1
|
Vasudhevan P, Ruoyu Z, Ma H, Singh S, Varshney D, Pu S. Biocatalytic enzymes in food packaging, biomedical, and biotechnological applications: A comprehensive review. Int J Biol Macromol 2025; 300:140069. [PMID: 39832587 DOI: 10.1016/j.ijbiomac.2025.140069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
The increasing environmental concerns and health risks associated with synthetic chemicals have driven the demand for sustainable and eco-friendly solutions. Biocatalysis, employing enzymes or whole cells as biocatalysts, has emerged as a powerful alternative. This review provides a comprehensive analysis of the applications of biocatalytic enzymes in food packaging, biomedical sciences, and biotechnology. We highlight the potential of enzymes like laccase, glucose oxidase, lysozyme, protease, lipase, cellulase, and asparaginase to replace traditional chemical methods, driving innovation and sustainability. The global enzyme market is also analyzed, including current trends, emerging demands, and the impact of the COVID-19 pandemic. This review aims to bridge knowledge gaps, emphasize recent technological breakthroughs, and showcase the potential of biocatalytic enzymes to address critical industrial challenges while supporting environmental sustainability and economic growth.
Collapse
Affiliation(s)
- Palanisamy Vasudhevan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.
| | - Zhang Ruoyu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Subhav Singh
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India; Division of research and development, Lovely Professional University, Phagwara, Punjab, India
| | - Deekshant Varshney
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Division of Research & innovation, Uttaranchal University, Dehradun, India
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
2
|
Yüksek G, Taş DO, Ubay-Cokgor E, Jones JP, Gosselin M, Cabana H. Effects of potential inducers to enhance laccase production and evaluating concomitant enzyme immobilisation. ENVIRONMENTAL TECHNOLOGY 2024; 45:3517-3532. [PMID: 37259795 DOI: 10.1080/09593330.2023.2219851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
This work investigated non-polar solvent hexane and polar solvents methanol and ethanol as inducers besides a well-known inducer, copper, for laccase production with and without mesoporous silica-covered plastic packing under sterilised and unsterilised conditions. The potential of waste-hexane water, which is generated during the mesoporous silica production process, was also investigated as a laccase inducer. During the study, the free and immobilised laccase activity on the packing was measured. The results showed that the highest total laccase activity, approximately 10,000 Units, was obtained under sterilised conditions with 0.5 mM copper concentration. However, no immobilised laccase activity was detected except in the copper and ethanol sets under unsterilised conditions. The maximum immobilised laccase activity of the sets that used waste hexane as an inducer was 1.25 U/mg packing. According to its significant performance, waste hexane can be an alternative inducer under sterilised conditions. Concomitant immobilised packing showed satisfactory laccase activities and could be a promising method to reduce operation costs and improve the cost-efficiency of enzymatic processes in wastewater treatment plants.
Collapse
Affiliation(s)
- Gülten Yüksek
- Sherbrooke University Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Canada
- Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Didem Okutman Taş
- Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Emine Ubay-Cokgor
- Faculty of Civil Engineering, Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| | - J Peter Jones
- Department of Chemical and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Hubert Cabana
- Sherbrooke University Water Research Group, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
3
|
Camilleri E, Blundell R, Baral B, Karpiński TM, Aruci E, Atrooz OM. A comprehensive review on the health benefits, phytochemicals, and enzymatic constituents for potential therapeutic and industrial applications of Turkey tail mushrooms. DISCOVER APPLIED SCIENCES 2024; 6:257. [DOI: 10.1007/s42452-024-05936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/02/2024] [Indexed: 08/23/2024]
Abstract
AbstractThis comprehensive literature review delves into the multifaceted attributes of Trametes versicolor, commonly known as turkey tail mushroom. The turkey tail mushroom stands as a noteworthy source of diverse bioactive compounds with potent health benefits. This review offers a contemporary synthesis of its phytochemical constituents and their multifaceted impacts on human health. The mushroom's intricate composition, encompassing polysaccharides, phenols, and triterpenes, underpins its remarkable therapeutic potential. Focusing on key attributes such as anti-cancer, anti-microbial, and immunomodulatory activities, this review delves into the intricate mechanisms by which the turkey tail mushroom exerts its effects. In addition, the exploration extends to the enzymatic constituents inherent in the mushroom and their industrial significance. Mechanisms of action for both phytochemicals and enzymes are studied, providing a well-rounded understanding of their roles in conferring therapeutic and industrial benefits. This synthesis of research aims to provide an up-to-date perspective on turkey tail mushrooms' versatile applications. By intertwining the exploration of health benefits and enzymatic constituents, this review offers insights into the potential of harnessing this natural resource for innovative therapeutic strategies and industrial applications. Overall, it contributes to the advancement of knowledge and utilisation of turkey tail mushrooms' diverse properties for human health and industrial progress.
