the underlying mechanism of ginsenosides in treating CSM using network pharmacology, and subsequently confirm the efficacy and mechanism of ginsenosides in rats with chronic spinal cord compression. METHODS UPLC-Q-TOF-MS was utilized to obtain mass spectrum data of ginsenoside samples. The chemical constituents of the samples were analyzed by consulting literature reports and relevant databases. Ginsenoside and CSM targets were obtained from the TCMSP, OMIM, and GeneCards databases. GO and KEGG analyses were conducted, and a visualization network of ginsenosides-compounds-key targets-pathways-CSM was constructed, along with molecular docking of key bioactive compounds and targets, to identify the signaling pathways and proteins associated with the therapeutic effects of ginsenosides on CSM. Chronic spinal cord compression rats were intraperitoneally injected with ginsenosides (50 mg/kg and 150 mg/kg) and methylprednisolone for 28 days, and motor function was assessed to investigate the therapeutic efficacy of ginsenosides for CSM. The expression of proteins associated with TNF, IL-17, TLR4/MyD88/NF-κB, and NLRP3 signaling pathways was assessed by immunofluorescence staining and western blotting. RESULTS Using UPLC-Q-TOF-MS, 37 compounds were identified from ginsenoside samples. Furthermore, ginsenosides-compounds-key targets-pathways-CSM visualization network indicated that ginsenosides may modulate the PI3K-Akt signaling pathway, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway, Toll-like receptor signaling pathway and Apoptosis by targeting AKT1, TNF, MAPK1, CASP3, IL6, and IL1B, exerting a therapeutic effect on CSM. By attenuating neuroinflammation through the TNF, IL-17, TLR4/MyD88/NF-κB, and MAPK signaling pathways, ginsenosides restored the motor function of rats with CSM, and ginsenosides 150 mg/kg showed better effect. This was achieved by reducing the phosphorylation of NF-κB and the activation of the NLRP3 inflammasome. CONCLUSIONS The results of network pharmacology indicate that ginsenosides can inhibit neuroinflammation resulting from spinal cord compression through multiple pathways and targets. This finding was validated through in vivo tests, which demonstrated that ginsenosides can reduce neuroinflammation by inhibiting NLRP3 inflammasomes via multiple signaling pathways, additionally, it should be noted that 150 mg/kg was a relatively superior dose. This study is the first to verify the intrinsic molecular mechanism of ginsenosides in treating CSM by combining pharmacokinetics, network pharmacology, and animal experiments. The findings can provide evidence for subsequent clinical research and drug development.
Collapse
Affiliation(s)
- Zhuo-Yao Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Xiang Dai
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Ming Wu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gan Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei-Min Pu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cai-Wei Hu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long-Yun Zhou
- Department of Rehabilitation Medicine, The First Aliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Zhu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Shu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
8
|
Li X, Zhang Z, Zhang X, Yin Y, Yuan X, You X, Wu J. Echinacoside Prevents Sepsis-Induced Myocardial Damage via Targeting SOD2. J Med Food 2024; 27:123-133. [PMID: 38100058 DOI: 10.1089/jmf.2023.k.0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Echinacoside (ECH) is a prominent naturally occurring bioactive compound with effects of alleviating myocardial damage. We aimed to explore the beneficial effects of ECH against sepsis-induced myocardial damage and elucidate the potential mechanism. Echocardiography and Masson staining demonstrated that ECH alleviates cardiac function and fibrosis in the cecal ligation and puncture (CLP) model. Transcriptome profiling and network pharmacology analysis showed that there are 51 overlapping targets between sepsis-induced myocardial damage and ECH. Subsequently, chemical carcinogenesis-reactive oxygen species (ROS) were enriched in multiple targets. Wherein, SOD2 may be the potential target of ECH on sepsis-induced myocardial damage. Polymerase chain reaction results showed that ECH administration could markedly increase the expression of SOD2 and reduce the release of ROS. Combined with injecting the inhibitor of SOD2, the beneficial effect of ECH on mortality, cardiac function, and fibrosis was eliminated, and release of ROS was increased after inhibiting SOD2. ECH significantly alleviated myocardial damage in septic mice, and the therapeutic mechanism of ECH is achieved by upregulating SOD2 which decreased the release of ROS.
Collapse
Affiliation(s)
- Xin Li
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology (USST), Shanghai, China
| | - Zuojing Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaoxuan Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yibo Yin
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xinru Yuan
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xingji You
- Department of Pharmacy, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology (USST), Shanghai, China
| |
Collapse
|
9
|
Zhu K, Pu PM, Li G, Zhou LY, Li ZY, Shi Q, Wang YJ, Cui XJ, Yao M. Shenqisherong pill ameliorates neuronal apoptosis by inhibiting the JNK/caspase-3 signaling pathway in a rat model of cervical cord compression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116901. [PMID: 37437792 DOI: 10.1016/j.jep.2023.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Shenqisherong (SQSR) pill is an empirical prescription of traditional Chinese medicine (TCM), which originated from the National Chinese Medical Science Master, Shi Qi. It has been widely used in the treatment of cervical spondylotic myelopathy (CSM) and promote the recovery of spinal cord function, but underlying molecular mechanism remains unclear. AIM OF THE STUDY The objective of this study was to confirm the neuroprotective effects of the SQSR pill. MATERIALS AND METHODS A rat model of chronic compression at double-level cervical cord was used in vivo. The protective role of SQSR pill on CSM rats was measured by Basso, Beattie, and Bresnahan (BBB) locomotor scale, inclined plane test, forelimb grip strength assessment, hindlimb pain threshold assessment, and gait analysis. The levels of reactive oxygen species (ROS) were examined by Dihydroethidium (DHE) staining and 2',7'-Dichlorofluorescein (DCF) assay, and apoptosis was detected by TdT-mediated dUTP nick-end labeling (TUNEL) assay. The expression of apoptosis proteins was evaluated by immunofluorescence staining and Western blot. RESULTS SQSR pill could facilitate locomotor function recovery in rats with chronic cervical cord compression, reduce local ROS in the spinal cord and downregulate the c-Jun-N-terminal kinase (JNK)/caspase-3 signaling pathway. In addition, the SQSR pill could protect primary rat cortical neurons from glutamate-treated toxicity in vitro by reducing the ROS and downregulating the phosphorylation of JNK and its downstream factors related to neuronal apoptosis meditated by the caspase cascade. Then, the neuroprotective effect was counteracted by a JNK activator. CONCLUSIONS Together, SQSR pill could ameliorate neuronal apoptosis by restraining ROS accumulation and inhibiting the JNK/caspase-3 signaling pathway, indicating that SQSR pill could be a candidate drug for CSM.
