1
|
Sabetghadam Moghadam M, Wiens E, Gauvrit S, Sammynaiken R, Collins MM. Electron paramagnetic resonance spectroscopy for analysis of free radicals in zebrafish. PLoS One 2025; 20:e0318212. [PMID: 39982956 PMCID: PMC11844908 DOI: 10.1371/journal.pone.0318212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/10/2025] [Indexed: 02/23/2025] Open
Abstract
Electron paramagnetic resonance (EPR) is an excellent choice for detecting free radicals in biological samples. Biologically relevant radicals are extremely short-lived and cannot be detected directly, emphasizing the need for an appropriate compound to generate stable adducts that can be measured by EPR. Spin trapping with nitrone compounds like 5,5-dimethyl-1-pyrroline N-oxide (DMPO) is a method commonly employed for detecting free radicals. However, due to the instability of nitrone radical adducts, using the cell-permeable 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethyl pyrrolidine (CMH) appears to be a more effective approach within biological tissues. Here, we compare the use of DMPO and CMH to detect the most abundant reactive oxygen species radical, superoxide ([Formula: see text]), in zebrafish and present an optimized protocol for performing EPR with a CMH spin probe in both zebrafish hearts and larvae. Together, our data suggest that EPR using the CMH probe is a reliable method to detect [Formula: see text] in zebrafish pathologies linked to oxidative stress, such as cardiovascular diseases.
Collapse
Affiliation(s)
- Mitra Sabetghadam Moghadam
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Eli Wiens
- Saskatchewan Structural Sciences Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sébastien Gauvrit
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ramaswami Sammynaiken
- Saskatchewan Structural Sciences Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Michelle M Collins
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Spanolios EM, Lewis RE, Caldwell RN, Jilani SZ, Haynes CL. Progress and limitations in reactive oxygen species quantitation. Chem Commun (Camb) 2024; 60:12487-12501. [PMID: 39373601 DOI: 10.1039/d4cc03578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Reactive oxygen species (ROS) are a set of oxygen- and nitrogen-containing radicals. They are produced from a wide range of sources. In biological contexts, cellular stress leads to an overproduction of ROS, which can lead to genetic damage and disease development. In industry, ROS are often productively used for water purification or for analyzing the possible toxicity of an industrial process. Because of their ubiquity, detection of ROS has been an analytical goal across a range of fields. To understand complicated systems and origins of ROS production, it is necessary to move from qualitative detection to quantitation. Analytical techniques that combine quantitation, high spatial and temporal resolution, and good specificity represent detection methods that can fill critical gaps in ROS research. Herein, we discuss the continued progress and limitations of fluorescence, electrochemical, and electron paramagnetic resonance detection of ROS over the last ten years, giving suggestions for the future of the field.
Collapse
|
3
|
Manoharan RR, Zachová K, Buzáš M, Pospíšil P, Křupka M, Prasad A. NADPH oxidase-dependent free radical generation and protein adduct formation in neutrophils. RSC Adv 2024; 14:24765-24780. [PMID: 39114440 PMCID: PMC11305404 DOI: 10.1039/d4ra02739f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Neutrophils mediate the early innate immune response through extracellular traps comprising intracellular protein and DNA. These traps play a pivotal role in both immunity against invading pathogens and the development of immunopathological reactions through the production of reactive oxygen species (ROS). Proteins serve as the main target for ROS, resulting in the formation of protein adducts. Herein, we report that the superoxide anion radical (O2˙-) plays a vital role in neutrophil function through sequential events involving 5-lipoxygenase (5-LOX) and NADPH oxidase (NOX). More specifically, differences in NOX homologs expression were observed post-stimulation with PMA and LPS. Differentiation conditions and O2˙- generation were confirmed using flow cytometry. Immunoblotting analysis confirmed the time-dependent expression of NOX underlying its requirement and 5-LOX-mediated lipid peroxidation events in neutrophil function. Protein-malondialdehyde (MDA) adducts formed were detected using immunoblotting, and quercetin was evaluated for its ability to scavenge free radicals through electron paramagnetic resonance (EPR) spin-trapping spectroscopy and results were confirmed with blotting analysis. Free radical-mediated protein oxidation events influence neutrophil function and protein adducts formed serve as markers of neutrophil activation upon infection and inflammation. The study warrants further corroboration and the study of specific proteins involved in neutrophil activation and their role in inflammation.