Collapse
|
4
|
Aljawish A, Chevalot I, Paris C, Muniglia L. Enzymatic Oxidation of Ferulic Acid as a Way of Preparing New Derivatives. BIOTECH 2022; 11:55. [PMID: 36546909 PMCID: PMC9775523 DOI: 10.3390/biotech11040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The ferulic acid (FA)-oxidation by Myceliophthora thermophila laccase was performed in phosphate buffer at 30 °C and pH 7.5 as an eco-friendly procedure. LC-MS analysis showed that oxidation products were four dehydrodimers (P1, P2, P3, P5) at MM = 386 g/mol, two dehydrotetramers (P6, P7) at MM = 770 g/mol and one decarboxylated dehydrodimer (P4) at MM = 340 g/mol. Structural characterization showed that FA-dehydrodimers were symmetric for P1 and P5 while asymmetric for P2, P3 and P4. Physicochemical characterization showed that oxidation products presented a higher lipophilicity than that of FA. Moreover, symmetric dimers and tetra dimers had a higher melting point compared to FA and its asymmetric dimers. Antioxidant and anti-proliferative assessments indicated that enzymatic oligomerization increased antioxidant and anti-proliferative properties of oxidation products for P2, P3 and P6 compared to FA. Finally, this enzymatic process in water could produce new molecules, having good antiradical and anti-proliferative activities.
Collapse
Affiliation(s)
- Abdulhadi Aljawish
- Laboratory of Biomolecules Engineering (LIBio), Lorraine University, 2 avenue de la Forêt de Haye, TSA40602, F-54518 Vandœuvre-lès Nancy, France
| | - Isabelle Chevalot
- Laboratory of Reactions and Process Engineering (LRGP-UMR 7274), Lorraine University, 2 avenue de la Forêt de Haye, TSA40602, F-54518 Nancy, France
| | - Cédric Paris
- Laboratory of Biomolecules Engineering (LIBio), Lorraine University, 2 avenue de la Forêt de Haye, TSA40602, F-54518 Vandœuvre-lès Nancy, France
| | - Lionel Muniglia
- Laboratory of Biomolecules Engineering (LIBio), Lorraine University, 2 avenue de la Forêt de Haye, TSA40602, F-54518 Vandœuvre-lès Nancy, France
| |
Collapse
|
5
|
Zhao K, Zhang L, Zhang M, Tian H, He D, Zheng J. Response Surface Optimization of Enzyme Pretreatment Improves Yield of Ethanol‐Extracted Lipids from
Nannochloropsis oceanica. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kangyu Zhao
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Liwei Zhang
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
- Key Laboratory of Deep Processing of Major Grain and Oil Ministry of Education Wuhan 430023 China
| | - Meilan Zhang
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Hua Tian
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Dongping He
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
- Key Laboratory of Deep Processing of Major Grain and Oil Ministry of Education Wuhan 430023 China
| | - Jingcheng Zheng
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
- Key Laboratory of Deep Processing of Major Grain and Oil Ministry of Education Wuhan 430023 China
| |
Collapse
|
6
|
Investigation of the Physicochemical Properties of Vegetable Oils Blended with Sesame Oil and Their Oxidative Stability during Frying. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:3165512. [PMID: 35400148 PMCID: PMC8986445 DOI: 10.1155/2022/3165512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
To investigate the antioxidant activity and physicochemical properties of oil, sunflower (SFO) and corn oil (CO) and their combinations with sesame oil (SO) were prepared. The analyses of fatty acid composition (GC-FID), oxidative stability index (Rancimat), smoke point, and antioxidant activity (DPPH) were done on oil samples. Then, the frying process in presence of potato chips was done for 3 days at 180°C. Oil samples were gathered after each frying cycle and chemical analysis (peroxide value, free fatty acid, p-anisidine value, TOTOX, total polar content, TBARS, and conjugated diene and triene) was measured. The major fatty acid composition of oil samples was linoleic acid, oleic acid, palmitic acid, and stearic acid. The OSI of oil samples was reported as
. The smoke point of all samples was in the standard limit. The SFO with 266.50°C had the highest smoke point. The antioxidant activity of samples was reported as
. The IC50 of SO was 52.17 mg/g which was higher than other samples. The result of frying indicated that prolonged heating process would increase the thermal oxidation. It was shown that oils blended with SO had good stability during deep frying. Therefore, blending oil with SO is considered as an economic approach to improve the oil oxidation stability.
