1
|
Pulliam CF, Fath MA, Sho S, Johnson ST, Wagner BA, Singhania M, Kalen AL, Bayanbold K, Solst SR, Allen BG, George BN, Caster JM, Buettner GR, Riley DP, Keene JL, Beardsley RA, Spitz DR. Pharmacological ascorbate combined with rucosopasem selectively radio-chemo-sensitizes NSCLC via generation of H 2O 2. Redox Biol 2025; 80:103505. [PMID: 39884000 PMCID: PMC11830350 DOI: 10.1016/j.redox.2025.103505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Differences in cancer and normal cell oxidative metabolism provide a unique therapeutic opportunity for developing combined modality approaches with redox-active small molecules as radio-chemosensitizers that are well-tolerated by normal tissues. Pentaazamacrocyclic Mn (II)-containing (MnPAM) superoxide dismutase (SOD) mimetics and pharmacological ascorbate given IV to achieve [mM] plasma levels (pharmacological ascorbate: P-AscH‾) have been shown to act individually as cancer cell radio- and chemosensitizers via the generation of H2O2in vivo. The current study shows that the combination of newly developed MnPAM dismutase mimetic, rucosopasem manganese (RUC) with P-AscH‾ radio-sensitizes non-small cell lung cancer cells (NSCLC) and increases steady state levels of intracellular H2O2 with no additional toxicity to normal human bronchial epithelial cells (HBECs). Conditional over expression of catalase (CAT) in H1299T CATc15 cells demonstrates that the combination of RUC and P-AscH‾ causes radio-sensitization through an H2O2-dependent mechanism. Interestingly, RUC combined with P-AscH‾ demonstrates more than additive cytotoxicity in both H1299T and A549 NSCLC cells, but conditional over-expression of ferritin heavy chain (FtH) protected only the H1299T, and not the A549, from this toxicity. Most importantly, the combination of RUC + P-AscH‾ was found to sensitize both H1299T and A549 cell types to radio-chemotherapy with cisplatin (CIS) + etoposide (ETOP). Finally, in H1299T NSCLC xenografts the combination of RUC + P-AscH‾ with CIS + ETOP and 12 × 2 Gy radiation significantly inhibits tumor growth and increased median overall over survival. These results support the hypothesis that selective MnPAM dismutase mimetic + P-AscH‾ enhances the efficacy of radio-chemotherapy in NSCLC through a mechanism governed by redox active metals and H2O2 production.
Collapse
Affiliation(s)
- C F Pulliam
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, 52242, USA.
| | - M A Fath
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - S Sho
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - S T Johnson
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - B A Wagner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - M Singhania
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - A L Kalen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - K Bayanbold
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - S R Solst
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - B G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, 52242, USA.
| | - B N George
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - J M Caster
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | - G R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, 52242, USA.
| | - D P Riley
- Galera Therapeutics, Malvern, PA, 19355, USA.
| | - J L Keene
- Galera Therapeutics, Malvern, PA, 19355, USA.
| | | | - D R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa College of Medicine, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
2
|
Bi X, Cao N, He J. Recent advances in nanoenzymes for Alzheimer's disease treatment. Colloids Surf B Biointerfaces 2024; 244:114139. [PMID: 39121571 DOI: 10.1016/j.colsurfb.2024.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/14/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Alzheimer's disease (AD) remains one of the most challenging neurodegenerative disorders to treat, with oxidative stress playing a significant role in its pathology. Recent advancements in nanoenzymes technology offer a promising approach to mitigate this oxidative damage. Nanoenzymes, with their unique enzyme-mimicking activities, effectively scavenge reactive oxygen species and reduce oxidative stress, thereby providing neuroprotective effects. This review delves into the underlying mechanisms of AD, focusing on oxidative stress and its impact on disease progression. We explore the latest developments in nanoenzymes applications for AD treatment, highlighting their multifunctional capabilities and potential for targeted delivery to amyloid-beta plaques. Despite the exciting prospects, the clinical translation of nanoenzymes faces several challenges, including difficulties in brain targeting, consistent quality production, and ensuring safety and biocompatibility. We discuss these limitations in detail, emphasizing the need for rigorous evaluation and standardized protocols. This paper aims to provide a comprehensive overview of the current state of nanoenzymes research in AD, shedding light on both the opportunities and obstacles in the path towards effective clinical applications.
Collapse
Affiliation(s)
- Xiaojun Bi
- General Hospital of Northern Theater Command, Liaoning 110016, China
| | - Ning Cao
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing 400000, China
| | - Jingteng He
- General Hospital of Northern Theater Command, Liaoning 110016, China.
