1
|
Sun X, Li W, Chen G, Hu G, Jia J. Faecalibacterium duncaniae Mitigates Intestinal Barrier Damage in Mice Induced by High-Altitude Exposure by Increasing Levels of 2-Ketoglutaric Acid. Nutrients 2025; 17:1380. [PMID: 40284246 PMCID: PMC12030221 DOI: 10.3390/nu17081380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/06/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Exposure to high altitudes often results in gastrointestinal disorders. This study aimed to identify probiotic strains that can alleviate such disorders. Methods: We conducted a microbiome analysis to investigate the differences in gut microbiota among volunteers during the acute response and acclimatization phases at high altitudes. Subsequently, we established a mouse model of intestinal barrier damage induced by high-altitude exposure to further investigate the roles of probiotic strains and 2-ketoglutaric acid. Additionally, we performed untargeted metabolomics and transcriptomic analyses to elucidate the underlying mechanisms. Results: The microbiome analysis revealed a significant increase in the abundance of Faecalibacterium prausnitzii during the acclimatization phase. Faecalibacterium duncaniae (F. duncaniae) significantly mitigated damage to the intestinal barrier and the reduction of 2-ketoglutaric acid levels in the cecal contents induced by high-altitude exposure in mice. Immunohistochemistry and TUNEL staining demonstrated that high-altitude exposure significantly decreased the expression of ZO-1 and occludin while increasing apoptosis in ileal tissues. In contrast, treatment with F. duncaniae alleviated the loss of ZO-1 and occludin, as well as the apoptosis induced by high-altitude exposure. Furthermore, 2-ketoglutaric acid also mitigated this damage, reducing the loss of occludin and apoptosis in mice. Transcriptomic analysis indicated that high-altitude exposure significantly affects the calcium signaling pathway; conversely, the administration of F. duncaniae significantly influenced the PPAR signaling pathway, mineral absorption, and the regulation of lipolysis in adipocytes. Additionally, the expression of the FBJ osteosarcoma oncogene (Fos) was markedly reduced following the administration of F. duncaniae. Conclusions:F. duncaniae mitigates hypoxia-induced intestinal barrier damage by increasing levels of 2-ketoglutaric acid and shows promise as a probiotic, ultimately aiding travelers in adapting to high-altitude environments.
Collapse
Affiliation(s)
| | | | | | - Gaosheng Hu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.S.); (W.L.); (G.C.)
| | - Jingming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.S.); (W.L.); (G.C.)
| |
Collapse
|
2
|
Chen Y, Jan J, Yang C, Yen T, Linh TTD, Annavajjula S, Satapathy MK, Tsao S, Hsieh C. Cognitive Sequelae of COVID-19: Mechanistic Insights and Therapeutic Approaches. CNS Neurosci Ther 2025; 31:e70348. [PMID: 40152069 PMCID: PMC11950837 DOI: 10.1111/cns.70348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic has left an indelible mark on the world, with mounting evidence suggesting that it not only posed acute challenges to global healthcare systems but has also unveiled a complex array of long-term consequences, particularly cognitive impairment (CI). As the persistence of post-COVID-19 neurological syndrome could evolve into the next public health crisis, it is imperative to gain a better understanding of the intricate pathophysiology of CI in COVID-19 patients and viable treatment strategies. METHODS This comprehensive review explores the pathophysiology and management of cognitive impairment across the phases of COVID-19, from acute infection to Long-COVID, by synthesizing findings from clinical, preclinical, and mechanistic studies to identify key contributors to CI, as well as current therapeutic approaches. RESULTS Key mechanisms contributing to CI include persistent neuroinflammation, cerebrovascular complications, direct neuronal injury, activation of the kynurenine pathway, and psychological distress. Both pharmacological interventions, such as anti-inflammatory therapies and agents targeting neuroinflammatory pathways, and non-pharmacological strategies, including cognitive rehabilitation, show promise in addressing these challenges. Although much of the current evidence is derived from preclinical and animal studies, these findings provide foundational insights into potential treatment approaches. CONCLUSION By synthesizing current knowledge, this review highlights the importance of addressing COVID-19-related cognitive impairment and offers actionable insights for mitigation and recovery as the global community continues to grapple with the pandemic's long-term impact.
