1
|
Yang-Jensen KC, Jørgensen SM, Chuang CY, Davies MJ. Modification of extracellular matrix proteins by oxidants and electrophiles. Biochem Soc Trans 2024; 52:1199-1217. [PMID: 38778764 PMCID: PMC11346434 DOI: 10.1042/bst20230860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The extracellular matrix (ECM) is critical to biological architecture and determines cellular properties, function and activity. In many situations it is highly abundant, with collagens and elastin being some of the most abundant proteins in mammals. The ECM comprises of multiple different protein species and sugar polymers, with both different isoforms and post-translational modifications (PTMs) providing a large variety of microenvironments that play a key role in determining tissue structure and health. A number of the PTMs (e.g. cross-links) present in the ECM are critical to integrity and function, whereas others are deleterious to both ECM structure and associated cells. Modifications induced by reactive oxidants and electrophiles have been reported to accumulate in some ECM with increasing age. This accumulation can be exacerbated by disease, and in particular those associated with acute or chronic inflammation, obesity and diabetes. This is likely to be due to higher fluxes of modifying agents in these conditions. In this focused review, the role and effects of oxidants and other electrophiles on ECM are discussed, with a particular focus on the artery wall and atherosclerotic cardiovascular disease. Modifications generated on ECM components are reviewed, together with the effects of these species on cellular properties including adhesion, proliferation, migration, viability, metabolic activity, gene expression and phenotype. Increasing data indicates that ECM modifications are both prevalent in human and mammalian tissues and play an important role in disease development and progression.
Collapse
Affiliation(s)
- Karen C. Yang-Jensen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sara M. Jørgensen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y. Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Lorentzen LG, Yeung K, Eldrup N, Eiberg JP, Sillesen HH, Davies MJ. Proteomic analysis of the extracellular matrix of human atherosclerotic plaques shows marked changes between plaque types. Matrix Biol Plus 2024; 21:100141. [PMID: 38292008 PMCID: PMC10825564 DOI: 10.1016/j.mbplus.2024.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Cardiovascular disease is the leading cause of death, with atherosclerosis the major underlying cause. While often asymptomatic for decades, atherosclerotic plaque destabilization and rupture can arise suddenly and cause acute arterial occlusion or peripheral embolization resulting in myocardial infarction, stroke and lower limb ischaemia. As extracellular matrix (ECM) remodelling is associated with plaque instability, we hypothesized that the ECM composition would differ between plaques. We analyzed atherosclerotic plaques obtained from 21 patients who underwent carotid surgery following recent symptomatic carotid artery stenosis. Plaques were solubilized using a new efficient, single-step approach. Solubilized proteins were digested to peptides, and analyzed by liquid chromatography-mass spectrometry using data-independent acquisition. Identification and quantification of 4498 plaque proteins was achieved, including 354 ECM proteins, with unprecedented coverage and high reproducibility. Multidimensional scaling analysis and hierarchical clustering indicate two distinct clusters, which correlate with macroscopic plaque morphology (soft/unstable versus hard/stable), ultrasound classification (echolucent versus echogenic) and the presence of hemorrhage/ulceration. We identified 714 proteins with differential abundances between these groups. Soft/unstable plaques were enriched in proteins involved in inflammation, ECM remodelling, and protein degradation (e.g. matrix metalloproteinases, cathepsins). In contrast, hard/stable plaques contained higher levels of ECM structural proteins (e.g. collagens, versican, nidogens, biglycan, lumican, proteoglycan 4, mineralization proteins). These data indicate that a single-step proteomics method can provide unique mechanistic insights into ECM remodelling and inflammatory mechanisms within plaques that correlate with clinical parameters, and help rationalize plaque destabilization. These data also provide an approach towards identifying biomarkers for individualized risk profiling of atherosclerosis.