| |
Collapse
|
3
|
Zaher A, Petronek MS, Allen BG, Mapuskar KA. Balanced Duality: H 2O 2-Based Therapy in Cancer and Its Protective Effects on Non-Malignant Tissues. Int J Mol Sci 2024; 25:8885. [PMID: 39201571 PMCID: PMC11354297 DOI: 10.3390/ijms25168885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Conventional cancer therapy strategies, although centered around killing tumor cells, often lead to severe side effects on surrounding normal tissues, thus compromising the chronic quality of life in cancer survivors. Hydrogen peroxide (H2O2) is a secondary signaling molecule that has an array of functions in both tumor and normal cells, including the promotion of cell survival pathways and immune cell modulation in the tumor microenvironment. H2O2 is a reactive oxygen species (ROS) crucial in cellular homeostasis and signaling (at concentrations maintained under nM levels), with increased steady-state levels in tumors relative to their normal tissue counterparts. Increased steady-state levels of H2O2 in tumor cells, make them vulnerable to oxidative stress and ultimately, cell death. Recently, H2O2-producing therapies-namely, pharmacological ascorbate and superoxide dismutase mimetics-have emerged as compelling complementary treatment strategies in cancer. Both pharmacological ascorbate and superoxide dismutase mimetics can generate excess H2O2 to overwhelm the impaired H2O2 removal capacity of cancer cells. This review presents an overview of H2O2 metabolism in the physiological and malignant states, in addition to discussing the anti-tumor and normal tissue-sparing mechanism(s) of, and clinical evidence for, two H2O2-based therapies, pharmacological ascorbate and superoxide dismutase mimetics.
Collapse
Affiliation(s)
| | | | | | - Kranti A. Mapuskar
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (M.S.P.); (B.G.A.)
| |
Collapse
|
4
|
Chidambaram SB, Anand N, Varma SR, Ramamurthy S, Vichitra C, Sharma A, Mahalakshmi AM, Essa MM. Superoxide dismutase and neurological disorders. IBRO Neurosci Rep 2024; 16:373-394. [PMID: 39007083 PMCID: PMC11240301 DOI: 10.1016/j.ibneur.2023.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/21/2023] [Indexed: 07/16/2024] Open
Abstract
Superoxide dismutase (SOD) is a common antioxidant enzyme found majorly in living cells. The main physiological role of SOD is detoxification and maintain the redox balance, acts as a first line of defence against Reactive nitrogen species (RNS), Reactive oxygen species (ROS), and other such potentially hazardous molecules. SOD catalyses the conversion of superoxide anion free radicals (O 2 -.) into molecular oxygen (O 2) and hydrogen peroxide (H 2O 2) in the cells. Superoxide dismutases (SODs) are expressed in neurons and glial cells throughout the CNS both intracellularly and extracellularly. Endogenous oxidative stress (OS) linked with enlarged production of reactive oxygen metabolites (ROMs), inflammation, deregulation of redox balance, mitochondrial dysfunction and bioenergetic crisis are found to be prerequisite for neuronal loss in neurological diseases. Clinical and genetic studies indicate a direct correlation between mutations in SOD gene and neurodegenerative diseases, like Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD), Parkinson's Disease (PD) and Alzheimer's Disease (AD). Therefore, inhibitors of OS are considered as an optimistic approach to prevent neuronal loss. SOD mimetics like Metalloporphyrin Mn (II)-cyclic polyamines, Nitroxides and Mn (III)- Salen complexes are designed and used as therapeutic extensively in the treatment of neurological disorders. SODs and SOD mimetics are promising future therapeutics in the field of various diseases with OS-mediated pathology.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua College of Medicine, University Park, Jabberwock Beach Road, Antigua, Antigua and Barbuda
| | - Sudhir Rama Varma
- Department of Clinical Sciences, College of Dentistry, Ajman University, 346 Ajman, the United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, 346 Ajman, the United Arab Emirates
| | - Srinivasan Ramamurthy
- College of Pharmacy & Health Sciences, University of Science and Technology of Fujairah, 2202 Fujairah, the United Arab Emirates
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Ambika Sharma
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
5
|
Zaher A, Mapuskar KA, Petronek MS, Tanas MR, Isaacson AL, Dodd RD, Milhem M, Furqan M, Spitz DR, Miller BJ, Beardsley RA, Allen BG. Superoxide Dismutase Mimetic Avasopasem Manganese Enhances Radiation Therapy Effectiveness in Soft Tissue Sarcomas and Accelerates Wound Healing. Antioxidants (Basel) 2024; 13:587. [PMID: 38790692 PMCID: PMC11117842 DOI: 10.3390/antiox13050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Soft tissue sarcomas (STSs) are mesenchymal malignant lesions that develop in soft tissues. Despite current treatments, including radiation therapy (RT) and surgery, STSs can be associated with poor patient outcomes and metastatic recurrences. Neoadjuvant radiation therapy (nRT), while effective, is often accompanied by severe postoperative wound healing complications due to damage to the surrounding normal tissues. Thus, there is a need to develop therapeutic approaches to reduce nRT toxicities. Avasopasem manganese (AVA) is a selective superoxide dismutase mimetic that protects against IR-induced oral mucositis and lung fibrosis. We tested the efficacy of AVA in enhancing RT in STSs and in promoting wound healing. Using colony formation assays and alkaline comet assays, we report that AVA selectively enhanced the STS (liposarcoma, fibrosarcoma, leiomyosarcoma, and MPNST) cellular response to radiation compared to normal dermal fibroblasts (NDFs). AVA is believed to selectively enhance radiation therapy by targeting differential hydrogen peroxide clearance in tumor cells compared to non-malignant cells. STS cells demonstrated increased catalase protein levels and activity compared to normal fibroblasts. Additionally, NDFs showed significantly higher levels of GPx1 activity compared to STSs. The depletion of glutathione using buthionine sulfoximine (BSO) sensitized the NDF cells to AVA, suggesting that GPx1 may, in part, facilitate the selective toxicity of AVA. Finally, AVA significantly accelerated wound closure in a murine model of wound healing post RT. Our data suggest that AVA may be a promising combination strategy for nRT therapy in STSs.