Collapse
Affiliation(s)
- Yu‐Hao Chen
- Section of Neurosurgery, Department of SurgeryDitmanson Medical Foundation, Chia‐Yi Christian HospitalChia‐Yi CityTaiwan
- Chung‐Jen Junior College of Nursing, Health Sciences and ManagementChia‐Yi CountryTaiwan
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Jing‐Shiun Jan
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Chih‐Hao Yang
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Ting‐Lin Yen
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
- Department of Medical ResearchCathay General HospitalTaipeiTaiwan
| | - Tran Thanh Duy Linh
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
- Family Medicine Training Center, University of Medicine and Pharmacy at Ho Chi Minh CityHo Chi Minh CityVietnam
| | - Saileela Annavajjula
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Mantosh Kumar Satapathy
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| | - Shin‐Yi Tsao
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
- Division of Endocrinology and Metabolism, Department of Internal MedicineTaipeiTaiwan
| | - Cheng‐Ying Hsieh
- Department of PharmacologySchool of Medicine, College of Medicine, Taipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
3
|
Rathor R, Suryakumar G. Myokines: A central point in managing redox homeostasis and quality of life. Biofactors 2024; 50:885-909. [PMID: 38572958 DOI: 10.1002/biof.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
Redox homeostasis is a crucial phenomenon that is obligatory for maintaining the healthy status of cells. However, the loss of redox homeostasis may lead to numerous diseases that ultimately result in a compromised quality of life. Skeletal muscle is an endocrine organ that secretes hundreds of myokines. Myokines are peptides and cytokines produced and released by muscle fibers. Skeletal muscle secreted myokines act as a robust modulator for regulating cellular metabolism and redox homeostasis which play a prime role in managing and improving metabolic function in multiple organs. Further, the secretory myokines maintain redox homeostasis not only in muscles but also in other organs of the body via stabilizing oxidants and antioxidant levels. Myokines are also engaged in maintaining mitochondrial dynamics as mitochondria is a central point for the generation of reactive oxygen species (ROS). Ergo, myokines also act as a central player in communicating signals to other organs, including the pancreas, gut, liver, bone, adipose tissue, brain, and skin via their autocrine, paracrine, or endocrine effects. The present review provides a comprehensive overview of skeletal muscle-secreted myokines in managing redox homeostasis and quality of life. Additionally, probable strategies will be discussed that provide a solution for a better quality of life.
Collapse
Affiliation(s)
- Richa Rathor
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| | - Geetha Suryakumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| |
Collapse
|
4
|
Braun JL, Fajardo VA. Spaceflight increases sarcoplasmic reticulum Ca 2+ leak and this cannot be counteracted with BuOE treatment. NPJ Microgravity 2024; 10:78. [PMID: 39030182 PMCID: PMC11271499 DOI: 10.1038/s41526-024-00419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Spending time in a microgravity environment is known to cause significant skeletal muscle atrophy and weakness via muscle unloading, which can be partly attributed to Ca2+ dysregulation. The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pump is responsible for bringing Ca2+ from the cytosol into its storage site, the sarcoplasmic reticulum (SR), at the expense of ATP. We have recently demonstrated that, in the soleus of space-flown mice, the Ca2+ uptake ability of the SERCA pump is severely impaired and this may be attributed to increases in reactive oxygen/nitrogen species (RONS), to which SERCA is highly susceptible. The purpose of this study was therefore to investigate whether treatment with the antioxidant, Manganese(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP5+ (BuOE), could attenuate muscle atrophy and SERCA dysfunction. We received soleus muscles from the rodent research 18 mission which had male mice housed on the international space station for 35 days and treated with either saline or BuOE. Spaceflight significantly reduced the soleus:body mass ratio and significantly increased SERCA's ionophore ratio, a measure of SR Ca2+ leak, and 4-HNE content (marker of RONS), none of which could be rescued by BuOE treatment. In conclusion, we find that spaceflight induces significant soleus muscle atrophy and SR Ca2+ leak that cannot be counteracted with BuOE treatment. Future work should investigate alternative therapeutics that are specifically aimed at increasing SERCA activation or reducing Ca2+ leak.