Collapse
|
7
|
Optimization of biodiesel production parameters from Prosopis julifera seed using definitive screening design. Heliyon 2022; 8:e08965. [PMID: 35243085 PMCID: PMC8857467 DOI: 10.1016/j.heliyon.2022.e08965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/22/2021] [Accepted: 02/11/2022] [Indexed: 11/22/2022] Open
Abstract
The concept of waste to valuable products is a hot topic with more explorations going on worldwide to minimize the environmental pollution and wastage of food-based feedstocks. In this work, biodiesel was produced from Prosopis julifera seed oil using ethanol as solvent and magnesium nanocatalyst and the process was optimized by employing an advanced statistical optimization method; definitive screening design. The maximum biodiesel yield from Prosopis julifera seed was found to be 32.5%. Acid esterification and transesterification were applied to minimize the acidity. Acidity of the P. julifera oil was initially reduced to 1.52 mg KOH/g using acid catalyst H2SO4, and then to 0.88mg KOH/g by transesterification process using magnesium oxide. Optimum biodiesel conversion efficiency of 94.83% was achieved under 10:1 ethanol-to-oil ratio, 5% magnesium oxide concentration, 80 min reaction time, 45 °C reaction temperature and 1000 rpm agitation rate. The transesterification reaction was found to be highly affected by the ethanol-to-oil ratio and catalyst concentration. The results showed that the catalytic activity of the magnesium oxide was sufficient for the production of biodiesel from P. julifera seed oil. The fuel properties were evaluated according to ASTM standards. FTIR analysis confirmed the existence of functional groups with respect to the fingerprint region of P. julifera ethyl esters. The Definitive screening design method can be suggested as an alternative method for the optimization of process parameters within limited materials and number of experiments. The findings suggest that this method of production of biodiesel from P. julifera seed oil shall open up new possibilities for a novel natural biofuel.
Collapse
|
8
|
Hundie KB, Akuma DA. Optimization of biodiesel production parameters from Prosopis julifera seed using definitive screening design. Heliyon 2022; 8:e08965. [DOI: https:/doi.org/10.1016/j.heliyon.2022.e08965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
|
9
|
Guo Y, Liu Y, Liu K. Physical, chemical and oxidative changes in raw peanuts: Effect of relative humidity. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yajing Guo
- College of Food Science and Engineering Henan University of Technology Zhengzhou 450001 China
| | - Ying Liu
- College of Food Science and Engineering Henan University of Technology Zhengzhou 450001 China
| | - Kunlun Liu
- College of Food Science and Engineering Henan University of Technology Zhengzhou 450001 China
| |
Collapse
|
10
|
Gutiérrez-del-Río I, López-Ibáñez S, Magadán-Corpas P, Fernández-Calleja L, Pérez-Valero Á, Tuñón-Granda M, Miguélez EM, Villar CJ, Lombó F. Terpenoids and Polyphenols as Natural Antioxidant Agents in Food Preservation. Antioxidants (Basel) 2021; 10:1264. [PMID: 34439512 PMCID: PMC8389302 DOI: 10.3390/antiox10081264] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023] Open
Abstract
Synthetic antioxidant food additives, such as BHA, BHT and TBHQ, are going through a difficult time, since these products generate a negative perception in consumers. This has generated an increased pressure on food manufacturers to search for safer natural alternatives like phytochemicals (such as polyphenols, including flavonoids, and essential oils rich in terpenoids, including carotenoids). These plant bioactive compounds have antioxidant activities widely proven in in vitro tests and in diverse food matrices (meat, fish, oil and vegetables). As tons of food are wasted every year due to aesthetic reasons (lipid oxidation) and premature damage caused by inappropriate packaging, there is an urgent need for natural antioxidants capable of replacing the synthetic ones to meet consumer demands. This review summarizes industrially interesting antioxidant bioactivities associated with terpenoids and polyphenols with respect to the prevention of lipid oxidation in high fat containing foods, such as meat (rich in saturated fat), fish (rich in polyunsaturated fat), oil and vegetable products, while avoiding the generation of