Collapse
Affiliation(s)
- Amira Zaher
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (K.A.M.); (M.S.P.); (D.R.S.)
| | - Kranti A. Mapuskar
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (K.A.M.); (M.S.P.); (D.R.S.)
| | - Michael S. Petronek
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (K.A.M.); (M.S.P.); (D.R.S.)
| | - Munir R. Tanas
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA; (M.R.T.); (A.L.I.)
| | - Alexandra L. Isaacson
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA; (M.R.T.); (A.L.I.)
- Department of Pathology, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rebecca D. Dodd
- Department of Internal Medicine, Division of Hematology and Oncology, The University of Iowa, Iowa City, IA 52242, USA; (R.D.D.); (M.M.); (M.F.)
| | - Mohammed Milhem
- Department of Internal Medicine, Division of Hematology and Oncology, The University of Iowa, Iowa City, IA 52242, USA; (R.D.D.); (M.M.); (M.F.)
| | - Muhammad Furqan
- Department of Internal Medicine, Division of Hematology and Oncology, The University of Iowa, Iowa City, IA 52242, USA; (R.D.D.); (M.M.); (M.F.)
| | - Douglas R. Spitz
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (K.A.M.); (M.S.P.); (D.R.S.)
| | - Benjamin J. Miller
- Department of Orthopedics and Rehabilitation, The University of Iowa, Iowa City, IA 52242, USA;
| | - Robert A. Beardsley
- Galera Therapeutics Inc., 2 West Liberty Blvd., Suite 110, Malvern, PA 19355, USA;
| | - Bryan G. Allen
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (K.A.M.); (M.S.P.); (D.R.S.)
| |
Collapse
|
6
|
Hoffe SE, Aguilera TA, Parikh PJ, Ghaly MM, Herman JM, Caster JM, Kim DW, Costello J, Malafa MP, Moser EC, Kennedy EP, Terry K, Kurman M. Stereotactic body radiotherapy plus rucosopasem in locally advanced or borderline resectable pancreatic cancer: GRECO-2 phase II study design. Future Oncol 2024; 20:437-446. [PMID: 38264869 PMCID: PMC10988540 DOI: 10.2217/fon-2022-1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/02/2023] [Indexed: 01/25/2024] Open
Abstract
Ablative doses of stereotactic body radiotherapy (SBRT) may improve pancreatic cancer outcomes but may carry greater potential for gastrointestinal toxicity. Rucosopasem, an investigational selective dismutase mimetic that converts superoxide to hydrogen peroxide, can potentially increase tumor control of SBRT without compromising safety. GRECO-2 is a phase II, multicenter, randomized, double-blind, placebo-controlled trial of rucosopasem in combination with SBRT in locally advanced or borderline resectable pancreatic cancer. Patients will be randomized to rucosopasem 100 mg or placebo via intravenous infusion over 15 min, before each SBRT fraction (5 × 10 Gy). The primary end point is overall survival. Secondary end points include progression-free survival, locoregional control, time to metastasis, surgical resection rate, best overall response, in-field local response and acute and long-term toxicity.
Collapse
Affiliation(s)
- Sarah E Hoffe
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | | | | | - Maged M Ghaly
- Northwell Health Cancer Institute, New Hyde Park, NY 11040, USA
| | - Joseph M Herman
- Northwell Health Cancer Institute, New Hyde Park, NY 11040, USA
| | - Joseph M Caster
- Universty of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Dae Won Kim
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - James Costello
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Mokenge P Malafa
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | | | | | - Kara Terry
- Galera Therapeutics, Inc., Malvern, PA 19355, USA
| | | |
Collapse
|
7
|
Zhang J, Zhang Z, Wang X, Liu Y, Yu Q, Wang K, Fang Y, Lenahan C, Chen M, Chen S. Connection between oxidative stress and subcellular organelle in subarachnoid hemorrhage: Novel mechanisms and therapeutic implications. CNS Neurosci Ther 2023; 29:3672-3683. [PMID: 37408392 PMCID: PMC10651993 DOI: 10.1111/cns.14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH) is one of the most devastating forms of stroke, with limited treatment modalities and poor patient outcomes. Previous studies have proposed multiple prognostic factors; however, relative research on treatment has not yet yielded favorable clinical outcomes. Moreover, recent studies have suggested that early brain injury (EBI) occurring within 72 h after SAH may contribute to its poor clinical outcomes. Oxidative stress is recognized as one of the main mechanisms of EBI, which causes damage to various subcellular organelles, including the mitochondria, nucleus, endoplasmic reticulum (ER), and lysosomes. This could lead to significant impairment of numerous cellular functions, such as energy supply, protein synthesis, and autophagy, which may directly contribute to the development of EBI and poor long-term prognostic outcomes. In this review, the mechanisms underlying the connection between oxidative stress and subcellular organelles after SAH are discussed, and promising therapeutic options based on these mechanisms are summarized.