Collapse
Affiliation(s)
- Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
5
|
Srivastava S, Mondal S, Rathor R, Srivastava S, Suryakumar G. Increased Expression of MiRNA-1 Contributes to Hypobaric Hypoxia-Induced Skeletal Muscle Loss. Adv Biol (Weinh) 2024; 8:e2300573. [PMID: 38149527 DOI: 10.1002/adbi.202300573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/08/2023] [Indexed: 12/28/2023]
Abstract
The present study aims to analyze the role of microRNA-1 in the regulation of skeletal muscle loss under hypobaric hypoxia (HH). Male Sprague Dawley rats (n = 10) weighing 230-250 g are divided into two groups, control and HH exposure for 7 days at 25 000 ft. After the hypoxia exposure, the animals are sacrificed and hindlimb skeletal muscles are excised for further analysis. Studies found the potential role of miR-1 (myomiR) as a biomarker under different atrophic conditions. Prolonged exposure to HH leads to enhanced expression of miR-1 in skeletal muscle as compared to unexposed controls. The Bioinformatics approach is used to identify the validated targets and the biological processes of miR-1. The target prediction tools identify PAX3 and HSP70 as major targets for miR-1. Exposure to HH significantly reduces PAX3 and HSP70 expression during 7 days of HH exposure, which further enhances the activity of FOXO3, MSTN, and ATROGIN known for the progression of skeletal muscle atrophy in relation to control rats. This study indicates the increased expressions of miR-1 and reduced expression of PAX3 and HSP70 lead to impaired myogenesis in skeletal muscle under HH. Further, enhanced expression of muscle degradation genes such as FOXO3, MSTN, and ATROGIN under HH exposure causes skeletal muscle protein loss.
Collapse
Affiliation(s)
- Sukanya Srivastava
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Samrita Mondal
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Richa Rathor
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Swati Srivastava
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Geetha Suryakumar
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
6
|
Rathor R, Srivastava S, Suryakumar G. A Comparative Biochemical Study Between L-Carnosine and β-Alanine in Amelioration of Hypobaric Hypoxia-Induced Skeletal Muscle Protein Loss. High Alt Med Biol 2023; 24:302-311. [PMID: 37643283 DOI: 10.1089/ham.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Rathor, Richa, Sukanya Srivastava, and Geetha Suryakumar. A comparative biochemical study between L-carnosine and β-alanine in amelioration of hypobaric hypoxia-induced skeletal muscle protein loss. High Alt Med Biol. 24:302-311, 2023. Background: Carnosine (CAR; β-alanyl-L-histidine), a biologically active dipeptide is known for its unique pH-buffering capacity, metal chelating activity, and antioxidant and antiglycation property. β-Alanine (ALA) is a nonessential amino acid and used to enhance performance and cognitive functions. Hypobaric hypoxia (HH)-induced muscle protein loss is regulated by multifaceted signaling pathways. The present study investigated the beneficial effects of CAR and ALA against HH-associated muscle loss. Methodology: Simulated HH exposure was performed in an animal decompression chamber. Gastric oral administration of CAR (50 mg·kg-1) and ALA (450 mg·kg-1) were given daily for 3 days and at the end of the treatment, hindlimb skeletal muscle tissue was excised for western blot and biochemical assays. Results: Cosupplementation of CAR and ALA alone was able to ameliorate the hypoxia-induced inflammation, oxidative stress (FOXO), ER stress (GRP-78), and atrophic signaling (MuRF-1) in the skeletal muscles. Creatinine phospho kinase activity and apoptosis were also decreased in CAR- and ALA-supplemented rats. However, CAR showed enhanced protection in HH-induced muscle loss as CAR supplementation was able to enhance protein concentration, body weight, and decreased the protein oxidation and ALA administration was not able to restore the same. Conclusions: Hence, the present comprehensive study supports the fact that CAR (50 mg·kg-1) is more beneficial as compared with ALA (450 mg·kg-1) in ameliorating the hypoxia-induced skeletal muscle loss.