Collapse
Affiliation(s)
- Ke Zhu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Pei-Min Pu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Gan Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Long-Yun Zhou
- Rehabilitation Medicine Center, Jiangsu Provincial People's Hospital, Jiangsu, 210029, China.
| | - Zhuo-Yao Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Qi Shi
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
10
|
Chen Y, Wang Y, Song S, Zhang X, Wu L, Wu J, Li X. Topical Application of Baicalin Combined with Echinacoside Ameliorates Psoriatic Skin Lesions by Suppressing the Inflammation-Related TNF Signaling Pathway and the Angiogenesis-Related VEGF Signaling Pathway. ACS OMEGA 2023; 8:40260-40276. [PMID: 37929119 PMCID: PMC10620902 DOI: 10.1021/acsomega.3c04281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
Baicalin (BAI), the main active component of Scutellaria baicalensis, has significant anti-inflammatory and antibacterial effects. Echinacoside (ECH), an active component from Echinacea purpurea, has significant antiangiogenesis and antioxidant effects. In previous studies, BAI or ECH has been used for some skin inflammation problems by topical treatment. Psoriasis (PSO) is a common inflammatory skin disease with typical features such as excessive inflammatory response and vascular proliferation in skin lesions. Because of the anti-inflammatory effect of BAI and the antiangiogenic activity of ECH, it is proposed that the combination of BAI and ECH can ameliorate psoriatic skin lesions better than a single component. This study aims to explore the effects and potential mechanisms of BAI combined with ECH on imiquimod (IMQ)-induced psoriatic skin lesions by topical treatment. Transcriptome analysis first showed that the TNF signaling pathway and the VEGF signaling pathway were significantly enriched in IMQ-induced psoriatic skin lesions. Topical application of BAI combined with ECH could ameliorate IMQ-induced skin lesions in mice, especially the better effects of B2-E1 (BAI/ECH = 2:1). Network pharmacology analysis and molecular docking indicated that BAI-treated PSO on the skin by regulating the TNF signaling pathway, and ECH treated PSO on the skin by regulating the VEGF signaling pathway. Meanwhile, the ELISA test and the qPCR assay showed that BAI combined with ECH could inhibit the expression of key cytokines and genes related to the TNF signaling pathway and the VEGF signaling pathway. Zebrafish experiments demonstrated the anti-inflammatory and antiangiogenic effects of BAI combined with ECH and revealed the potential mechanisms associated with regulating the inflammation-related TNF signaling pathway and the angiogenesis-related VEGF signaling pathway. This suggested that BAI combined with ECH may be a promising topical agent to ameliorate psoriatic skin lesions in the future.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Yongfang Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Shasha Song
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Xiaoli Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Lili Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Jianbing Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Xinyu Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| |
Collapse
|
11
|
Pu PM, Li ZY, Dai YX, Sun YL, Wang YJ, Cui XJ, Yao M. Analysis of gene expression profiles and experimental validations of a rat chronic cervical cord compression model. Neurochem Int 2023:105564. [PMID: 37286109 DOI: 10.1016/j.neuint.2023.105564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/09/2023]
Abstract
Cervical spondylotic myelopathy (CSM) is a severe non-traumatic spinal cord injury (SCI) wherein the spinal canal and cervical cord are compressed due to the degeneration of cervical tissues. To explore the mechanism of CSM, the ideal model of chronic cervical cord compression in rats was constructed by embedding a polyvinyl alcohol polyacrylamide hydrogel in lamina space. Then, the RNA sequencing technology was used to screen the differentially expressed genes (DEGs) and enriched pathways among intact and compressed spinal cords. A total of 444 DEGs were filtered out based on the value of log2(Compression/Sham); these were associated with IL-17, PI3K-AKT, TGF-β, and Hippo signaling pathways according to the GSEA, KEGG, and GO analyses. Transmission electron microscopy indicated the changes in mitochondrial morphology. Western blot and immunofluorescent staining revealed neuronal apoptosis, astrogliosis and microglial neuroinflammation in the lesion area. Specifically, the expression of apoptotic indicators, such as Bax and cleaved caspase-3, and inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, were upregulated. The activation of IL-17 signaling pathways was observed in microglia instead of neurons or astrocytes, the activation of TGF-β and inhibition of Hippo signaling pathways were detected in astrocytes instead of neurons or microglia, and the inhibition of PI3K-AKT signaling pathway was discovered in neurons rather than microglia of astrocytes in the lesion area. In conclusion, this study indicated that neuronal apoptosis was accompanied by inhibiting of the PI3K-AKT pathway. Then, the activation of microglia IL-17 pathway and NLRP3 inflammasome effectuated the neuroinflammation, and astrogliosis was ascribed to the activation of TGF-β and the inhibition of the Hippo pathway in the chronic cervical cord of compression. Therefore, therapeutic methods targeting these pathways in nerve cells could be promising CSM treatments.