Collapse
Affiliation(s)
- Renuka Ramalingam Manoharan
- Department of Biophysics, Faculty of Science, Palacký University Šlechtitelů 27 783 71 Olomouc Czech Republic +420 585225737 +420 585634752
| | - Kateřina Zachová
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Hněvotínská 3 775 15 Olomouc Czech Republic
| | - Marek Buzáš
- Department of Biophysics, Faculty of Science, Palacký University Šlechtitelů 27 783 71 Olomouc Czech Republic +420 585225737 +420 585634752
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University Šlechtitelů 27 783 71 Olomouc Czech Republic +420 585225737 +420 585634752
| | - Michal Křupka
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Hněvotínská 3 775 15 Olomouc Czech Republic
| | - Ankush Prasad
- Department of Biophysics, Faculty of Science, Palacký University Šlechtitelů 27 783 71 Olomouc Czech Republic +420 585225737 +420 585634752
| |
Collapse
|
4
|
Tarvirdipour S, Skowicki M, Maffeis V, Abdollahi SN, Schoenenberger CA, Palivan CG. Peptide nanocarriers co-delivering an antisense oligonucleotide and photosensitizer elicit synergistic cytotoxicity. J Colloid Interface Sci 2024; 664:338-348. [PMID: 38479270 DOI: 10.1016/j.jcis.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Combination therapies demand co-delivery platforms with efficient entrapment of distinct payloads and specific delivery to cells and possibly organelles. Herein, we introduce the combination of two therapeutic modalities, gene and photodynamic therapy, in a purely peptidic platform. The simultaneous formation and cargo loading of the multi-micellar platform is governed by self-assembly at the nanoscale. The multi-micellar architecture of the nanocarrier and the positive charge of its constituent micelles offer controlled dual loading capacity with distinct locations for a hydrophobic photosensitizer (PS) and negatively charged antisense oligonucleotides (ASOs). Moreover, the nuclear localization signal (NLS) sequence built-in the peptide targets PS + ASO-loaded nanocarriers to the nucleus. Breast cancer cells treated with nanocarriers demonstrated photo-triggered enhancement of radical oxygen species (ROS) associated with increased cell death. Besides, delivery of ASO payloads resulted in up to 90 % knockdown of Bcl-2, an inhibitor of apoptosis that is overexpressed in more than half of all human cancers. Simultaneous delivery of PS and ASO elicited synergistic apoptosis to an extent that could not be reached by singly loaded nanocarriers or the free form of the drugs. Both, the distinct location of loaded compounds that prevents them from interfering with each other, and the highly efficient cellular delivery support the great potential of this versatile peptide platform in combination therapy.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland; NCCR-Molecular Systems Engineering, Mattenstrasse 24a, Basel 4058, Switzerland
| | - Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland; NCCR-Molecular Systems Engineering, Mattenstrasse 24a, Basel 4058, Switzerland
| | - S Narjes Abdollahi
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland
| | | | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland; NCCR-Molecular Systems Engineering, Mattenstrasse 24a, Basel 4058, Switzerland.