Collapse
Affiliation(s)
- Jiahao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Zeyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
- Department of Neurosurgery, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Qian Yu
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Kaikai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Cameron Lenahan
- Center for Neuroscience ResearchLoma Linda University School of MedicineLoma LindaCaliforniaUSA
| | - Maohua Chen
- Department of Neurosurgery, Wenzhou Central HospitalAffiliated Dingli Clinical Institute of Wenzhou Medical UniversityWenzhouChina
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
8
|
Luisa Valerio de Mello Braga L, Simão G, Silva Schiebel C, Caroline Dos Santos Maia A, Mulinari Turin de Oliveira N, Barbosa da Luz B, Rita Corso C, Soares Fernandes E, Maria Ferreira D. Rodent models for anticancer toxicity studies: contributions to drug development and future perspectives. Drug Discov Today 2023:103626. [PMID: 37224998 DOI: 10.1016/j.drudis.2023.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
Antineoplastic treatment induces a type of gastrointestinal toxicity known as mucositis. Findings in animal models are usually easily reproducible, and standardized treatment regimens are often used, thus supporting translational science. Essential characteristics of mucositis, including intestinal permeability, inflammation, immune and oxidative responses, and tissue repair mechanisms, can be easily investigated in these models. Given the effects of mucositis on the quality of life of patients with cancer, and the importance of experimental models in the development of more effective new therapeutic alternatives, this review discusses progress and current challenges in using experimental models of mucositis in translational pharmacology research. Teaser Experimental models for studying gastrointestinal mucositis have provided a wealth of information improving the understanding of antineoplastic toxicity.
Collapse
Affiliation(s)
- Lara Luisa Valerio de Mello Braga
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Gisele Simão
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Carolina Silva Schiebel
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Andressa Caroline Dos Santos Maia
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Bruna Barbosa da Luz
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Claudia Rita Corso
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Daniele Maria Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
9
|
Jiang H, Zuo J, Li B, Chen R, Luo K, Xiang X, Lu S, Huang C, Liu L, Tang J, Gao F. Drug-induced oxidative stress in cancer treatments: Angel or devil? Redox Biol 2023; 63:102754. [PMID: 37224697 DOI: 10.1016/j.redox.2023.102754] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Oxidative stress (OS), defined as redox imbalance in favor of oxidant burden, is one of the most significant biological events in cancer progression. Cancer cells generally represent a higher oxidant level, which suggests a dual therapeutic strategy by regulating redox status (i.e., pro-oxidant therapy and/or antioxidant therapy). Indeed, pro-oxidant therapy exhibits a great anti-cancer capability, attributing to a higher oxidant accumulation within cancer cells, whereas antioxidant therapy to restore redox homeostasis has been claimed to fail in several clinical practices. Targeting the redox vulnerability of cancer cells by pro-oxidants capable of generating excessive reactive oxygen species (ROS) has surfaced as an important anti-cancer strategy. However, multiple adverse effects caused by the indiscriminate attacks of uncontrolled drug-induced OS on normal tissues and the drug-tolerant capacity of some certain cancer cells greatly limit their further applications. Herein, we review several representative oxidative anti-cancer drugs and summarize their side effects on normal tissues and organs, emphasizing that seeking a balance between pro-oxidant therapy and oxidative damage is of great value in exploiting next-generation OS-based anti-cancer chemotherapeutics.
Collapse
Affiliation(s)
- Hao Jiang
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jing Zuo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bowen Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Chen
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Kangjia Luo
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Xionghua Xiang
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Shuaijun Lu
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Liu
- Ningbo Women & Children's Hospital, Ningbo, 315012, China.
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Feng Gao
- The First Hospital of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
10
|
Callaghan CM, Abukhiran IM, Masaadeh A, Van Rheeden RV, Kalen AL, Rodman SN, Petronek MS, Mapuskar KA, George BN, Coleman MC, Goswami PC, Allen BG, Spitz DR, Caster JM. Manipulation of Redox Metabolism Using Pharmacologic Ascorbate Opens a Therapeutic Window for Radio-Sensitization by ATM Inhibitors in Colorectal Cancer. Int J Radiat Oncol Biol Phys 2023; 115:933-944. [PMID: 36228747 PMCID: PMC9974877 DOI: 10.1016/j.ijrobp.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Ataxia telangiectasia mutated kinase (ATM) inhibitors are potent radiosensitizers that regulate DNA damage responses and redox metabolism, but they have not been translated clinically because of the potential for excess normal tissue toxicity. Pharmacologic ascorbate (P-AscH-; intravenous administration achieving mM plasma concentrations) selectively enhances H2O2-induced oxidative stress and radiosensitization in tumors while acting as an antioxidant and mitigating radiation damage in normal tissues including the bowel. We hypothesized that P-AscH- could enhance the therapeutic index of ATM inhibitor-based chemoradiation by simultaneously enhancing the intended effects of ATM inhibitors in tumors and mitigating off-target effects in adjacent normal tissues. METHODS AND MATERIALS Clonogenic survival was assessed in human (human colon tumor [HCT]116, SW480, HT29) and murine (CT26, MC38) colorectal tumor lines and normal cells (human umbilical vein endothelial cell, FHs74) after radiation ± DNA repair inhibitors ± P-AscH-. Tumor growth delay was assessed in mice with HCT116 or MC38 tumors after fractionated radiation (5 Gy × 3) ± the ATM inhibitor KU60019 ± P-AscH-. Intestinal injury, oxidative damage, and transforming growth factor β immunoreactivity were quantified using immunohistochemistry after whole abdominal radiation (10 Gy) ± KU60019 ± P-AscH-. Cell cycle distribution and ATM subcellular localization were assessed using flow cytometry and immunohistochemistry. The role of intracellular H2O2 fluxes was assessed using a stably expressed doxycycline-inducible catalase transgene. RESULTS KU60019 with P-AscH- enhanced radiosensitization in colorectal cancer models in vitro and in vivo by H2O2-dependent oxidative damage to proteins and enhanced DNA damage, abrogation of the postradiation G2 cell cycle checkpoint, and inhibition of ATM nuclear localization. In contrast, concurrent P-AscH- markedly reduced intestinal toxicity and oxidative damage with KU60019. CONCLUSIONS We provide evidence that redox modulating drugs, such as P-AscH-, may facilitate the clinical translation of ATM inhibitors by enhancing tumor radiosensitization while simultaneously protecting normal tissues.