rancid flavors and negative visual deterioration (such as color changes due to oxidized lipids). Terpenoids (like monoterpenes and carotenoids) and polyphenols (like quercetin and other flavonoids) are important phytochemicals with a broad range of antioxidant effects. These phytochemicals are widely distributed in fruits and vegetables, including agricultural waste, and are remarkably useful in food preservation, as they show bioactivity as plant antioxidants, able to scavenge reactive oxygen and nitrogen species, such as superoxide, hydroxyl or peroxyl radicals in meat and other products, contributing to the prevention of lipid oxidation processes in food matrices.
Collapse
Affiliation(s)
- Ignacio Gutiérrez-del-Río
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Sara López-Ibáñez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Patricia Magadán-Corpas
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Luis Fernández-Calleja
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Álvaro Pérez-Valero
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Mateo Tuñón-Granda
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Elisa M. Miguélez
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Claudio J. Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (I.G.-d.-R.); (S.L.-I.); (P.M.-C.); (L.F.-C.); (Á.P.-V.); (M.T.-G.); (E.M.M.); (C.J.V.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| |
Collapse
|
11
|
Tišma M, Žnidaršič-Plazl P, Šelo G, Tolj I, Šperanda M, Bucić-Kojić A, Planinić M. Trametes versicolor in lignocellulose-based bioeconomy: State of the art, challenges and opportunities. BIORESOURCE TECHNOLOGY 2021; 330:124997. [PMID: 33752945 DOI: 10.1016/j.biortech.2021.124997] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Although Trametes versicolor is one of the most investigated white-rot fungi, the industrial application of this fungus and its metabolites is still far from reaching its full potential. This review aims to highlight the opportunities and challenges for the industrial use of T. versicolor according to the principles of circular bioeconomy. The use of this fungus can contribute significantly to the success of efforts to valorize lignocellulosic waste biomass and industrial lignocellulosic byproducts. Various techniques of T. versicolor cultivation for enzyme production, food and feed production, wastewater treatment, and biofuel production are listed and critically evaluated, highlighting bottlenecks and future perspectives. Applications of T. versicolor crude laccase extracts in wastewater treatment, removal of lignin from lignocellulose, and in various biotransformations are analyzed separately.
Collapse
Affiliation(s)
- Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia.
| | - Polona Žnidaršič-Plazl
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Gordana Šelo
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia
| | - Ivana Tolj
- Josip Juraj Strossmayer University of Osijek, University Hospital Center of Osijek, Clinical of Internal Medicine, Department of Nephrology, Josipa Hutlera 4, HR-31000 Osijek, Croatia
| | - Marcela Šperanda
- Josip Juraj Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Vladimira Preloga 1, HR - 31000 Osijek, Croatia
| | - Ana Bucić-Kojić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia
| | - Mirela Planinić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia
| |
Collapse
|
12
|
Biodegradation of acetaminophen and its main by-product 4-aminophenol by Trichoderma harzianum versus mixed biofilm of Trichoderma harzianum/Pseudomonas fluorescens in a fungal microbial fuel cell. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-020-01518-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Gao P, Hu C, He D. Evaluation of Chemical Properties of Commercial Extra Virgin Olive Oil in China. J Oleo Sci 2020; 69:1541-1549. [DOI: 10.5650/jos.ess20218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pan Gao
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University) of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University
| | - Chuanrong Hu
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University) of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University
| | - Dongping He
- Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University) of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University
| |
Collapse
|