| |
Collapse
|
5
|
Zhang Q, Zhang L, Lin G, Luo F. The protective role of vagus nerve stimulation in ischemia-reperfusion injury. Heliyon 2024; 10:e30952. [PMID: 38770302 PMCID: PMC11103530 DOI: 10.1016/j.heliyon.2024.e30952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) encompasses the damage resulting from the restoration of blood supply following tissue ischemia. This phenomenon commonly occurs in clinical scenarios such as hemorrhagic shock, severe trauma, organ transplantation, and thrombolytic therapy. Despite its prevalence, existing treatments exhibit limited efficacy against IRI. Vagus nerve stimulation (VNS) is a widely utilized technique for modulating the autonomic nervous system. Numerous studies have demonstrated that VNS significantly reduces IRI in various organs, including the heart, brain, and liver. This article reviews the pathological processes during IRI and summarizes the role and possible mechanisms of VNS in IRI of different organs. Furthermore, this review addresses the current challenges of VNS clinical applications, providing a novel perspective on IRI treatment.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Guoqiang Lin
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fanyan Luo
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
6
|
Castro CFG, Nardiello C, Hadzic S, Kojonazarov B, Kraut S, Gierhardt M, Schäffer J, Bednorz M, Quanz K, Heger J, Korfei M, Wilhelm J, Hecker M, Bartkuhn M, Arnhold S, Guenther A, Seeger W, Schulz R, Weissmann N, Sommer N, Pak O. The Role of the Redox Enzyme p66Shc in Biological Aging of the Lung. Aging Dis 2024; 15:911-926. [PMID: 37548932 PMCID: PMC10917546 DOI: 10.14336/ad.2023.0715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/15/2023] [Indexed: 08/08/2023] Open
Abstract
The mitochondrial adaptor protein p66Shc has been suggested to control life span in mice via the release of hydrogen peroxide. However, the role of p66Shc in lung aging remains unsolved. Thus, we investigated the effects of p66Shc-/- on the aging of the lung and pulmonary circulation. In vivo lung and cardiac characteristics were investigated in p66Shc-/- and wild type (WT) mice at 3, 12, and 24 months of age by lung function measurements, micro-computed tomography (µCT), and echocardiography. Alveolar number and muscularization of small pulmonary arteries were measured by stereology and vascular morphometry, respectively. Protein and mRNA levels of senescent markers were measured by western blot and PCR, respectively. Lung function declined similarly in WT and p66Shc-/- mice during aging. However, µCT analyses and stereology showed slightly enhanced signs of aging-related parameters in p66Shc-/- mice, such as a decline of alveolar density. Accordingly, p66Shc-/- mice showed higher protein expression of the senescence marker p21 in lung homogenate compared to WT mice of the corresponding age. Pulmonary vascular remodeling was increased during aging, but aged p66Shc-/- mice showed similar muscularization of pulmonary vessels and hemodynamics like WT mice. In the heart, p66Shc-/- prevented the deterioration of right ventricular (RV) function but promoted the decline of left ventricular (LV) function during aging. p66Shc-/- affects the aging process of the lung and the heart differently. While p66Shc-/- slightly accelerates lung aging and deteriorates LV function in aged mice, it seems to exert protective effects on RV function during aging.
Collapse
Affiliation(s)
- Claudia F. Garcia Castro
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Claudio Nardiello
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Stefan Hadzic
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Baktybek Kojonazarov
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
| | - Simone Kraut
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Mareike Gierhardt
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Julia Schäffer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Mariola Bednorz
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Karin Quanz
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Jacqueline Heger
- Institute of Physiology, Justus-Liebig University of Giessen, Giessen, Germany.
| | - Martina Korfei
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Jochen Wilhelm
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
| | - Matthias Hecker
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Marek Bartkuhn
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig University of Giessen, Giessen, Germany.
| | - Andreas Guenther
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- European IPF Registry & Biobank (eurIPFreg), Giessen, Germany.
- Agaplesion Evangelisches Krankenhaus Mittelhessen, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Giessen, Germany.
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| | - Oleg Pak
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus- Liebig University of Giessen, Giessen, Germany.
| |
Collapse
|
7
|
Maffeis V, Skowicki M, Wolf KMP, Chami M, Schoenenberger CA, Vogel V, Palivan CG. Advancing the Design of Artificial Nano-organelles for Targeted Cellular Detoxification of Reactive Oxygen Species. NANO LETTERS 2024; 24:2698-2704. [PMID: 38408754 PMCID: PMC10921454 DOI: 10.1021/acs.nanolett.3c03888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/28/2024]
Abstract