Collapse
Affiliation(s)
- Cameron M Callaghan
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Ibrahim M Abukhiran
- Department of Pathology, University of Iowa Hospitals and Clinics and Carver College of Medicine, Iowa City, Iowa
| | - Amr Masaadeh
- Department of Pathology, University of Iowa Hospitals and Clinics and Carver College of Medicine, Iowa City, Iowa
| | | | - Amanda L Kalen
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Samuel N Rodman
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Michael S Petronek
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Kranti A Mapuskar
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Benjamin N George
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| | - Mitchell C Coleman
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Prabhat C Goswami
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Bryan G Allen
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Douglas R Spitz
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Joseph M Caster
- Department of Radiation Oncology, University of Iowa Hospital and Clinics, Iowa City, Iowa; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
11
|
Chmil V, Filipová A, Tichý A. Looking for the phoenix: the current research on radiation countermeasures. Int J Radiat Biol 2023; 99:1148-1166. [PMID: 36745819 DOI: 10.1080/09553002.2023.2173822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/06/2022] [Accepted: 12/26/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE Ionizing radiation (IR) is widely applied in radiotherapy for the treatment of over 50% of cancer patients. IR is also intensively used in medical diagnostics on a daily basis in imaging. Moreover, recent geopolitical events have re-ignited the real threat of the use of nuclear weapons. Medical radiation countermeasures represent one of the effective protection strategies against the effects of IR. The aim of this review was to summarize the most commonly used strategies and procedures in the development of radiation countermeasures and to evaluate the current state of their research, with a focus on those in the clinical trial phase. METHODS Clinical trials for this review were selected in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. The search was performed in the clinicaltrials.gov database as of May 2022. RESULTS Our search returned 263 studies, which were screened and of which 25 were included in the review. 10 of these studies had been completed, 3 with promising results: KMRC011 increased G-CSF, IL-6, and neutrophil counts suggesting potential for the treatment of hematopoietic acute radiation syndrome (H-ARS); GC4419 reduced the number of patients with severe oral mucositis and its duration; the combination of enoxaparin, pentoxifylline, and ursodeoxycholic acid reduced the incidence of focal radiation-induced liver injury. CONCLUSION The agents discovered so far show significant side effects or low efficacy, and hence most of the tested agents terminate in the early stages of development. In addition, the low profitability of this type of drug demotivates the private sector to invest in such research. To overcome this problem, there is a need to involve more public resources in funding. Among the technological opportunities, a deeper use of in silico approaches seems to be prospective.
Collapse
Affiliation(s)
- Vojtěch Chmil
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Alžběta Filipová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Aleš Tichý
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
Two-Year Tumor Outcomes of a Phase 2B, Randomized, Double-Blind Trial of Avasopasem Manganese (GC4419) Versus Placebo to Reduce Severe Oral Mucositis Owing to Concurrent Radiation Therapy and Cisplatin for Head and Neck Cancer. Int J Radiat Oncol Biol Phys 2022; 114:416-421. [PMID: 35724774 DOI: 10.1016/j.ijrobp.2022.06.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE Avasopasem manganese (GC4419), an investigational selective dismutase mimetic radioprotector, reduced duration, incidence, and severity of severe oral mucositis (World Health Organization grade 3-4) in a phase 2b, randomized, double-blind trial of patients receiving concurrent cisplatin (cis) and radiation therapy (RT) for head and neck cancer. We report the secondary endpoints of final 1- and 2-year tumor outcomes and exploratory data on trismus and xerostomia. METHODS AND MATERIALS Patients with locally advanced oral cavity or oropharynx cancer to be treated with definitive or postop cis and RT were randomized to 1 of 3 arms: 30 mg avasopasem, 90 mg avasopasem, or placebo. Pairwise comparisons of Kaplan-Meier estimates (each active arm separately vs placebo) were made for overall survival, progression-free survival, locoregional control, and distant metastasis-free survival. Xerostomia and trismus data were collected at each follow-up visit and analyzed for trends by post-RT timepoint and treatment group. RESULTS At a median follow-up for the entire cohort of 25.5 months (25th-75th percentile, 24.6-26.2 months; range, 0.2-31.9 months), Kaplan-Meier estimates of 1- and 2-year overall survival, progression-free survival, locoregional control, and distant metastasis-free survival were not statistically different. No trends were apparent in xerostomia or trismus data. CONCLUSIONS Avasopasem does not lead to statistically different tumor control outcomes when used concurrently with cis and RT for head and neck cancer. There was no detectable effect on trismus or xerostomia.