Collapse
Affiliation(s)
- Pei-Min Pu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Zhuo-Yao Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yu-Xiang Dai
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yue-Li Sun
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
12
|
Yao M, Li G, Zhou LY, Zheng Z, Sun YL, Liu SF, Wang YJ, Cui XJ. Shikonin inhibits neuronal apoptosis via regulating endoplasmic reticulum stress in the rat model of double-level chronic cervical cord compression. Cell Biol Toxicol 2023; 39:907-928. [PMID: 35028790 DOI: 10.1007/s10565-021-09648-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/17/2021] [Indexed: 01/16/2023]
Abstract
Cervical spondylotic myelopathy (CSM) is a clinically symptomatic entity arising from the spinal cord compression by degenerative diseases. Although endoplasmic reticulum (ER) stress has been commonly observed in several neurodegenerative diseases, the relationship between ER stress and CSM remains unknown. Shikonin is known to protect PC12 by inhibiting apoptosis in vitro. This study hypothesised that ER stress was vital in neuronal apoptosis in CSM. Shikonin might inhibit such responses by regulating ER stress through the protein kinase-like ER kinase-eukaryotic translation initiation factor 2 α-subunit-C/EBP homologous protein (PERK-eIF2α-CHOP) signalling pathway. Thus, the aim of this study was evaluating the neuroprotective effect of shikonin in rats with double-level chronic cervical cord compression, as well as primary rat cortical neurons with glutamate-induced neurotoxicity. The result showed that ER stress-related upregulation of PERK-eIF2α-CHOP resulted in rat neuronal apoptosis after chronic cervical cord compression; then, shikonin promoted motor recovery and inhibited neuronal apoptosis by attenuating PERK-eIF2α-CHOP and prevented Bax translocation from cytoplasm to mitochondrion induced by CHOP of neurons in rats with chronic compression. Also, it was found that shikonin could protect rat primary cortical neuron against glutamate toxicity by regulating ER stress through the PERK-eIF2α-CHOP pathway in vitro. In conclusion, shikonin might inhibit neuronal apoptosis by regulating ER stress through attenuating the activation of PERK-eIF2α-CHOP.
Collapse
Affiliation(s)
- Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Gan Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Long-Yun Zhou
- Rehabilitation Medicine Center, Jiangsu Provincial People's Hospital, Jiangsu, 210029, China
| | - Zhong Zheng
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yue-Li Sun
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shu-Fen Liu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
13
|
Zonisamide improves Fas/FasL-mediated apoptosis and inflammation in a degenerative cervical myelopathy rat model. Tissue Cell 2023; 81:102024. [PMID: 36669388 DOI: 10.1016/j.tice.2023.102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
Degenerative cervical myelopathy (DCM) is a severe condition of the spinal cord caused by chronic compression. However, no studies to date have examined the effects of zonisamide (ZNS) on DCM via the Fas/FasL-mediated pathway. The aim of this study was to investigate the effects of ZNS on a DCM rat model and to explore the potential mechanisms. First, 40 adult Sprague-Dawley rats were used to establish the DCM rat model and were individually divided into four groups: the Sham group, DCM model group (DCM), ZNS group (DCM model rats treated with ZNS, 30 mg/kg/day), and ZNS + CD95 group (DCM model rats treated with ZNS and CD95). Histopathology injury and cell apoptosis, Fas and Fas ligand (FasL) expression and Fas/FasL relative protein levels were detected by hematoxylin and eosin staining, TUNEL assay, and immunofluorescence and western blotting, respectively. The results of our study demonstrated that ZNS could promote motor recovery while reversing histopathological injury and cell apoptosis in DCM rats. Moreover, Iba-1, Fas and FasL expression in DCM rats was decreased, accompanied by a decrease in cleaved caspase-3/caspase-3, cleaved caspase-8/caspase-8, cleaved caspase-9/caspase-9, cleaved caspase-10/caspase-10 and B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X (Bax) levels. All these results revealed that ZNS attenuates DCM injury in a rat model via the regulation of Fas and FasL signaling. Our study indicated that ZNS had beneficial effects on DCM and thus provided a novel theoretical approach for subsequent academic and clinical research on DCM injury.
Collapse
|
14
|
Liu J, Zhang W, Li X, Xu S. New Insights into Baicalein's Effect on Chlorpyrifos-Induced Liver Injury in Carp: Involving Macrophage Polarization and Pyropto sis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4132-4143. [PMID: 36848483 DOI: 10.1021/acs.jafc.2c08580] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorpyrifos (CPF) is widely used in agriculture, plants, and buildings to kill pests and worms. Excessive environmental residues of CPF will result in soil and ecological contamination and toxicity to animals and humans. Baicalein (Bai), derived from the root of natural Scutellaria baicalensis, is a potent anti-inflammatory, antioxidant, and antitumor agent. The objective of this paper is to investigate the molecular mechanism by which Bai prevents CPF-induced hepatotoxic injury. Carp were kept in water containing CPF (23.2 μg/L) and/or fed diets containing Bai (0.15 g/kg). We found that Bai attenuated liver tissue damage and vacuolization caused by CPF. We confirmed that CPF causes M1/M2 polarization imbalance in macrophages and hepatocyte pyroptosis, which ultimately leads to liver injury. Further exploration of the internal mechanism shows that CPF participates in liver toxicity damage by destroying the AMPK/SIRT1/pGC-1α pathway and causing mitochondrial biogenesis and mitochondrial dynamics imbalance. Notably, Bai significantly attenuated CPF-induced inhibition of the AMPK/SIRT1/pGC-1α pathway. In summary, our results suggest that Bai alleviates CPF exposure-induced inhibition of the AMPK/SIRT1/pGC-1α pathway, thereby attenuating macrophage M1 hyperpolarization and pyroptosis by inhibiting the NF-κB pathway. These results may provide new insights into the detoxification mechanism of Bai on the same type of organophosphorus pesticides.