Artificial organelles (AnOs) are in the spotlight as systems to supplement biochemical pathways in cells. While polymersome-based artificial organelles containing enzymes to reduce reactive oxygen species (ROS) are known, applications requiring control of their enzymatic activity and cell-targeting to promote intracellular ROS detoxification are underexplored. Here, we introduce advanced AnOs where the chemical composition of the membrane supports the insertion of pore-forming melittin, enabling molecular exchange between the AnO cavity and the environment, while the encapsulated lactoperoxidase (LPO) maintains its catalytic function. We show that H2O2 outside AnOs penetrates through the melittin pores and is rapidly degraded by the encapsulated enzyme. As surface attachment of cell-penetrating peptides facilitates AnOs uptake by cells, electron spin resonance revealed a remarkable enhancement in intracellular ROS detoxification by these cell-targeted AnOs compared to nontargeted AnOs, thereby opening new avenues for a significant reduction of oxidative stress in cells.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department
of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
| | - Michal Skowicki
- Department
of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
| | - Konstantin M. P. Wolf
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
- Laboratory
of Applied Mechanobiology, Institute of Translational Medicine, Department
of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mohamed Chami
- BioEM
lab, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Viola Vogel
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
- Laboratory
of Applied Mechanobiology, Institute of Translational Medicine, Department
of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Cornelia G. Palivan
- Department
of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
- NCCR-Molecular
Systems Engineering, 4002 Basel, Switzerland
| |
Collapse
|
8
|
Lózsa R, Németh E, Gervai JZ, Márkus BG, Kollarics S, Gyüre Z, Tóth J, Simon F, Szüts D. DNA mismatch repair protects the genome from oxygen-induced replicative mutagenesis. Nucleic Acids Res 2023; 51:11040-11055. [PMID: 37791890 PMCID: PMC10639081 DOI: 10.1093/nar/gkad775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
DNA mismatch repair (MMR) corrects mismatched DNA bases arising from multiple sources including polymerase errors and base damage. By detecting spontaneous mutagenesis using whole genome sequencing of cultured MMR deficient human cell lines, we show that a primary role of MMR is the repair of oxygen-induced mismatches. We found an approximately twofold higher mutation rate in MSH6 deficient DLD-1 cells or MHL1 deficient HCT116 cells exposed to atmospheric conditions as opposed to mild hypoxia, which correlated with oxidant levels measured using electron paramagnetic resonance spectroscopy. The oxygen-induced mutations were dominated by T to C base substitutions and single T deletions found primarily on the lagging strand. A broad sequence context preference, dependence on replication timing and a lack of transcriptional strand bias further suggested that oxygen-induced mutations arise from polymerase errors rather than oxidative base damage. We defined separate low and high oxygen-specific MMR deficiency mutation signatures common to the two cell lines and showed that the effect of oxygen is observable in MMR deficient cancer genomes, where it best correlates with the contribution of mutation signature SBS21. Our results imply that MMR corrects oxygen-induced genomic mismatches introduced by a replicative process in proliferating cells.
Collapse
Affiliation(s)
- Rita Lózsa
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Eszter Németh
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Judit Z Gervai
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Bence G Márkus
- Stavropoulos Center for Complex Quantum Matter, Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Sándor Kollarics
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Zsolt Gyüre
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Doctoral School of Molecular Medicine, Semmelweis University, H-1085 Budapest, Hungary
- Turbine Simulated Cell Technologies, H-1027 Budapest, Hungary
| | - Judit Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Ferenc Simon
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| |
Collapse
|
9
|
Pharoah BM, Zhang C, Khodade VS, Keceli G, McGinity C, Paolocci N, Toscano JP. Hydropersulfides (RSSH) attenuate doxorubicin-induced cardiotoxicity while boosting its anticancer action. Redox Biol 2023; 60:102625. [PMID: 36773545 PMCID: PMC9929489 DOI: 10.1016/j.redox.2023.102625] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Cardiotoxicity is a frequent and often lethal complication of doxorubicin (DOX)-based chemotherapy. Here, we report that hydropersulfides (RSSH) are the most effective reactive sulfur species in conferring protection against DOX-induced toxicity in H9c2 cardiac cells. Mechanistically, RSSH supplementation alleviates the DOX-evoked surge in reactive oxygen species (ROS), activating nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent pathways, thus boosting endogenous antioxidant defenses. Simultaneously, RSSH turns on peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a master regulator of mitochondrial function, while decreasing caspase-3 activity to inhibit apoptosis. Of note, we find that RSSH potentiate anticancer DOX effects in three different cancer cell lines, with evidence that suggests this occurs via induction of reductive stress. Indeed, cancer cells already exhibit much higher basal hydrogen sulfide (H2S), sulfane sulfur, and reducing equivalents compared to cardiac cells. Thus, RSSH may represent a new promising avenue to fend off DOX-induced cardiotoxicity while boosting its anticancer effects.
