1
|
Cong Y, Guo R, Li C, Li Q, Qi S. Irisin protects against cerebral ischemia reperfusion injury in a SIRT3-dependent manner. Front Pharmacol 2025; 16:1558457. [PMID: 40235548 PMCID: PMC11996646 DOI: 10.3389/fphar.2025.1558457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
Background Cerebral ischemia-reperfusion (CIR) injury critically impacts stroke prognosis, yet effective therapeutic strategies remain limited. Irisin, an exercise-induced myokine, exhibits neuroprotective effects against cerebral ischemia. SIRT3, a mitochondrial deacetylase, is similarly implicated in mitigating ischemia-reperfusion injury. Given that irisin exerts protection via AMPK/PGC-1α pathway activation and SIRT3 acts downstream of PGC-1α , we hypothesized that SIRT3 mediates irisin's neuroprotection in CIR injury. Methods In vivo cerebral ischemia-reperfusion injury was modeled by inducing transient middle cerebral artery occlusion (MCAO) in mice, while in vitro CIR conditions were replicated using oxygen-glucose deprivation (OGD) in PC12 neuronal cultures. To elucidate the mechanistic role of SIRT3, targeted interventions were implemented: SIRT3 expression was silenced via transfection with small interfering RNA (siRNA), and its enzymatic activity was pharmacologically inhibited using 3-TYP, a selective SIRT3 inhibitor. Apoptotic were systematically evaluated through TUNEL staining, Western blot analysis of caspase-3, Bax and Bcl-2. Oxidative stress parameters, including malondialdehyde (MDA) levels and glutathione (GSH) content, were measured using colorimetric assays. Neurological function in mice was quantified using the modified Neurological Severity Score (mNSS). Results Our results demonstrated that irisin mitigates apoptosis and oxidative stress by dose-dependently activating SIRT3 signaling. At the optimal dosage, irisin effectively restored SIRT3 expression levels, reduced neuronal damage, and improved neurological recovery in CIR injury models. Notably, the therapeutic effects of irisin were significantly attenuated by 3-TYP, a specific SIRT3 inhibitor. Further validation through in vitro experiments revealed that SIRT3 overexpression synergistically enhanced irisin-mediated protection against OGD-induced injury, whereas SIRT3 knockout substantially diminished its efficacy. Conclusion Our data shown that irisin exerted a protective role in CIR injury, at least in part, through SIRT3 activation. This study establishes the irisin/SIRT3 as a novel therapeutic target for ischemic stroke, providing mechanistic insights for future interventions.
Collapse
Affiliation(s)
- Yushuang Cong
- Department of Anesthesiology, The Fourth Affiliated Hospital of the Harbin Medical University, Harbin, China
| | - Ruichun Guo
- Department of Anesthesiology, Peking University People’s Hospital, Beijing, China
| | - Chenglong Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of the Harbin Medical University, Harbin, China
| | - Qi Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of the Harbin Medical University, Harbin, China
| | - Sihua Qi
- Department of Anesthesiology, The Fourth Affiliated Hospital of the Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Niu C, Dong M, Niu Y. Role of Glutathione in Parkinson's Disease Pathophysiology and Therapeutic Potential of Polyphenols. Phytother Res 2024; 38:5567-5582. [PMID: 39290049 DOI: 10.1002/ptr.8342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Oxidative stress is recognized to have a central role in the initiation and progression of Parkinson's disease (PD). Within the brain, neurons are particularly sensitive to oxidation due in part to their weak intrinsic antioxidant defense. Theoretically, neurons mostly depend on neighboring astrocytes to provide antioxidant protection by supplying cysteine-containing products for glutathione (GSH) synthesis. Astrocytes and neurons possess several amino acid transport systems for GSH and its precursors. Indeed, GSH is the most abundant intrinsic antioxidant in the central nervous system. The GSH depletion and/or alterations in its metabolism in the brain contribute to the pathogenesis of PD. Noteworthy, polyphenols possess potent antioxidant activity and can augment the GSH redox system. Numerous in vitro and in vivo studies have indicated that polyphenols exhibit potent neuroprotective effects in PD. Epidemiological studies have found an association between the consumption of dietary polyphenols and a lower PD risk. In this review, we summarize current knowledge on the biosynthesis and metabolism of GSH in the brain, with an emphasis on their contribution and therapeutic potential in PD. In particular, we focus on polyphenols that can increase brain GSH levels against PD. Furthermore, some current challenges and future perspectives for polyphenol-based therapies are also discussed.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, Rochester, New York, USA