Collapse
Affiliation(s)
- Jing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
15
|
Yao M, Pu PM, Li ZY, Zhu K, Zhou LY, Sun YL, Dai YX, Cui XJ, Wang YJ. Melatonin restores endoplasmic reticulum homeostasis to protect injured neurons in a rat model of chronic cervical cord compression. J Pineal Res 2023; 74:e12859. [PMID: 36732085 DOI: 10.1111/jpi.12859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Cervical spondylotic myelopathy (CSM) refers to a chronic injury of the cervical cord caused by cervical intervertebral disc degeneration. Endoplasmic reticulum (ER) homeostasis is essential to counteract neuronal apoptosis. ER stress, an integral part of ER homeostasis, was observed in a rat model of chronic cervical cord compression in our previous study. However, the correlation between ER homeostasis and CSM remains unknown. The antioxidant melatonin is known to exert therapeutic effects in acute spinal cord injury, but the specific effects and their potential mechanisms in the pathological processes of CSM require further exploration. The present study hypothesized that ER homeostasis is essential for neuronal apoptosis in the CSM and that melatonin maintains this homeostasis. The results showed that ER stress led to neuronal apoptosis in rats with chronic cervical cord compression. Conversely, melatonin attenuates protein kinase R-like ER kinase-eukaryotic initiation factor 2α-C/EBP-homologous protein, inositol-requiring enzyme 1, and transcription factor 6 signaling pathways to release ER stress and prevents Bax translocation to the mitochondrion, thereby promoting motor recovery and protecting neurons in vivo. It also rescued primary rat cortical neurons from ER stress-induced glutamate toxicity in vitro. Moreover, melatonin remodels the ER morphology and restores homeostasis via ER-phagy in injured neurons. FAM134B, CCPG1, RTN3, and Sec. 62 are four known ER-phagy receptors. In this study, Sec. 62 was identified as a key melatonin factor in promoting ER-phagy and restoring ER homeostasis in damaged neurons in vivo and in vitro. In conclusion, melatonin suppresses neuronal apoptosis by reducing ER stress and promoting ER-phagy to restore ER morphology and homeostasis. The current results suggested that melatonin is a promising treatment for CSM owing to its restorative effect on ER homeostasis; however, well-designed randomized controlled trials must be carried out to further investigate its clinical effects.
Collapse
Affiliation(s)
- Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei-Min Pu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhuo-Yao Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Zhu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long-Yun Zhou
- Rehabilitation Medicine Center, Jiangsu Provincial People's Hospital, Jiangsu, China
| | - Yue-Li Sun
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Xiang Dai
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Tan Z, Zhang B. Echinacoside alleviates osteoarthritis in rats by activating the Nrf2-HO-1 signaling pathway. Immunopharmacol Immunotoxicol 2022; 44:850-859. [PMID: 35815581 DOI: 10.1080/08923973.2022.2088384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) is a progressive disease characterized by degeneration of cartilage and echinacoside (Ech) has anti-inflammatory and antioxidant effects in various human diseases. This study aimed to reveal the effect and potential mechanism of Ech on OA. MATERIALS AND METHODS The in vitro OA model was established by rat chondrocytes treated with IL-1β, and the in vivo OA model was established by anterior cruciate ligament transaction. The effect of Ech on the viability, inflammatory response, extracellular matrix (ECM) degradation, and oxidative stress of IL-1β-treated rat chondrocytes were evaluated by Cell Counting Kit-8 assay, enzyme-linked immunosorbent assay, quantitative real-time PCR, Western blot, and immunofluorescence assay. Meanwhile, the mechanism of Ech was assessed using Western blot, Cell Counting Kit-8 assay, enzyme-linked immunosorbent assay, and immunofluorescence analysis. Moreover, the function of Ech in vivo was analyzed in rat models of OA. RESULTS Functionally, Ech enhanced the viability of rat chondrocytes, repressed the inflammatory response and ECM degradation of rat chondrocytes induced by IL-1β with restrained oxidative stress. Mechanically, Ech repressed IL-1β-induced chondrocyte injury by activating the Nrf2/HO-1 signaling pathway. Meanwhile, Ech alleviated the degree of articular cartilage injury in rats and exerted protective effects on the rat model of OA in vivo. DISCUSSION AND CONCLUSIONS Ech alleviated OA in rats by activating the Nrf2-HO-1 signaling pathway.