Collapse
Affiliation(s)
- Richa Rathor
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences (DIPAS), New Delhi, India
| | - Sukanya Srivastava
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences (DIPAS), New Delhi, India
| | - Geetha Suryakumar
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences (DIPAS), New Delhi, India
| |
Collapse
|
7
|
Kushwaha AD, Kalra N, Varshney R, Saraswat D. Mitochondrial Ca 2+ overload due to altered proteostasis amplifies apoptosis in C2C12 myoblasts under hypoxia: Protective role of nanocurcumin formulation. IUBMB Life 2023; 75:673-687. [PMID: 37002613 DOI: 10.1002/iub.2720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/04/2023] [Indexed: 07/21/2023]
Abstract
Severe hypoxia triggers apoptosis leads to myofibers loss and is attributable to impaired intracellular calcium (iCa2+ ) homeostasis, resulting in reduced muscle activity. Hypoxia increases intracellular Ca2+ by activating the release of Ca2+ from iCa2+ stores, however, the effect of increased [iCa2+ ] on the mitochondria of muscle cells at high-altitude hypoxia is largely unexplored. This study examined mitochondrial Ca2+ overload due to altered expression of mitochondrial calcium uptake 1 (MICU1), that is, a gatekeeper of the mitochondrial Ca2+ uniporter, impaired mitochondrial membrane potential (ΔΨm). p53 stabilization and its translocation to the mitochondria were observed following disrupted mitochondrial membrane integrity in myoblasts under hypoxia. Furthermore, the downstream effects of p53 led to the upregulation of proapoptotic proteins (Bax, Caspase-3, and cytochrome C) in myoblasts under hypoxia. Nanocurcumin-pyrroloquinoline quinone formulation (NCF; Indian patent no. 302877), developed to address hypoxia-induced consequences, was found to be beneficial in maintaining mitochondrial Ca2+ homeostasis and limiting p53 translocation into mitochondria under hypoxia in muscle myoblasts. NCF treatment also modulates heat shock proteins and apoptosis-regulating protein expression in myoblasts. Conclusively, we proposed that mitochondrial Ca2+ overload due to altered MICU1 expression intensifies apoptosis and mitochondrial dysfunctionality. The study also reported that NCF could improve mitochondrial [Ca2+ ] homeostasis and antiapoptotic ability in C2C12 myoblasts under hypoxia.
Collapse
Affiliation(s)
- Asha D Kushwaha
- Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization (DRDO), Delhi, India
| | - Namita Kalra
- Institute of Nuclear Medicine and Allied Sciences, Defense Research and Development Organization (DRDO), Delhi, India
| | - Rajeev Varshney
- Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization (DRDO), Delhi, India
| | - Deepika Saraswat
- Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization (DRDO), Delhi, India
| |
Collapse
|
8
|
Kushwaha AD, Varshney R, Saraswat D. Effect of hypobaric hypoxia on the fiber type transition of skeletal muscle: a synergistic therapy of exercise preconditioning with a nanocurcumin formulation. J Physiol Biochem 2023:10.1007/s13105-023-00965-1. [PMID: 37147493 DOI: 10.1007/s13105-023-00965-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Hypobaric hypoxia (HH) leads to various adverse effects on skeletal muscles, including atrophy and reduced oxidative work capacity. However, the effects of HH on muscle fatigue resistance and myofiber remodeling are largely unexplored. Therefore, the present study aimed to explore the impact of HH on slow-oxidative fibers and to evaluate the ameliorative potential of exercise preconditioning and nanocurcumin formulation on muscle anti-fatigue ability. C2C12 cells (murine myoblasts) were used to assess the effect of hypoxia (0.5%, 24 h) with and without the nanocurcumin formulation (NCF) on myofiber phenotypic conversion. To further validate this hypothesis, male Sprague Dawley rats were exposed to a simulated HH (7620 m) for 7 days, along with NCF administration and/or exercise training. Both in vitro and in vivo studies revealed a significant reduction in slow-oxidative fibers (p < 0.01, 61% vs. normoxia control) under hypoxia. There was also a marked decrease in exhaustion time (p < 0.01, 65% vs. normoxia) in hypoxia control rats, indicating a reduced work capacity. Exercise preconditioning along with NCF supplementation significantly increased the slow-oxidative fiber proportion and exhaustion time while maintaining mitochondrial homeostasis. These findings suggest that HH leads to an increased transition of slow-oxidative fibers to fast glycolytic fibers and increased muscular fatigue. Administration of NCF in combination with exercise preconditioning restored this myofiber remodeling and improved muscle anti-fatigue ability.
