1
|
Kudo H, Ishida N, Nobukuni T, Aoki Y, Saito S, Nishijima I, Terakawa T, Yamamoto M, Minegishi N, Yamashita R, Kumada K. Detection and Correction of Sample Misidentifications in a Biobank Using the MassARRAY System and Genomic Information. Biopreserv Biobank 2024; 22:373-382. [PMID: 38079195 DOI: 10.1089/bio.2022.0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
With the number of samples increasing in many biobanks, one of the most pressing tasks is recording the correct relationships between information and the specimens. Genomic information is useful in determining the identity of these specimens. The Tohoku Medical Megabank Organization is running one of the largest biobanks in Japan. Here, we introduce a management system, which includes the development of a new probe set for the MassARRAY system for use during the production of proliferating T cells (T cells) and lymphoblastoid cell lines (LCLs). We selected single nucleotide variants that could be detected by next-generation sequencing and showed high resolution with ∼0.5 minor allele frequencies. After checking the set of probes against 96 samples from 48 people, we obtained no contradictory results in comparison with our genome sequence information. When we applied the set to our 3035 LCLs and 2256 T cells, the result showed 98.93% consistency with the corresponding genomic information. We surveyed the handling records of the 1.07% of samples that showed inconsistencies, and found that most had resulted from human errors (ID swapping between samples) during manual operations. After improving a few error-prone protocols, the error rate dropped to 0.47% for LCLs and 0% for T cells. Overall, the system that we developed shows high accuracy with easy and fast operability, and provides a good opportunity to improve the validation procedure to facilitate high-quality banking, especially in cases involving genomic information.
Collapse
Affiliation(s)
- Hisaaki Kudo
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Noriko Ishida
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takahiro Nobukuni
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Sakae Saito
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Ichiko Nishijima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takahiro Terakawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| | - Naoko Minegishi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Riu Yamashita
- Division of Translational Informatics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital East, Chiba, Japan
- Laboratory of Cancer Medical Informatics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kazuki Kumada
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Otsuki A, Okamura Y, Ishida N, Tadaka S, Takayama J, Kumada K, Kawashima J, Taguchi K, Minegishi N, Kuriyama S, Tamiya G, Kinoshita K, Katsuoka F, Yamamoto M. Construction of a trio-based structural variation panel utilizing activated T lymphocytes and long-read sequencing technology. Commun Biol 2022; 5:991. [PMID: 36127505 PMCID: PMC9489684 DOI: 10.1038/s42003-022-03953-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Long-read sequencing technology enable better characterization of structural variants (SVs). To adapt the technology to population-scale analyses, one critical issue is to obtain sufficient amount of high-molecular-weight genomic DNA. Here, we propose utilizing activated T lymphocytes, which can be established efficiently in a biobank to stably supply high-grade genomic DNA sufficiently. We conducted nanopore sequencing of 333 individuals constituting 111 trios with high-coverage long-read sequencing data (depth 22.2x, N50 of 25.8 kb) and identified 74,201 SVs. Our trio-based analysis revealed that more than 95% of the SVs were concordant with Mendelian inheritance. We also identified SVs associated with clinical phenotypes, all of which appear to be stably transmitted from parents to offspring. Our data provide a catalog of SVs in the general Japanese population, and the applied approach using the activated T-lymphocyte resource will contribute to biobank-based human genetic studies focusing on SVs at the population scale. Long-read sequencing on activated T-cells from a sample of 333 Japanese individuals (representing 111 parent-offspring trios) provides a useful reference dataset of structural variation in the Japanese population.
Collapse
Affiliation(s)
- Akihito Otsuki
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yasunobu Okamura
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Noriko Ishida
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Shu Tadaka
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Jun Takayama
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building 15 F, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan.,Department of AI and Innovative Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kazuki Kumada
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Junko Kawashima
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Keiko Taguchi
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Naoko Minegishi
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Shinichi Kuriyama
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, Nihonbashi 1-chome Mitsui Building 15 F, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan.,Department of AI and Innovative Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Graduate School of Information Sciences, Tohoku University, 6-3-09 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Fumiki Katsuoka
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.,Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan. .,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan. .,Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan.
| |
Collapse
|