Collapse
|
13
|
Antioxidant Therapy in Cancer: Rationale and Progress. Antioxidants (Basel) 2022; 11:antiox11061128. [PMID: 35740025 PMCID: PMC9220137 DOI: 10.3390/antiox11061128] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is characterized by increased oxidative stress, an imbalance between reactive oxygen species (ROS) and antioxidants. Enhanced ROS accumulation, as a result of metabolic disturbances and signaling aberrations, can promote carcinogenesis and malignant progression by inducing gene mutations and activating pro-oncogenic signaling, providing a possible rationale for targeting oxidative stress in cancer treatment. While numerous antioxidants have demonstrated therapeutic potential, their clinical efficacy in cancer remains unproven. Here, we review the rationale for, and recent advances in, pre-clinical and clinical research on antioxidant therapy in cancer, including targeting ROS with nonenzymatic antioxidants, such as NRF2 activators, vitamins, N-acetylcysteine and GSH esters, or targeting ROS with enzymatic antioxidants, such as NOX inhibitors and SOD mimics. In addition, we will offer insights into prospective therapeutic options for improving the effectiveness of antioxidant therapy, which may expand its applications in clinical cancer treatment.
Collapse
|
14
|
Zweier JL, Hemann C, Kundu T, Ewees MG, Khaleel SA, Samouilov A, Ilangovan G, El-Mahdy MA. Cytoglobin has potent superoxide dismutase function. Proc Natl Acad Sci U S A 2021; 118:e2105053118. [PMID: 34930834 PMCID: PMC8719900 DOI: 10.1073/pnas.2105053118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Cytoglobin (Cygb) was discovered as a novel type of globin that is expressed in mammals; however, its functions remain uncertain. While Cygb protects against oxidant stress, the basis for this is unclear, and the effect of Cygb on superoxide metabolism is unknown. From dose-dependent studies of the effect of Cygb on superoxide catabolism, we identify that Cygb has potent superoxide dismutase (SOD) function. Initial assays using cytochrome c showed that Cygb exhibits a high rate of superoxide dismutation on the order of 108 M-1 ⋅ s-1 Spin-trapping studies also demonstrated that the rate of Cygb-mediated superoxide dismutation (1.6 × 108 M-1 ⋅ s-1) was only ∼10-fold less than Cu,Zn-SOD. Stopped-flow experiments confirmed that Cygb rapidly dismutates superoxide with rates within an order of magnitude of Cu,Zn-SOD or Mn-SOD. The SOD function of Cygb was inhibited by cyanide and CO that coordinate to Fe3+-Cygb and Fe2+-Cygb, respectively, suggesting that dismutation involves iron redox cycling, and this was confirmed by spectrophotometric titrations. In control smooth-muscle cells and cells with siRNA-mediated Cygb knockdown subjected to extracellular superoxide stress from xanthine/xanthine oxidase or intracellular superoxide stress triggered by the uncoupler, menadione, Cygb had a prominent role in superoxide metabolism and protected against superoxide-mediated death. Similar experiments in vessels showed higher levels of superoxide in Cygb-/- mice than wild type. Thus, Cygb has potent SOD function and can rapidly dismutate superoxide in cells, conferring protection against oxidant injury. In view of its ubiquitous cellular expression at micromolar concentrations in smooth-muscle and other cells, Cygb can play an important role in cellular superoxide metabolism.
Collapse
Affiliation(s)
- Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210;
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Craig Hemann
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Tapan Kundu
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Mohamed G Ewees
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Sahar A Khaleel
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Alexandre Samouilov
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Govindasamy Ilangovan
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Mohamed A El-Mahdy
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
15
|
Saxena P, Selvaraj K, Khare SK, Chaudhary N. Superoxide dismutase as multipotent therapeutic antioxidant enzyme: Role in human diseases. Biotechnol Lett 2021; 44:1-22. [PMID: 34734354 DOI: 10.1007/s10529-021-03200-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) is consistently recognized as a threat to living organisms, especially for human beings. For proper working of cellular signaling, functioning, and survival, a strict and balanced level of ROS is necessary. Superoxide dismutase (SOD); a group of metalloenzymes provides an important antioxidant defense mechanism, required to preserve the level of ROS in the body. The enzyme reveals the therapeutic potential against various diseases due to a deficiency in the ROS level. The review illustrates the numerous clinical aspects of SOD in various physiological and pathological conditions such as cancer, diabetes, arthritis, cardiovascular, neurodegenerative diseases, etc., with the mechanism of action. Despite limitations, the SOD enzyme has proved as a powerful tool against diseases, and various forms of conjugates and mimetics have been developed and reported to make it more efficient. Extensive studies need in this direction for use of natural SOD-based therapeutics for the prevention and cure of diseases.