Collapse
Affiliation(s)
- Asha D Kushwaha
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India, 110054
| | - Rajeev Varshney
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India, 110054
| | - Deepika Saraswat
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India, 110054.
| |
Collapse
|
9
|
Kushwaha AD, Saraswat D. A Nanocurcumin and Pyrroloquinoline Quinone Formulation Prevents Hypobaric Hypoxia-Induced Skeletal Muscle Atrophy by Modulating NF-κB Signaling Pathway. High Alt Med Biol 2022; 23:249-263. [PMID: 35384739 DOI: 10.1089/ham.2021.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Kushwaha, Asha D., and Deepika Saraswat. A nanocurcumin and pyrroloquinoline quinone formulation prevents hypobaric hypoxia-induced skeletal muscle atrophy by modulating NF-κB signaling pathway. High Alt Med Biol 00:000-000, 2022. Background: Hypobaric hypoxia (HH)-induced deleterious skeletal muscle damage depends on exposure time and availability of oxygen at cellular level, which eventually can limit human work performance at high altitude (HA). Despite the advancements made in pharmacological (performance enhancer, antioxidants) and nonpharmacological therapeutics (acclimatization strategies), only partial success has been achieved in improving physical performance at HA. A distinctive combination of nanocurcumin (NC) and pyrroloquinoline quinone (PQQ) has been formulated (named NCF [nanocurcumin formulation], Indian patent No. 302877) in our laboratory, and has proven very promising in improving cardiomyocyte adaptation to chronic HH. We hypothesized that NCF might improve skeletal muscle adaptation and could be a performance enhancer at HA. Material and Methods: Adult Sprague-Dawley rats (220 ± 10 g) were divided into five groups (n = 6/group): normoxia vehicle control, hypoxia vehicle control, hypoxia NCF, hypoxia NC, and hypoxia PQQ. All the animals (except those in normoxia) were exposed to simulated HH in a chamber at temperature 22°C ± 2°C, humidity 50% ± 5%, altitude 25,000 ft for 1, 3, or 7 days. After completion of the stipulated exposure time, gastrocnemius and soleus muscles were excised from animals for further analysis. Results: Greater lengths of hypoxic exposure caused progressively increased muscle ring finger-1 (MuRF-1; p < 0.01) expression and calpain activation (0.56 ± 0.05 vs. 0.13 ± 0.02 and 0.44 ± 0.03 vs. 0.12 ± 0.021) by day 7, respectively in the gastrocnemius and soleus muscles. Myosin heavy chain type I (slow oxidative) fibers significantly (p > 0.01) decreased in gastrocnemius (>50%) and soleus (>46%) muscles by the seventh day of exposure. NCF supplementation showed (p ≤ 0.05) tremendous improvement in skeletal muscle acclimatization through effective alleviation of oxidative damage, and changes in calpain activity and atrophic markers at HA compared with hypoxia control or treatment alone with NC/PQQ. Conclusion: Thus, NCF-mediated anti-oxidative, anti-inflammatory effects lead to decreased proteolysis resulting in mitigated skeletal muscle atrophy under HH.
Collapse
Affiliation(s)
- Asha D Kushwaha
- Experimental Biology Division, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India
| | - Deepika Saraswat
- Experimental Biology Division, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India
| |
Collapse
|
10
|
Agrawal A, Rathor R, Kumar R, Singh SN, Kumar B, Suryakumar G. Endogenous dipeptide-carnosine supplementation ameliorates hypobaric hypoxia-induced skeletal muscle loss via attenuating endoplasmic reticulum stress response and maintaining proteostasis. IUBMB Life 2022; 74:101-116. [PMID: 34455667 DOI: 10.1002/iub.2539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022]
Abstract
High altitude is an environmental stress that is accompanied with numerous adverse biological responses, including skeletal muscle weakness and muscle protein loss. Skeletal muscle wasting is an important clinical problem, progressing to critical illness, associated with increased morbidity and mortality. The present study explores the protective efficacy of endogenous dipeptide, carnosine (CAR), supplementation in ameliorating skeletal muscle protein loss under hypobaric hypoxia (HH). Male Sprague-Dawley rats (n = 5) were randomly divided into control group, HH-exposed group (3 days HH exposure equivalent to 7,620 m), and HH-exposed rats supplemented with carnosine (3 days; 150 mg/kg b.w, orally) (HH + CAR). HH-exposed rats supplemented with CAR ameliorated HH-induced oxidative protein damage, lipid peroxidation, and maintained pro-inflammatory cytokines levels. HH-associated muscle protein degradative pathways, including calpain, ubiquitination, endoplasmic reticulum stress, autophagy, and apoptosis were also regulated in carnosine-supplemented rats. Further, the muscle damage marker, the levels of serum creatine phosphokinase were also reduced in HH + CAR co-supplemented rats which proved the protective efficacy of CAR against hypobaric hypoxia-induced muscle protein loss. Altogether, CAR supplementation ameliorated HH-induced skeletal muscle protein loss via performing multifaceted ways, mainly by maintaining redox homeostasis and proteostasis in skeletal muscle.