Collapse
Affiliation(s)
- Lasse G. Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Karin Yeung
- Department of Vascular Surgery, Heart Centre, University Hospital Copenhagen - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Nikolaj Eldrup
- Department of Vascular Surgery, Heart Centre, University Hospital Copenhagen - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jonas P. Eiberg
- Department of Vascular Surgery, Heart Centre, University Hospital Copenhagen - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Copenhagen Academy for Medical Education and Simulation (CAMES), Capital Region of Denmark, Copenhagen, Denmark
| | - Henrik H. Sillesen
- Department of Vascular Surgery, Heart Centre, University Hospital Copenhagen - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
3
|
Jørgensen SM, Lorentzen LG, Hammer A, Hoefler G, Malle E, Chuang CY, Davies MJ. The inflammatory oxidant peroxynitrous acid modulates the structure and function of the recombinant human V3 isoform of the extracellular matrix proteoglycan versican. Redox Biol 2023; 64:102794. [PMID: 37402332 DOI: 10.1016/j.redox.2023.102794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Continued oxidant production during chronic inflammation generates host tissue damage, with this being associated with pathologies including atherosclerosis. Atherosclerotic plaques contain modified proteins that may contribute to disease development, including plaque rupture, the major cause of heart attacks and strokes. Versican, a large extracellular matrix (ECM) chondroitin-sulfate proteoglycan, accumulates during atherogenesis, where it interacts with other ECM proteins, receptors and hyaluronan, and promotes inflammation. As activated leukocytes produce oxidants including peroxynitrite/peroxynitrous acid (ONOO-/ONOOH) at sites of inflammation, we hypothesized that versican is an oxidant target, with this resulting in structural and functional changes that may exacerbate plaque development. The recombinant human V3 isoform of versican becomes aggregated on exposure to ONOO-/ONOOH. Both reagent ONOO-/ONOOH and SIN-1 (a thermal source of ONOO-/ONOOH) modified Tyr, Trp and Met residues. ONOO-/ONOOH mainly favors nitration of Tyr, whereas SIN-1 mostly induced hydroxylation of Tyr, and oxidation of Trp and Met. Peptide mass mapping indicated 26 sites with modifications (15 Tyr, 5 Trp, 6 Met), with the extent of modification quantified at 16. Multiple modifications, including the most extensively nitrated residue (Tyr161), are within the hyaluronan-binding region, and associated with decreased hyaluronan binding. ONOO-/ONOOH modification also resulted in decreased cell adhesion and increased proliferation of human coronary artery smooth muscle cells. Evidence is also presented for colocalization of versican and 3-nitrotyrosine epitopes in advanced (type II-III) human atherosclerotic plaques. In conclusion, versican is readily modified by ONOO-/ONOOH, resulting in chemical and structural modifications that affect protein function, including hyaluronan binding and cell interactions.
Collapse
Affiliation(s)
- Sara M Jørgensen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Lasse G Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Astrid Hammer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, 8010, Austria
| | - Gerald Hoefler
- Institute of Pathology, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, 8010, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, 8010, Austria
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
4
|
Xu S, Chuang CY, Hawkins CL, Hägglund P, Davies MJ. Identification and quantification of protein nitration sites in human coronary artery smooth muscle cells in the absence and presence of peroxynitrous acid/peroxynitrite. Redox Biol 2023; 64:102799. [PMID: 37413764 PMCID: PMC10363479 DOI: 10.1016/j.redox.2023.102799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/11/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023] Open
Abstract
Peroxynitrous acid/peroxynitrite (ONOOH/ONOO-) is a powerful oxidizing/nitrating system formed at sites of inflammation, which can modify biological targets, and particularly proteins. Here, we show that multiple proteins from primary human coronary artery smooth muscle cells are nitrated, with LC-MS peptide mass mapping providing data on the sites and extents of changes on cellular and extracellular matrix (ECM) proteins. Evidence is presented for selective and specific nitrations at Tyr and Trp on 11 cellular proteins (out of 3668, including 205 ECM species) in the absence of added reagent ONOOH/ONOO-, with this being consistent with low-level endogenous nitration. A number of these have key roles in cell signaling/sensing and protein turnover. With added ONOOH/ONOO-, more proteins were modified (84 total; with 129 nitrated Tyr and 23 nitrated Trp, with multiple modifications on some proteins), with this occurring at the same and additional sites to endogenous modification. With low concentrations of ONOOH/ONOO- (50 μM) nitration occurs on specific proteins at particular sites, and is not driven by protein or Tyr/Trp abundance, with modifications detected on some low abundance proteins. However, with higher ONOOH/ONOO- concentrations (500 μM), modification is primarily driven by protein abundance. ECM species are major targets and over-represented in the pool of modified proteins, with fibronectin and thrombospondin-1 being particularly heavily modified (12 sites in each case). Both endogenous and exogenous nitration of cell- and ECM-derived species may have significant effects on cell and protein function, and potentially be involved in the development and exacerbation of diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Shuqi Xu
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|