Collapse
Affiliation(s)
- Priyanka Saxena
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Kanagarethinam Selvaraj
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Sunil Kumar Khare
- R&D & Institute Chair Professor of Biochemistry, Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Nidhee Chaudhary
- Centre for Biotechnology and Biochemical Engineering, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
16
|
Liu Z, Dong L, Zheng Z, Liu S, Gong S, Meng L, Xin Y, Jiang X. Mechanism, Prevention, and Treatment of Radiation-Induced Salivary Gland Injury Related to Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10111666. [PMID: 34829539 PMCID: PMC8614677 DOI: 10.3390/antiox10111666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Radiation therapy is a common treatment for head and neck cancers. However, because of the presence of nerve structures (brain stem, spinal cord, and brachial plexus), salivary glands (SGs), mucous membranes, and swallowing muscles in the head and neck regions, radiotherapy inevitably causes damage to these normal tissues. Among them, SG injury is a serious adverse event, and its clinical manifestations include changes in taste, difficulty chewing and swallowing, oral infections, and dental caries. These clinical symptoms seriously reduce a patient’s quality of life. Therefore, it is important to clarify the mechanism of SG injury caused by radiotherapy. Although the mechanism of radiation-induced SG injury has not yet been determined, recent studies have shown that the mechanisms of calcium signaling, microvascular injury, cellular senescence, and apoptosis are closely related to oxidative stress. In this article, we review the mechanism by which radiotherapy causes oxidative stress and damages the SGs. In addition, we discuss effective methods to prevent and treat radiation-induced SG damage.
Collapse
Affiliation(s)
- Zijing Liu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Shiyu Liu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Shouliang Gong
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China;
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (Z.L.); (L.D.); (Z.Z.); (S.L.); (S.G.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: ; Tel.: +86-158-0430-2750
| |
Collapse
|
17
|
Hall WA, Kamgar M, Erickson BA, Ponce SB, Tsai S, Nevalainen MT, Christians KK, George B, Dua KS, Khan AH, Evans DB, Azmi AS. Updates and new directions in the use of radiation therapy for the treatment of pancreatic adenocarcinoma: dose, sensitization, and novel technology. Cancer Metastasis Rev 2021; 40:879-889. [PMID: 34611794 PMCID: PMC8767496 DOI: 10.1007/s10555-021-09993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Panc reatic ductal adenocarcinoma (PDAC) is a devastating malignancy. There have been few advances that have substantially improved overall survival in the past several years. On its current trajectory, the deaths from PDAC are expected to cross that from all gastrointestinal cancers combined by 2030. Radiation therapy is a technically very complex modality that bridges multiple different treatment strategies. It represents a hybrid among advanced diagnostic imaging, local (often ablative) intervention, and heterogeneous biological mechanisms contributing to normal and oncologic cell kill. In this article, we bring an overview of the several promising strategies that are currently being investigated to improve outcomes using radiation therapy for patients with PDAC.
Collapse
Affiliation(s)
- William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA.
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA.
| | - Mandana Kamgar
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- Division of Medical Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Beth A Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Sara Beltrán Ponce
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Susan Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Marja T Nevalainen
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kathleen K Christians
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Ben George
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- Division of Medical Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kulwinder S Dua
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Abdul H Khan
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Douglas B Evans
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- LaBahn Pancreatic Cancer Program at the Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
18
|
Wei T, Cheng Y. The cardiac toxicity of radiotherapy - a review of characteristics, mechanisms, diagnosis, and prevention. Int J Radiat Biol 2021; 97:1333-1340. [PMID: 34264176 DOI: 10.1080/09553002.2021.1956007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Radiation-induced heart disease (RIHD) is one of the most serious complications of radiotherapy. The purpose of this paper is to review recent researches about cardiac toxicity of radiotherapy in clinical characteristics, mechanisms, diagnosis, and prevention. CONCLUSIONS Powered by the rapid development of medicine, the overall survival (OS) of cancer has been improved significantly. Surgery, chemotherapy, and radiotherapy (RT) are three critical ways in the comprehensive treatments of cancer. There is a consensus that early diagnosis and interventions for the prevention of RIHD are crucial. This review concludes recent clinical and experimental studies on RIHD. RIHD, a heterogeneous and serious disease, is a spectrum of heart disease including myocardial disease, pericarditis, coronary artery disease, valvular heart disease, and conduction system dysfunction. Mean heart dose, biomarkers, and detecting techniques are important components in detecting heart injury. Improvements in radiotherapy regimens remain the primary goal of prevention. Further investigation is needed beyond the observation period of most of these studies.