Collapse
Affiliation(s)
- Zhijun Tan
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Zhang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Yi N, Mi Y, Xu X, Li N, Chen B, Yan K, Tan K, Zhang B, Wang L, Kuang G, Lu M. Nodakenin attenuates cartilage degradation and inflammatory responses in a mice model of knee osteoarthritis by regulating mitochondrial Drp1/ROS/NLRP3 axis. Int Immunopharmacol 2022; 113:109349. [DOI: 10.1016/j.intimp.2022.109349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
18
|
Li Y, Xia X, Wang Y, Zheng JC. Mitochondrial dysfunction in microglia: a novel perspective for pathogenesis of Alzheimer's disease. J Neuroinflammation 2022; 19:248. [PMID: 36203194 PMCID: PMC9535890 DOI: 10.1186/s12974-022-02613-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the elderly globally. Emerging evidence has demonstrated microglia-driven neuroinflammation as a key contributor to the onset and progression of AD, however, the mechanisms that mediate neuroinflammation remain largely unknown. Recent studies have suggested mitochondrial dysfunction including mitochondrial DNA (mtDNA) damage, metabolic defects, and quality control (QC) disorders precedes microglial activation and subsequent neuroinflammation. Therefore, an in-depth understanding of the relationship between mitochondrial dysfunction and microglial activation in AD is important to unveil the pathogenesis of AD and develop effective approaches for early AD diagnosis and treatment. In this review, we summarized current progress in the roles of mtDNA, mitochondrial metabolism, mitochondrial QC changes in microglial activation in AD, and provide comprehensive thoughts for targeting microglial mitochondria as potential therapeutic strategies of AD.
Collapse
Affiliation(s)
- Yun Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China. .,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, 200331, China. .,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China. .,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200434, China.
| | - Yi Wang
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, 200331, China.,Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital Affiliated to Tongji University School of Medicine, Shanghai, 201613, China.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200072, China. .,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, 200331, China. .,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, 200065, China. .,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200434, China. .,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
19
|
Zhou LY, Chen XQ, Yu BB, Pan MX, Fang L, Li J, Cui XJ, Yao M, Lu X. The effect of metformin on ameliorating neurological function deficits and tissue damage in rats following spinal cord injury: A systematic review and network meta-analysis. Front Neurosci 2022; 16:946879. [PMID: 36117612 PMCID: PMC9479497 DOI: 10.3389/fnins.2022.946879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/19/2022] [Indexed: 12/09/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with few treatment options. Metformin, a classical antidiabetic and antioxidant, has extended its application to experimental SCI treatment. Here, we performed a systematic review to evaluate the neurobiological roles of metformin for treating SCI in rats, and to assess the potential for clinical translation. PubMed, Embase, China National Knowledge Infrastructure, WanFang data, SinoMed, and Vip Journal Integration Platform databases were searched from their inception dates to October 2021. Two reviewers independently selected controlled studies evaluating the neurobiological roles of metformin in rats following SCI, extracted data, and assessed the quality of methodology and evidence. Pairwise meta-analyses, subgroup analyses and network analysis were performed to assess the roles of metformin in neurological function and tissue damage in SCI rats. Twelve articles were included in this systematic review. Most of them were of moderate-to-high methodological quality, while the quality of evidence from those studies was not high. Generally, Basso, Beattie, and Bresnahan scores were increased in rats treated with metformin compared with controls, and the weighted mean differences (WMDs) between metformin and control groups exhibited a gradual upward trend from the 3rd (nine studies, n = 164, WMD = 0.42, 95% CI = −0.01 to 0.85, P = 0.06) to the 28th day after treatment (nine studies, n = 136, WMD = 3.48, 95% CI = 2.04 to 4.92, P < 0.00001). Metformin intervention was associated with improved inclined plane scores, tissue preservation ratio and number of anterior horn motor neurons. Subgroup analyses indicated an association between neuroprotection and metformin dose. Network meta-analysis showed that 50 mg/kg metformin exhibited greater protection than 10 and 100 mg/kg metformin. The action mechanisms behind metformin were associated with activating adenosine monophosphate-activated protein kinase signaling, regulating mitochondrial function and relieving endoplasmic reticulum stress. Collectively, this review indicates that metformin has a protective effect on SCI with satisfactory safety and we demonstrate a rational mechanism of action; therefore, metformin is a promising candidate for future clinical trials. However, given the limitations of animal experimental methodological and evidence quality, the findings of this pre-clinical review should be interpreted with caution.
Collapse
Affiliation(s)
- Long-Yun Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xu-Qing Chen
- Department of Otolaryngology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin-Bin Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meng-Xiao Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Fang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Liu P, Li X, Liu J, Zhang H, You Z, Zhang J. TXNIP Participated in NLRP3-Mediated Inflammation in a Rat Model of Cervical Spondylotic Myelopathy. J Inflamm Res 2022; 15:4547-4559. [PMID: 35971339 PMCID: PMC9375583 DOI: 10.2147/jir.s373614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/30/2022] [Indexed: 12/02/2022] Open
Abstract
Background Cervical spondylotic myelopathy (CSM) is a spinal cord disease caused by cervical disc degeneration and related pathological changes. Cervical spondylotic myelopathy may result from inflammation responses and neuronal damage. Thioredoxin-interacting protein (TXNIP)/NOD-like receptor protein 3 (NLRP3) signaling promotes inflammation. However, the effects of TXNIP/NLRP3 on the pathogenesis of CSM have not been reported. Methods A rat model of chronic cervical cord compression was established to observe changes in the levels of of TNXIP/NeuN and NLRP3/NeuN expression in the damaged anterior horn of the spinal cord following progression of CSM. Rats were injected with TXNIP small interfering RNA (siRNA) and scrambled control to determine the effects of TXNIP inhibition on NLRP3-mediated inflammation in rats with CSM. Behaviors effects and the expression of NLRP3 and pro-caspase-1 in the damaged spinal cord were evaluated. Results The expression levels of TXNIP and NLRP3 were significantly increased in the damaged anterior horn of the spinal cord following CSM. Injection of TXNIP siRNA significantly improved behavioral measures and decreased apoptosis in the damaged anterior horn of spinal cord. Furthermore, the levels of NLRP3 and pro-caspase-1 in the lesioned area were reduced by the TXNIP siRNA injection. Conclusion Thioredoxin-interacting protein participated in NLRP3 mediated inflammation in a rat model of CSM, which indicated that TXNIP may be a potential therapeutic target in improving CSM.