Collapse
Affiliation(s)
- Akanksha Agrawal
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi, India
| | - Richa Rathor
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi, India
| | - Ravi Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi, India
| | - Som Nath Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi, India
| | - Geetha Suryakumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi, India
| |
Collapse
|
11
|
Kobayashi T, Kurebayashi N, Murayama T. The Ryanodine Receptor as a Sensor for Intracellular Environments in Muscles. Int J Mol Sci 2021; 22:ijms221910795. [PMID: 34639137 PMCID: PMC8509754 DOI: 10.3390/ijms221910795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
The ryanodine receptor (RyR) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal and cardiac muscles and plays a key role in excitation-contraction coupling. The activity of the RyR is regulated by the changes in the level of many intracellular factors, such as divalent cations (Ca2+ and Mg2+), nucleotides, associated proteins, and reactive oxygen species. Since these intracellular factors change depending on the condition of the muscle, e.g., exercise, fatigue, or disease states, the RyR channel activity will be altered accordingly. In this review, we describe how the RyR channel is regulated under various conditions and discuss the possibility that the RyR acts as a sensor for changes in the intracellular environments in muscles.
Collapse
|
12
|
Verma S, Keshri GK, Karmakar S, Mani KV, Chauhan S, Yadav A, Sharma M, Gupta A. Effects of Microwave 10 GHz Radiation Exposure in the Skin of Rats: An Insight on Molecular Responses. Radiat Res 2021; 196:404-416. [PMID: 34407201 DOI: 10.1667/rade-20-00155.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/06/2021] [Indexed: 11/03/2022]
Abstract
Microwave (MW) radiation poses the risk of potential hazards on human health. The present study investigated the effects of MW 10 GHz exposure for 3 h/day for 30 days at power densities of 5.23 ± 0.25 and 10.01 ± 0.15 mW/cm2 in the skin of rats. The animals exposed to 10 mW/cm2 (corresponded to twice the ICNIRP-2020 occupational reference level of MW exposure for humans) exhibited significant biophysical, biochemical, molecular and histological alterations compared to sham-irradiated animals. Infrared thermography revealed an increase in average skin surface temperature by 1.8°C and standard deviation of 0.3°C after 30 days of 10 mW/cm2 MW exposure compared to the sham-irradiated animals. MW exposure also led to oxidative stress (ROS, 4-HNE, LPO, AOPP), inflammatory responses (NFkB, iNOS/NOS2, COX-2) and metabolic alterations [hexokinase (HK), lactate dehydrogenase (LDH), citrate synthase (CS) and glucose-6-phospahte dehydrogenase (G6PD)] in 10 mW/cm2 irradiated rat skin. A significant alteration in expression of markers associated with cell survival (Akt/PKB) and HSP27/p38MAPK-related stress-response signaling cascade was observed in 10 mW/cm2 irradiated rat skin compared to sham-irradiated rat skin. However, MW-irradiated groups did not show apoptosis, evident by unchanged caspase-3 levels. Histopathological analysis revealed a mild cytoarchitectural alteration in epidermal layer and slight aggregation of leukocytes in 10 mW/cm2 irradiated rat skin. Altogether, the present findings demonstrated that 10 GHz exposure in continuous-wave mode at 10 mW/cm2 (3 h/day, 30 days) led to significant alterations in molecular markers associated with adaptive stress-response in rat skin. Furthermore, systematic scientific studies on more prevalent pulsed-mode of MW-radiation exposure for prolonged duration are warranted.