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
3
|
Zhou Y, Xie W, Kong C, Luo W, Wei H, Zheng J. Regulatory roles of histamine receptor in astrocytic glutamate clearance under conditions of increased glucose variability. Biochem Pharmacol 2024; 230:116611. [PMID: 39510195 DOI: 10.1016/j.bcp.2024.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/26/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
In diabetic patients, repeated episodes of hypoglycemia can increase glucose variability (GV), which may lead to glutamate neurotoxicity in the brain and consequently affect cognitive functions. Astrocytes play a crucial role in regulating the balance of glutamate within the brain, and their function is influenced by the histamine receptor (HR) signaling pathway. However, the specific role of this mechanism under conditions of high GV is not yet clear. The results showed that increased GV resulted in decreased expression of HRs in mice hippocampus and astrocytes cultured in vitro. Additionally, a decrease in the expression of proteins related to glutamate metabolic clearance was observed, accompanied by a reduction in glutamate reuptake capacity. Notably, the intervention with histidine/histamine was able to reverse the above changes. Further mechanistic studies showed that inhibition of HRs that increased GV led to significant disturbances in astrocytic mitochondrial function. These abnormalities encompassed increased fragmentation morphology and the accumulation of reactive oxygen species, accompanied by decreased mitochondrial respiratory capacity and dysregulation of dynamics. Distinct HR subtypes exhibited variations in the modulation of mitochondrial function, with H3R demonstrating the most pronounced impact. The overexpression of H3R could enhance glutamate metabolic by reversing disturbances in mitochondrial dynamics. Therefore, this study suggests that H3R is able to maintain glutamate metabolic clearance capacity and exert neuroprotective effects in astrocytes that increased GV by regulating mitochondrial dynamic balance. This provides an important basis for potential therapeutic targets for diabetes-related cognitive dysfunction.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wenhuo Xie
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Chenghua Kong
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wei Luo
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Hong Wei
- Shengli Clinical Medical College of Fujian Medical University, Cadres's Healthcare Office, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| | - Jiaping Zheng
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
4
|
Chen YX, Yang H, Wang DS, Chen TT, Qi XL, Tao L, Chen Y, Shen XC. Gastrodin alleviates mitochondrial dysfunction by regulating SIRT3-mediated TFAM acetylation in vascular dementia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155369. [PMID: 38547618 DOI: 10.1016/j.phymed.2024.155369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/03/2023] [Accepted: 01/15/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Mitochondrial dysfunction is key to the pathogenesis of vascular dementia (VaD). Sirtuin-3 (SIRT3), an essential member of the sirtuins family, has been proven to be a critical sirtuin in regulating mitochondrial function. The phenolic glucoside gastrodin (GAS), a bioactive ingredient from Gastrodiae Rhizome (known in Chinese as Tian ma) demonstrates significant neuroprotective properties against central nervous system disorders; however, the precise mechanisms through which GAS modulates VaD remain elusive. PURPOSE This study aims to investigate whether GAS confers a protective role against VaD, and to figure out the underlying molecular mechanisms. METHODS A bilateral common carotid artery occlusion (BCCAO)-mediated chronic cerebral hypoperfusion (CCH) VaD rat model and a hypoxia model using HT22 cells were employed to investigate pharmacological properties of GAS in mitigating mitochondrial dysfunction. A SIRT3 agonist resveratrol (RES), a SIRT3 inhibitor 3-TYP and SIRT3-knockdown in vitro were used to explore the mechanism of GAS in association with SIRT3. The ability of SIRT3 to bind and deacetylate mitochondrial transcription