Collapse
Affiliation(s)
- Peisheng Liu
- Department of Spinal Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Xiaofeng Li
- Department of Spinal Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Jing Liu
- Basic Department, Yantai Vocational College, Yantai, People's Republic of China
| | - Hengjia Zhang
- Department of Spinal Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Zhitao You
- Department of Spinal Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| | - Jianfeng Zhang
- Department of Spinal Surgery, Yantaishan Hospital, Yantai, People's Republic of China
| |
Collapse
|
21
|
Li M, Xu B, Li X, Li Y, Qiu S, Chen K, Liu Z, Ding Y, Wang H, Xu J, Wang H. Mitofusin 2 confers the suppression of microglial activation by cannabidiol: Insights from in vitro and in vivo models. Brain Behav Immun 2022; 104:155-170. [PMID: 35688339 DOI: 10.1016/j.bbi.2022.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/12/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022] Open
Abstract
Currently, there is increasing attention on the regulatory effects of cannabidiol (CBD) on the inflammatory response and the immune system. However, the mechanisms have not yet been completely revealed. Mitofusin 2 (Mfn2) is a mitochondrial fusion protein involved in the inflammatory response. Here, we investigated whether Mfn2 confers the anti-inflammatory effects of CBD. We found that treatment with CBD decreased the levels of tumor necrosis factor α, interleukin 6, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and ionized calcium-binding adaptor molecule-1 (Iba1) in lipopolysaccharide (LPS)-challenged microglia. CBD also significantly suppressed the increase in reactive oxygen species (ROS) and the decline of mitochondrial membrane potential in BV-2 cells subjected to LPS. Interestingly, CBD treatment increased the expression of Mfn2, while knockdown of Mfn2 blocked the effect of CBD. By contrast, overexpression of Mfn2 reversed the increase in the levels of iNOS, COX-2, and Iba1 induced by Mfn2 small interfering RNA. In mice challenged with LPS, we found that CBD ameliorated the anxiety responses and cognitive deficits, increased the level of Mfn2, and decreased the expression of Iba1. Since neuro-inflammation and microglial activation are the common events that are observed in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis, we treated EAE mice with CBD. Mice that received CBD showed amelioration of clinical signs, reduced inflammatory response, and increased myelin basic protein level. Most importantly, the adeno-associated virus delivery of short hairpin RNA against Mfn2 reversed the protective effects of CBD. Altogether, these results indicate that Mfn2 is an essential immunomodulator conferring the anti-inflammatory effects of CBD. Our results also shed new light on the mechanisms underlying the protective effects of CBD against inflammatory diseases including multiple sclerosis.
Collapse
Affiliation(s)
- Mengfan Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bingtian Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xing Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yueqi Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuqin Qiu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kechun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhuhe Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuewen Ding
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Honghao Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao, Greater Bay Area, China.
| | - Haitao Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao, Greater Bay Area, China.
| |
Collapse
|
22
|
Jiang T, Gu H, Wei J. Echinacoside Inhibits Osteoclast Function by Down-Regulating PI3K/Akt/C-Fos to Alleviate Osteolysis Caused by Periprosthetic Joint Infection. Front Pharmacol 2022; 13:930053. [PMID: 35814196 PMCID: PMC9263215 DOI: 10.3389/fphar.2022.930053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Infected osteolysis as a common secondary osteoporosis is associated with excessive osteoclastogenesis and bone resorption. The inhibition of osteoclastogenesis and bone resorption have been demonstrated an effective approach in the treatment of osteolytic diseases. Echinacoside (ECH) is a natural phenylethanoid glycoside with multiple biological functions, including anti-inflammatory, antioxidant, and osteoblast differentiation promotion. However, the effects of ECH on osteoclast differentiation and bone resorption function remain unknown. In vitro, we investigated the effects of ECH on osteoclast differentiation and bone resorption induced by RANKL and its potential mechanisms. In vivo, we established a periprosthetic joint infection (PJI) rat model and demonstrated the changes of infected osteolysis and osteoclasts activities in surgical sites. ECH (20 mg/kg) was injected intraperitoneally after debridement for 4 weeks. Radiological evaluation and bone histomorphometric analysis was performed to assess the efficacy of ECH. The results showed that ECH inhibited osteoclast differentiation, F-actin belts formation, bone resorption function and osteoclast-specific gene expression by preventing NFATc1 translocation, down-regulating its expression and affecting the PI3K/Akt/c-Fos pathway in vitro. ECH also alleviated in vivo PJI-induced osteolysis and maintained bone mass by inhibiting osteoclast activity. Our study indicated that ECH attenuated RANKL-induced osteoclastogenesis and PJI-induced bone loss and was shown as a potentially effective therapeutic agent for osteoclast-related bone diseases.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Joint Orthopedics, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanwen Gu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian Wei
- Department of Joint Orthopedics, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
- *Correspondence: Jian Wei,
| |
Collapse
|
23
|
Yang X, Yv Q, Ye F, Chen S, He Z, Li W, Dong F. Echinacoside Protects Dopaminergic Neurons Through Regulating IL-6/JAK2/STAT3 Pathway in Parkinson’s Disease Model. Front Pharmacol 2022; 13:848813. [PMID: 35281889 PMCID: PMC8914071 DOI: 10.3389/fphar.2022.848813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Echinacoside (ECH), the major active constituent of Cistanche deserticola, was found to exert neuroprotection through neurotrophic and anti-inflammatory functions in Parkinson’s disease (PD) models. However, a clear intermediate molecule or pathway that unifies these two effects has to be found. In this study, our results demonstrate that ECH can protect DA neurons in PD mice with Western blot and immunohistochemistry staining. The quantitative real-time polymerase chain reaction was adapted to confirm its anti-inflammatory function with decreased cytokines (interleukin- (IL-) 6, IL-1β, and TNF-α) in PD mice and LPS-induced BV2 cells. Further studies found that ECH inhibited the IL-6/JAK2/STAT3 pathway and decreased phosphorylation of STAT3 on tyr705 by Western blot. It can also increase p-STAT3 (ser727) and brain-derived neurotrophic factor (BDNF) expression in PD mice and LPS-induced BV2 cells. This study revealed that ECH exerts neurotrophic and anti-inflammatory effects by regulating the IL-6/JAK2/STAT3 pathway and the phosphorylation of STAT3, promoting the mutually beneficial influence of the two effects to maximize its neuroprotective function.