Collapse
Affiliation(s)
- Blaze M Pharoah
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Chengximeng Zhang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Vinayak S Khodade
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Gizem Keceli
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Christopher McGinity
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
10
|
Yin Y, Shen H. Common methods in mitochondrial research (Review). Int J Mol Med 2022; 50:126. [PMID: 36004457 PMCID: PMC9448300 DOI: 10.3892/ijmm.2022.5182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/09/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yiyuan Yin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
11
|
Miazek K, Beton K, Śliwińska A, Brożek-Płuska B. The Effect of β-Carotene, Tocopherols and Ascorbic Acid as Anti-Oxidant Molecules on Human and Animal In Vitro/In Vivo Studies: A Review of Research Design and Analytical Techniques Used. Biomolecules 2022; 12:biom12081087. [PMID: 36008981 PMCID: PMC9406122 DOI: 10.3390/biom12081087] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Prolonged elevated oxidative stress (OS) possesses negative effect on cell structure and functioning, and is associated with the development of numerous disorders. Naturally occurred anti-oxidant compounds reduce the oxidative stress in living organisms. In this review, antioxidant properties of β-carotene, tocopherols and ascorbic acid are presented based on in vitro, in vivo and populational studies. Firstly, environmental factors contributing to the OS occurrence and intracellular sources of Reactive Oxygen Species (ROS) generation, as well as ROS-mediated cellular structure degradation, are introduced. Secondly, enzymatic and non-enzymatic mechanism of anti-oxidant defence against OS development, is presented. Furthermore, ROS-preventing mechanisms and effectiveness of β-carotene, tocopherols and ascorbic acid as anti-oxidants are summarized, based on studies where different ROS-generating (oxidizing) agents are used. Oxidative stress biomarkers, as indicators on OS level and prevention by anti-oxidant supplementation, are presented with a focus on the methods (spectrophotometric, fluorometric, chromatographic, immuno-enzymatic) of their detection. Finally, the application of Raman spectroscopy and imaging as a tool for monitoring the effect of anti-oxidant (β-carotene, ascorbic acid) on cell structure and metabolism, is proposed. Literature data gathered suggest that β-carotene, tocopherols and ascorbic acid possess potential to mitigate oxidative stress in various biological systems. Moreover, Raman spectroscopy and imaging can be a valuable technique to study the effect of oxidative stress and anti-oxidant molecules in cell studies.
Collapse
Affiliation(s)
- Krystian Miazek
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
- Correspondence:
| | - Karolina Beton
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | - Beata Brożek-Płuska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
12
|
Malacrida S, De Lazzari F, Mrakic-Sposta S, Vezzoli A, Zordan MA, Bisaglia M, Menti GM, Meda N, Frighetto G, Bosco G, Dal Cappello T, Strapazzon G, Reggiani C, Gussoni M, Megighian A. Lifespan and ROS levels in different Drosophila melanogaster strains after 24 h hypoxia exposure. Biol Open 2022; 11:275522. [PMID: 35616023 PMCID: PMC9253781 DOI: 10.1242/bio.059386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
During recent decades, model organisms such as Drosophila melanogaster have made it possible to study the effects of different environmental oxygen conditions on lifespan and oxidative stress. However, many studies have often yielded controversial results usually assigned to variations in Drosophila genetic background and differences in study design. In this study, we compared longevity and ROS levels in young, unmated males of three laboratory wild-type lines (Canton-S, Oregon-R and Berlin-K) and one mutant line (Sod1n1) as a positive control of redox imbalance, under both normoxic and hypoxic (2% oxygen for 24 h) conditions. Lifespan was used to detect the effects of hypoxic treatment and differences were analysed by means of Kaplan–Meier survival curves and log-rank tests. Electron paramagnetic resonance spectroscopy was used to measure ROS levels and analysis of variance was used to estimate the effects of hypoxic treatment and to assess ROS differences between strains. We observed that the genetic background is a relevant factor involved in D. melanogaster longevity and ROS levels. Indeed, as expected, in normoxia Sod1n1 are the shortest-lived, while the wild-type strains, despite a longer lifespan, show some differences, with the Canton-S line displaying the lowest mortality rate. After hypoxic stress these variances are amplified, with Berlin-K flies showing the highest mortality rate and most evident reduction of lifespan. Moreover, our analysis highlighted differential effects of hypoxia on redox balance/unbalance. Canton-S flies had the lowest increase of ROS level compared to all the other strains, confirming it to be the less sensitive to hypoxic stress. Sod1n1 flies displayed the highest ROS levels in normoxia and after hypoxia. These results should be used to further standardize future Drosophila research models designed to investigate genes and pathways that may be involved in lifespan and/or ROS, as well as comparative studies on specific mutant strains. Summary: In our study Drosophila melanogaster was used to evaluate the effects of different environmental oxygen conditions on survival and ROS levels in three wild-type and one mutant strain.