Collapse
Affiliation(s)
- Saurabh Verma
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Gaurav K Keshri
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Santanu Karmakar
- Microwave Tube Research and Development Centre (MTRDC), DRDO, Bangalore, India
| | - Kumar Vyonkesh Mani
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Satish Chauhan
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Anju Yadav
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Manish Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Asheesh Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| |
Collapse
|
13
|
Rathor R, Suryakumar G, Singh SN. Diet and redox state in maintaining skeletal muscle health and performance at high altitude. Free Radic Biol Med 2021; 174:305-320. [PMID: 34352371 DOI: 10.1016/j.freeradbiomed.2021.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
High altitude exposure leads to compromised physical performance with considerable weight loss. The major stressor at high altitude is hypobaric hypoxia which leads to disturbance in redox homeostasis. Oxidative stress is a well-known trigger for many high altitude illnesses and regulates several key signaling pathways under stressful conditions. Altered redox homeostasis is considered the prime culprit of high altitude linked skeletal muscle atrophy. Hypobaric hypoxia disturbs redox homeostasis through increased RONS production and compromised antioxidant system. Increased RONS disturbs the cellular homeostasis via multiple ways such as inflammation generation, altered protein anabolic pathways, redox remodeling of RyR1 that contributed to dysregulated calcium homeostasis, enhanced protein degradation pathways via activation calcium-regulated protein, calpain, and apoptosis. Ultimately, all the cellular signaling pathways aggregately result in skeletal muscle atrophy. Dietary supplementation of phytochemicals could become a safe and effective intervention to ameliorate skeletal muscle atrophy and enhance the physical performance of the personnel who are staying at high altitude regions. The present evidence-based review explores few dietary supplementations which regulate several signaling mechanisms and ameliorate hypobaric hypoxia induced muscle atrophy and enhances physical performance. However, a clinical research trial is required to establish proof-of-concept.
Collapse
Affiliation(s)
- Richa Rathor
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India.
| | - Geetha Suryakumar
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India
| | - Som Nath Singh
- Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, New Delhi, 110054, India
| |
Collapse
|
14
|
Redox Signaling and Sarcopenia: Searching for the Primary Suspect. Int J Mol Sci 2021; 22:ijms22169045. [PMID: 34445751 PMCID: PMC8396474 DOI: 10.3390/ijms22169045] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia, the age-related decline in muscle mass and function, derives from multiple etiological mechanisms. Accumulative research suggests that reactive oxygen species (ROS) generation plays a critical role in the development of this pathophysiological disorder. In this communication, we review the various signaling pathways that control muscle metabolic and functional integrity such as protein turnover, cell death and regeneration, inflammation, organismic damage, and metabolic functions. Although no single pathway can be identified as the most crucial factor that causes sarcopenia, age-associated dysregulation of redox signaling appears to underlie many deteriorations at physiological, subcellular, and molecular levels. Furthermore, discord of mitochondrial homeostasis with aging affects most observed problems and requires our attention. The search for the primary suspect of the fundamental mechanism for sarcopenia will likely take more intense research for the secret of this health hazard to the elderly to be unlocked.
Collapse
|
15
|
Michelucci A, Liang C, Protasi F, Dirksen RT. Altered Ca 2+ Handling and Oxidative Stress Underlie Mitochondrial Damage and Skeletal Muscle Dysfunction in Aging and Disease. Metabolites 2021; 11:metabo11070424. [PMID: 34203260 PMCID: PMC8304741 DOI: 10.3390/metabo11070424] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle contraction relies on both high-fidelity calcium (Ca2+) signals and robust capacity for adenosine triphosphate (ATP) generation. Ca2+ release units (CRUs) are highly organized junctions between the terminal cisternae of the sarcoplasmic reticulum (SR) and the transverse tubule (T-tubule). CRUs provide the structural framework for rapid elevations in myoplasmic Ca2+ during excitation-contraction (EC) coupling, the process whereby depolarization of the T-tubule membrane triggers SR Ca2+ release through ryanodine receptor-1 (RyR1) channels. Under conditions of local or global depletion of SR Ca2+ stores, store-operated Ca2+ entry (SOCE) provides an additional source of Ca2+ that originates from the extracellular space. In addition to Ca2+, skeletal muscle also requires ATP to both produce force and to replenish SR Ca2+ stores. Mitochondria are the principal intracellular organelles responsible for ATP production via aerobic respiration. This review provides a broad overview of the literature supporting a role for impaired Ca2+ handling, dysfunctional Ca2+-dependent production of reactive oxygen/nitrogen species (ROS/RNS), and structural/functional alterations in CRUs and mitochondria in the loss of muscle mass, reduction in muscle contractility, and increase in muscle damage in sarcopenia and a wide range of muscle disorders including muscular dystrophy, rhabdomyolysis, central core disease, and disuse atrophy. Understanding the impact of these processes on normal muscle function will provide important insights into potential therapeutic targets designed to prevent or reverse muscle dysfunction during aging and disease.
Collapse
Affiliation(s)
- Antonio Michelucci
- DNICS, Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
- Correspondence:
| | - Chen Liang
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.L.); (R.T.D.)
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy;
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA; (C.L.); (R.T.D.)
| |
Collapse
|