Collapse
Affiliation(s)
- Xueping Yang
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Qingyun Yv
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fanlong Ye
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Sheng Chen
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhang He
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenwei Li
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Wenwei Li, ; Fang Dong,
| | - Fang Dong
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Wenwei Li, ; Fang Dong,
| |
Collapse
|
24
|
Echinacoside Upregulates Sirt1 to Suppress Endoplasmic Reticulum Stress and Inhibit Extracellular Matrix Degradation In Vitro and Ameliorates Osteoarthritis In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3137066. [PMID: 34777682 PMCID: PMC8580641 DOI: 10.1155/2021/3137066] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022]
Abstract
Background Osteoarthritis (OA) is a progressive illness that destroys cartilage. Oxidative stress is a major contributor of OA, while endoplasmic reticulum (ER) stress is the key cellular damage under oxidative stress in chondrocytes. Echinacoside (ECH) is the main extract and active substance of Cistanche, with potent antioxidative stress (OS) properties, and currently under clinical trials in China. However, its function in OA is yet to be determined. Purpose We aimed to explore the specific role of ECH in the occurrence and development of OA and its underlying mechanism in vivo and in vitro. Methods After the mice were anesthetized, the bilateral medial knee joint meniscus resection was performed to establish the DMM model. TBHP was used to induce oxidative stress to establish the OA model in chondrocytes in vitro. Western blot and RT-PCR were used to evaluate the level of ER stress-related biomarkers such as p-PERK/PERK, GRP78, ATF4, p-eIF2α/eIF2α, and CHOP and apoptosis-related proteins such as BAX, Bcl-2, and cleaved caspase-3. Meanwhile, we used SO staining, immunofluorescence, and immunohistochemical staining to evaluate the pharmacological effects of ECH in mice in vivo. Results We demonstrated the effectiveness of ECH in suppressing ER stress and restoring ECM metabolism in vitro. In particular, ECH was shown to suppress tert-Butyl hydroperoxide- (TBHP-) induced OS and subsequently lower the levels of p-PERK/PERK, GRP78, ATF4, p-eIF2α/eIF2α, and CHOP in vitro. Simultaneously, ECH reduced MMP13 and ADAMTS5 levels and promoted Aggrecan and Collagen II levels, suggesting ECM degradation suppression. Moreover, we showed that ECH mediates its cellular effects via upregulation of Sirt1. Lastly, we confirmed that ECH can protect against OA in mouse OA models. Conclusion In summary, our findings indicate that ECH can inhibit ER stress and ECM degradation by upregulating Sirt1 in mouse chondrocytes treated with TBHP. It can also prevent OA development in vivo.
Collapse
|
25
|
Zhu Y, Kuang L, Wu Y, Deng H, She H, Zhou Y, Zhang J, Liu L, Li T. Protective Effects of Inhibition of Mitochondrial Fission on Organ Function After Sepsis. Front Pharmacol 2021; 12:712489. [PMID: 34566637 PMCID: PMC8457550 DOI: 10.3389/fphar.2021.712489] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023] Open
Abstract
Sepsis-associated organ dysfunction plays a critical role in its high mortality, mainly in connection with mitochondrial dysfunction. Whether the inhibition of mitochondrial fission is beneficial to sepsis-related organ dysfunction and underlying mechanisms are unknown. Cecal ligation and puncture induced sepsis in rats and dynamic related protein 1 knockout mice, lipopolysaccharide-treated vascular smooth muscle cells and cardiomyocytes, were used to explore the effects of inhibition of mitochondrial fission and specific mechanisms. Our study showed that mitochondrial fission inhibitor Mdivi-1 could antagonize sepsis-induced organ dysfunction including heart, vascular smooth muscle, liver, kidney, and intestinal functions, and prolonged animal survival. The further study showed that mitochondrial functions such as mitochondrial membrane potential, adenosine-triphosphate contents, reactive oxygen species, superoxide dismutase and malonaldehyde were recovered after Mdivi-1 administration via improving mitochondrial morphology. And sepsis-induced inflammation and apoptosis in heart and vascular smooth muscle were alleviated through inhibition of mitochondrial fission and mitochondrial function improvement. The parameter trends in lipopolysaccharide-stimulated cardiomyocytes and vascular smooth muscle cells were similar in vivo. Dynamic related protein 1 knockout preserved sepsis-induced organ dysfunction, and the animal survival was prolonged. Taken together, this finding provides a novel effective candidate therapy for severe sepsis/septic shock and other critical clinical diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
26
|