Collapse
Affiliation(s)
- Sandro Malacrida
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100 Bolzano, Italy
| | - Federica De Lazzari
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.,Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Mauro A Zordan
- Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Marco Bisaglia
- Physiology, Genetics and Behaviour Unit, Department of Biology, University of Padova, 35131 Padova, Italy
| | - Giulio Maria Menti
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy
| | - Nicola Meda
- Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy
| | - Giovanni Frighetto
- Department of Integrative Biology and Physiology, University of California, 610 Charles Young Drive East, Los Angeles, CA 90095-7239, USA
| | - Gerardo Bosco
- Department of Biomedical Science, University of Padova, Via Marzolo 3, 35121 Padova, Italy
| | - Tomas Dal Cappello
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100 Bolzano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Via Ipazia 2, 39100 Bolzano, Italy
| | - Carlo Reggiani
- Department of Biomedical Science, University of Padova, Via Marzolo 3, 35121 Padova, Italy
| | - Maristella Gussoni
- Institute of Chemical Sciences and Technologies "G. Natta"-SCITEC, National Research Council, CNR-SCITEC, Via A. Corti 12, 20133 Milan, Italy
| | - Aram Megighian
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; Padova Neuroscience Center, University of Padova, via Orus 2/B, 35131 Padova, Italy
| |
Collapse
|
13
|
Rane V. Harnessing Electron Spin Hyperpolarization in Chromophore-Radical Spin Probes for Subcellular Resolution in Electron Paramagnetic Resonance Imaging: Concept and Feasibility. J Phys Chem B 2022; 126:2715-2728. [PMID: 35353514 DOI: 10.1021/acs.jpcb.1c10920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Obtaining a subcellular resolution for biological samples doped with stable radicals at room temperature (RT) is a long-sought goal in electron paramagnetic resonance imaging (EPRI). The spatial resolution in current EPRI methods is constrained either because of low electron spin polarization at RT or the experimental limitations associated with the field gradients and the radical linewidth. Inspired by the recent demonstration of a large electron spin hyperpolarization in chromophore-nitroxyl spin probe molecules, the present work proposes a novel optically hyperpolarized EPR imaging (OH-EPRI) method, which combines the optical method of two-photon confocal microscopy for hyperpolarization generation and the rapid scan (RS) EPR method for signal detection. An important aspect of OH-EPRI is that it is not limited by the abovementioned restrictions of conventional EPRI since the large hyperpolarization in the spin probes overcomes the poor thermal spin polarization at RT, and the use of two-photon optical excitation of the chromophore naturally generates the required spatial resolution, without the need for any magnetic field gradient. Simulations based on time-dependent Bloch equations, which took into account both the RS field modulation and the hyperpolarization generation by optical means, were performed to examine the feasibility of OH-EPRI. The simulation results revealed that a spatial resolution of up to 2 fL can be achieved in OH-EPRI at RT under in vitro conditions. Notably, the majority of the requirements for an OH-EPRI experiment can be fulfilled by the currently available technologies, thereby paving the way for its easy implementation. Thus, the proposed method could potentially bridge the sensitivity gap between the optical and magnetic imaging techniques.
Collapse
Affiliation(s)
- Vinayak Rane
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
14
|
Chen L, Chen J, Fang Y, Zeng F, Wu S. A turn-on probe for detecting antituberculotic drug-induced liver injury in mice via NIR-II fluorescence/optoacoustic imaging. Chem Commun (Camb) 2021; 57:7842-7845. [PMID: 34278391 DOI: 10.1039/d1cc02845f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A turn-on optoacoustic and NIR-II fluorescent probe for imaging antituberculotic drug-induced liver injury has been developed. Probe TC-H2O2 responds to hepatic H2O2, thus releasing chromophore TC-NN, which displays prominent NIR-II fluorescence and optoacoustic signals for diagnosing liver injury.
Collapse
Affiliation(s)
- Longqi Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Junjie Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yichang Fang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|