factor A (TFAM) was detected by immunoprecipitation assay, and TFAM acetylation sites were further validated using mass spectrometry. RESULTS GAS increased SIRT3 expression and ameliorated mitochondrial structure, mitochondrial respiration, mitochondrial dynamics along with upregulated TFAM, mitigating oxidative stress and senescence. Comparable results were noted with the SIRT3 agonist RES, indicating an impactful neuroprotection played by SIRT3. Specifically, the attenuation of SIRT3 expression through knockdown techniques or exposure to the SIRT3 inhibitor 3-TYP in HT22 cells markedly abrogated GAS-mediated mitochondrial rescuing function. Furthermore, our findings elucidate a novel facet: SIRT3 interacted with and deacetylated TFAM at the K5, K7, and K8 sites. Decreased SIRT3 is accompanied by hyper-acetylated TFAM. CONCLUSION The present results were the first to demonstrate that the SIRT3/TFAM pathway is a protective target for reversing mitochondrial dysfunction in VaD. The findings suggest that GAS-mediated modulation of the SIRT3/TFAM pathway, a novel mechanism, could ameliorate CCH-induced VaD, offering a potentially beneficial therapeutic strategy for VaD.
Collapse
Affiliation(s)
- Yong-Xin Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Hong Yang
- The Maternal and Child Health Care Hospital of Guizhou Medical University, Guiyang 550003, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Da-Song Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Ting-Ting Chen
- The Maternal and Child Health Care Hospital of Guizhou Medical University, Guiyang 550003, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Xiao-Lan Qi
- The Key Laboratory of Medical Molecular Biology, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China.
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, Guizhou 561113, China.
| |
Collapse
|
5
|
Feng L, Gao L. The role of neurovascular coupling dysfunction in cognitive decline of diabetes patients. Front Neurosci 2024; 18:1375908. [PMID: 38576869 PMCID: PMC10991808 DOI: 10.3389/fnins.2024.1375908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Neurovascular coupling (NVC) is an important mechanism to ensure adequate blood supply to active neurons in the brain. NVC damage can lead to chronic impairment of neuronal function. Diabetes is characterized by high blood sugar and is considered an important risk factor for cognitive impairment. In this review, we provide fMRI evidence of NVC damage in diabetic patients with cognitive decline. Combined with the exploration of the major mechanisms and signaling pathways of NVC, we discuss the effects of chronic hyperglycemia on the cellular structure of NVC signaling, including key receptors, ion channels, and intercellular connections. Studying these diabetes-related changes in cell structure will help us understand the underlying causes behind diabetes-induced NVC damage and early cognitive decline, ultimately helping to identify the most effective drug targets for treatment.
Collapse
Affiliation(s)
| | - Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Wu K, Huang C, Zheng W, Wu Y, Huang Q, Lin M, Gao R, Qi L, He G, Liu X, Liu X, Wang L, Chen Z, Liu L. Activation of mitophagy improves cognitive dysfunction in diabetic mice with recurrent non-severe hypoglycemia. Mol Cell Endocrinol 2024; 580:112109. [PMID: 37956789 DOI: 10.1016/j.mce.2023.112109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
Recurrent non-severe hypoglycemia (RH) in patients with diabetes might be associated with cognitive impairment. Previously, we found that mitochondrial dysfunction plays an important role in this pathological process; however, the mechanism remains unclear. The objective of this study was to determine the molecular mechanisms of mitochondrial damage associated with RH in diabetes mellitus (DM). We found that RH is associated with reduced hippocampal mitophagy in diabetic mice, mainly manifested by reduced autophagosome formation and impaired recognition of impaired mitochondria, mediated by the PINK1/Parkin pathway. The same impaired mitophagy initiation was observed in an in vitro high-glucose cultured astrocyte model with recurrent low-glucose interventions. Promoting autophagosome formation and activating PINK1/Parkin-mediated mitophagy protected mitochondrial function and cognitive function in mice. The results showed that impaired mitophagy is involved in the occurrence of mitochondrial dysfunction, mediating the neurological impairment associated with recurrent low glucose under high glucose conditions.