Zhang L, Ding F, Wang R, Wu X, Wan Y, Hu J, Wu Q. Involvement of mitochondrial fission in renal tubular pyroptosis in mice exposed to high and environmental levels of glyphosate combined with hard water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117082. [PMID: 33848899 DOI: 10.1016/j.envpol.2021.117082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Chronic interstitial nephritis in agricultural communities (CINAC) has reached epidemic proportions. The combination of glyphosate and hard water has been postulated to play a potent aetiological role in CINAC. Therefore, dynamin-related protein 1 (Drp1)-mediated aberrant mitochondrial fission and subsequent activation of the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (Nlrp3)/caspase1 pathway may be involved in the pathogenesis of nephropathy. In the present study, mice were sub-chronically exposed to high doses and environmental levels of glyphosate (100 mg/kg body weight (mg/kg·bw) glyphosate in Roundup and 0.7 mg/L pure glyphosate, respectively) and hard water (2500 mg/L CaCO3 and 250 mg/L Ca2+, respectively) in drinking water. Moreover, Mdivi-1 (Md-1, 10 mg/kg·bw) was intraperitoneally injected to inhibit Drp1 on the basis of the high-dose experiment. Histopathological examination, biochemical analysis, ELISA, western blotting and fluorescent staining were used to analyse renal structure, renal tubular pyroptosis and mitochondrial fission/fusion alterations. The results showed dramatic proximal tubular injury, particularly in the combined groups. Moreover, significant increases in the protein expression levels of calmodulin (CaM), calmodulin-dependent protein kinase II (CaMKII), Drp1/p-Drp1-Ser616 and the Txnip/Nlrp3/caspase1 signalling pathway, and alterations in oxidative stress were observed in the combined groups, and these effects were attenuated by the Drp1 inhibitor Md-1. Intriguingly, there may be a synergistic effect of glyphosate and hard water on renal injury. Taken together, these results suggest that the combination of glyphosate and hard water, even at environmental exposure levels, enhances pyroptosis and ongoing tubulointerstitial inflammation through excessive Drp1-mediated mitochondrial fission.
Collapse
Affiliation(s)
- Lin Zhang
- School of Public Health, Fudan University, Shanghai, China
| | - Fan Ding
- School of Public Health, Fudan University, Shanghai, China
| | - Ruojing Wang
- School of Public Health, Fudan University, Shanghai, China
| | - Xuan Wu
- School of Public Health, Fudan University, Shanghai, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Qing Wu
- School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
27
|
Yang Q, Han B, Xue J, Lv Y, Li S, Liu Y, Wu P, Wang X, Zhang Z. Hexavalent chromium induces mitochondrial dynamics disorder in rat liver by inhibiting AMPK/PGC-1α signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114855. [PMID: 32474337 DOI: 10.1016/j.envpol.2020.114855] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Occupational exposure to hexavalent chromium (Cr(VI)) can cause cytotoxicity and carcinogenicity. In this study, we established a liver injury model in rats via intraperitoneal injection of potassium dichromate (0, 2, 4, and 6 mg/kg body weight) for 35 d to investigate the mechanism of Cr(VI)-induced liver injury. We found that Cr(VI) induced hepatic histopathological lesions, oxidative stress, and apoptosis and reduced the expression of mitochondrial-related regulatory factors such as adenosine 5'-monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in a dose-dependent manner. Furthermore, Cr(VI) promoted mitochondrial division and inhibited fusion, leading to increased expression of caspase-3 and production of mitochondrial reactive oxygen species. Our study demonstrates that long-term exposure to Cr(VI) induces mitochondrial dynamics disorder by inhibiting AMPK/PGC-1α signaling pathway in rat liver.
Collapse
Affiliation(s)
- Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Jiangdong Xue
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, China
| | - Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
28
|
Luo J, Shen S. Lipoic acid alleviates schistosomiasis-induced liver fibrosis by upregulating Drp1 phosphorylation. Acta Trop 2020; 206:105449. [PMID: 32194067 DOI: 10.1016/j.actatropica.2020.105449] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/16/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
Abstract
Lipoic acid (LA) has been shown to possess protective effects against liver fibrosis mainly by induction of apoptosis of activated hepatic stellate cells, but the mechanism of LA activity in liver fibrosis has yet to be completely explained. LA occurs naturally in mitochondria as a coenzyme. In this study, we used mice with schistosomiasis-induced liver fibrosis and mouse hepatocarcinoma cell line 1C1C7 as models to investigate the mitochondrial mechanism of LA treatment for liver fibrosis. Western blot, real-time PCR and oxygen consumption rate (OCR) test were used. In the livers of mice with liver fibrosis, the mRNA levels of LA synthetic pathway enzymes, including MCAT, OXSM, MECR, and LIAS, were significantly reduced. Livers of mice with liver fibrosis showed degenerative signs, such as mitochondrial edema, a reduced mitochondrial crest and matrix density, or vacuolation; the activities of mitochondrial complexes I, II, IV, and V were also decreased in these livers. The expression of phosphorylation Drp1 (p-Drp1) was decreased in the livers of mice with liver fibrosis, indicating increased mitochondrial fission activity, whereas OPA1 and MFN1 expression was reduced, denoting decreased activity of mitochondrial fusion. To understand the mitochondrial mechanism of LA treatment for liver fibrosis, p-Drp1, OPA1, and MFN1 expression were detected at the protein level in mouse hepatocarcinoma cell line 1C1C7 stimulated by LA. OPA1 and MFN1 were not significantly altered, but p-Drp1 was significantly increased. The results suggest that LA may alleviate liver fibrosis through upregulating p-Drp1. This study provides a new insight into the mechanism of the protective effect of LA against schistosomiasis-induced liver fibrosis, which demonstrates that LA is required for the maintenance of mitochondrial function by upregulating p-Drp1 expression to inhibit mitochondrial fission.
Collapse
|