Collapse
Affiliation(s)
- Tianhui Wei
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
19
|
Yan LJ. NADH/NAD + Redox Imbalance and Diabetic Kidney Disease. Biomolecules 2021; 11:biom11050730. [PMID: 34068842 PMCID: PMC8153586 DOI: 10.3390/biom11050730] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a common and severe complication of diabetes mellitus. If left untreated, DKD can advance to end stage renal disease that requires either dialysis or kidney replacement. While numerous mechanisms underlie the pathogenesis of DKD, oxidative stress driven by NADH/NAD+ redox imbalance and mitochondrial dysfunction have been thought to be the major pathophysiological mechanism of DKD. In this review, the pathways that increase NADH generation and those that decrease NAD+ levels are overviewed. This is followed by discussion of the consequences of NADH/NAD+ redox imbalance including disruption of mitochondrial homeostasis and function. Approaches that can be applied to counteract DKD are then discussed, which include mitochondria-targeted antioxidants and mimetics of superoxide dismutase, caloric restriction, plant/herbal extracts or their isolated compounds. Finally, the review ends by pointing out that future studies are needed to dissect the role of each pathway involved in NADH-NAD+ metabolism so that novel strategies to restore NADH/NAD+ redox balance in the diabetic kidney could be designed to combat DKD.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
20
|
Sishc BJ, Ding L, Nam TK, Heer CD, Rodman SN, Schoenfeld JD, Fath MA, Saha D, Pulliam CF, Langen B, Beardsley RA, Riley DP, Keene JL, Spitz DR, Story MD. Avasopasem manganese synergizes with hypofractionated radiation to ablate tumors through the generation of hydrogen peroxide. Sci Transl Med 2021; 13:eabb3768. [PMID: 33980575 PMCID: PMC8314936 DOI: 10.1126/scitranslmed.abb3768] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Avasopasem manganese (AVA or GC4419), a selective superoxide dismutase mimetic, is in a phase 3 clinical trial (NCT03689712) as a mitigator of radiation-induced mucositis in head and neck cancer based on its superoxide scavenging activity. We tested whether AVA synergized with radiation via the generation of hydrogen peroxide, the product of superoxide dismutation, to target tumor cells in preclinical xenograft models of non-small cell lung cancer (NSCLC), head and neck squamous cell carcinoma, and pancreatic ductal adenocarcinoma. Treatment synergy with AVA and high dose per fraction radiation occurred when mice were given AVA once before tumor irradiation and further increased when AVA was given before and for 4 days after radiation, supporting a role for oxidative metabolism. This synergy was abrogated by conditional overexpression of catalase in the tumors. In addition, in vitro NSCLC and mammary adenocarcinoma models showed that AVA increased intracellular hydrogen peroxide concentrations and buthionine sulfoximine- and auranofin-induced inhibition of glutathione- and thioredoxin-dependent hydrogen peroxide metabolism selectively enhanced AVA-induced killing of cancer cells compared to normal cells. Gene expression in irradiated tumors treated with AVA suggested that increased inflammatory, TNFα, and apoptosis signaling also contributed to treatment synergy. These results support the hypothesis that AVA, although reducing radiotherapy damage to normal tissues, acts synergistically only with high dose per fraction radiation regimens analogous to stereotactic ablative body radiotherapy against tumors by a hydrogen peroxide-dependent mechanism. This tumoricidal synergy is now being tested in a phase I-II clinical trial in humans (NCT03340974).
Collapse
Affiliation(s)
- Brock J Sishc
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lianghao Ding
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Taek-Keun Nam
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Collin D Heer
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel N Rodman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Joshua D Schoenfeld
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Melissa A Fath
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Debabrata Saha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Casey F Pulliam
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Britta Langen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert A Beardsley
- Galera Therapeutics Inc., 2 West Liberty Blvd., Suite 110, Malvern, PA 19355, USA
| | - Dennis P Riley
- Galera Therapeutics Inc., 2 West Liberty Blvd., Suite 110, Malvern, PA 19355, USA
| | - Jeffery L Keene
- Galera Therapeutics Inc., 2 West Liberty Blvd., Suite 110, Malvern, PA 19355, USA
| | - Douglas R Spitz
- Galera Therapeutics Inc., 2 West Liberty Blvd., Suite 110, Malvern, PA 19355, USA.
| | - Michael D Story
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
21
|
Sonis ST. Superoxide Dismutase as an Intervention for Radiation Therapy-Associated Toxicities: Review and Profile of Avasopasem Manganese as a Treatment Option for Radiation-Induced Mucositis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1021-1029. [PMID: 33716500 PMCID: PMC7944116 DOI: 10.2147/dddt.s267400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/19/2021] [Indexed: 11/23/2022]
Abstract
Toxicities associated with radiation therapy are common, symptomatically devastating, and costly. The best chance to effectively mitigate radiation-associated normal tissue side effects are interventions aimed at disrupting the biological cascade, which is the basis for toxicity development, while simultaneously not reducing the beneficial impact of radiation on tumor. Oxidative stress is a key initiator of radiation-associated normal tissue injury as physiologic antioxidant mechanisms are overwhelmed by the accumulation of effects produced by fractionated treatment regimens. And fundamental to this is the generation of superoxide, which is normally removed by superoxide dismutases (SODs). Attempts to supplement the activity of endogenous SOD to prevent radiation-induced normal tissue injury have included the administration of bovine-derived SOD and increasing SOD production using gene transfer, neither of which has resulted in a clinically acceptable therapy. A third approach has been to develop synthetic small molecule dismutase mimetics. This approach has led to the creation and development of avasopasem manganese, a unique and specific dismutase mimetic that, in clinical trials, has shown promising potential to reduce the incidence, severity and duration of severe oral mucositis amongst patients being treated with concomitant chemoradiation for cancers of the head and neck. Further, avasopasem and related analogues have demonstrated mechanism-related antitumor synergy in combination with high dose per fraction radiotherapy, an observation that is also being tested in clinical trials. An ongoing Phase 3 trial seeks to confirm avasopasem manganese as an effective intervention for severe oral mucositis associated with chemoradiation in head and neck cancer patients.
Collapse
Affiliation(s)
- Stephen T Sonis
- Primary Endpoint Solutions, Waltham, MA, 02451, USA.,Brigham and Women's Hospital and the Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| |
Collapse
|