Collapse
Affiliation(s)
- Kejun Wu
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Cuihua Huang
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Wenrong Zheng
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yubin Wu
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Qintao Huang
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Menghua Lin
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Ruonan Gao
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Liqin Qi
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Guanlian He
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaoying Liu
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaohong Liu
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Linxi Wang
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Zhou Chen
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| | - Libin Liu
- Department of Endocrinology and Metabolism, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
7
|
Gao R, Zhan M, Ke S, Wu K, He G, Qi L, Liu X, Liu X, Wang L, Liu L. Potential risk factors for mild cognitive impairment among patients with type 2 diabetes experiencing hypoglycemia. Diabetes Res Clin Pract 2024; 207:111036. [PMID: 38049036 DOI: 10.1016/j.diabres.2023.111036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/25/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
AIMS This study examined the association between hypoglycemia and mild cognitive impairment (MCI) among patients with type 2 diabetes mellitus (T2DM) and identified risk factors for MCI in patients with hypoglycemia. METHODS In this retrospective study, 328 patients with T2DM were screened in 2019 and followed up in 2022. Cognitive performance was assessed using the Montreal Cognitive Assessment (MoCA). The diagnosis of MCI was based on established criteria. Risk ratio (RR) with 95 % confidence intervals (CI) was calculated to estimate the risk of MCI. Univariate and multivariate logistic regression analyses were conducted to identify risk factors for MCI in those with hypoglycemia. RESULTS Patients with hypoglycemia had lower cognitive performance 3 years later. The RR of MCI was 2.221 (95 % CI 1.269-3.885). Multivariate logistic analysis showed that low grip strength, existing diabetic retinopathy (DR), and multiple hypoglycemia episodes were associated with higher odds of MCI in patients with hypoglycemia (adjusted odds ratio [OR] 0.909 [95 % CI 0.859-0.963]), 3.078 [95 % CI 1.158-12.358], and 4.642 [95 % CI 1.284-16.776], respectively, all P < 0.05). CONCLUSIONS Hypoglycemia increased MCI risk among patients with T2DM. Low grip strength, DR, and multiple hypoglycemia episodes may be potential risk factors for hypoglycemia-associated MCI.
Collapse
Affiliation(s)
- Ruonan Gao
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Menglan Zhan
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sujie Ke
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Kejun Wu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Guanlian He
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Liqin Qi
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoying Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaohong Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lijing Wang
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Libin Liu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
8
|
Mishra Y, Kumar Kaundal R. Role of SIRT3 in mitochondrial biology and its therapeutic implications in neurodegenerative disorders. Drug Discov Today 2023; 28:103583. [PMID: 37028501 DOI: 10.1016/j.drudis.2023.103583] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
Sirtuin 3 (SIRT3), a mitochondrial deacetylase expressed preferentially in high-metabolic-demand tissues including the brain, requires NAD+ as a cofactor for catalytic activity. It regulates various processes such as energy homeostasis, redox balance, mitochondrial quality control, mitochondrial unfolded protein response (UPRmt), biogenesis, dynamics and mitophagy by altering protein acetylation status. Reduced SIRT3 expression or activity causes hyperacetylation of hundreds of mitochondrial proteins, which has been linked with neurological abnormalities, neuro-excitotoxicity and neuronal cell death. A body of evidence has suggested, SIRT3 activation as a potential therapeutic modality for age-related brain abnormalities and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP)-226002, India
| | - Ravinder Kumar Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP)-226002, India.
| |
Collapse
|