1
|
Lei Y, He D, Zhao X, Miao L, Cao Z. Structure, function, and therapeutic potential of defensins from marine animals. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110365. [PMID: 40318710 DOI: 10.1016/j.fsi.2025.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Defensins are a type of host defense peptides (HDPs), belonging to a family of cationic antimicrobial peptides (AMPs) that exhibit activity against various infectious microorganisms including bacteria, viruses, and fungi. Due to the uniqueness of the ocean's ecological environment, defensins from marine animals have a rich biodiversity and some special molecular features so as to possess significant potential. They exert antibacterial activity by binding to cell membranes, forming specific channels, or interacting with lipid II. These peptides can be utilized through various nanotechnologies, such as antimicrobial peptide-antibiotic conjugates, nanonets, and nanoparticle-based drug delivery systems, to enhance their antibacterial activities and broaden their spectra. This review summarizes the structural characteristics and classification of defensins from marine animals (mainly fish and shellfish), outlines their evolutionary trajectory, and discusses their antibacterial, antiviral, immune-regulation, and reproductive functions. Finally, the future therapeutic potential of defensins from marine animals is highlighted for fighting antibiotic resistance and treating other diseases. This review provides new insights into the future development of marine resources and natural peptides.
Collapse
Affiliation(s)
- Yining Lei
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Dangui He
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Xiao Zhao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Lixia Miao
- Department of Biochemistry, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Zhijian Cao
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
2
|
Li Z, Gu J, Huang X, Lu Z, Feng Y, Xu X, Yang J. Transcriptome-based network analysis reveals hub immune genes and pathways of hepatopancreas against LPS in Amphioctopus fangsiao. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109696. [PMID: 38871144 DOI: 10.1016/j.fsi.2024.109696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
The hepatopancreas is the biggest digestive organ in Amphioctopus fangsiao (A. fangsiao), but also undertakes critical functions like detoxification and immune defense. Generally, pathogenic bacteria or endotoxin from the gut microbiota would be arrested and detoxified in the hepatopancreas, which could be accompanied by the inevitable immune responses. In recent years, studies related to cephalopods immune have been increasing, but the molecular mechanisms associated with the hepatopancreatic immunity are still unclear. In this study, lipopolysaccharide (LPS), a major component of the cell wall of Gram-negative bacteria, was used for imitating bacteria infection to stimulate the hepatopancreas of A. fangsiao. To investigate the immune process happened in A. fangsiao hepatopancreas, we performed transcriptome analysis of hepatopancreas tissue after LPS injection, and identified 2615 and 1943 differentially expressed genes (DEGs) at 6 and 24 h post-injection, respectively. GO and KEGG enrichment analysis showed that these DEGs were mainly involved in immune-related biological processes and signaling pathways, including ECM-receptor interaction signaling pathway, Phagosome signaling pathway, Lysosome signaling pathway, and JAK-STAT signaling pathways. The function relationships between these DEGs were further analyzed through protein-protein interaction (PPI) networks. It was found that Mtor, Mapk14 and Atm were the three top interacting DEGs under LPS stimulation. Finally, 15 hub genes involving multiple KEGG signaling pathways and PPI relationships were selected for qRT-PCR validation. In this study, for the first time we explored the molecular mechanisms associated with hepatopancreatic immunity in A. fangsiao using a PPI networks approach, and provided new insights for understanding hepatopancreatic immunity in A. fangsiao.
Collapse
Affiliation(s)
- Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jingjing Gu
- Binzhou Testing Center, Binzhou 256600, China
| | - Xiaolan Huang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Zhengcai Lu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| |
Collapse
|
3
|
Kassem E, Shapira M, Sussan M, Mahamid L, Amsalem N, Abu Fanne R. The Diagnostic Value of Human Neutrophilic Peptides 1-3 in Acute Pediatric Febrile Illness. J Clin Med 2023; 12:6514. [PMID: 37892652 PMCID: PMC10607217 DOI: 10.3390/jcm12206514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Background: It is prudent to develop biomarkers that enhance the differentiation between viral and bacterial infection in order to support expeditious and judicious antimicrobial implementation in emergency department admissions. Human neutrophilic peptides 1-3 (HNP1-3) are the major neutrophilic peptides with potent antimicrobial activity. Methods: We tested the performance of the plasma HNP1-3 test in a prospective observational cohort of children admitted to the emergency department for fever. We validated this test with traditionally used biomarkers and final diagnoses. An expert panel reviewed the patient's data and gave a final diagnosis. The final diagnosis was classified as definite, probable, or possible. Results: A total of 111 children (98 with fever and 13 control) were recruited: 55% male, mean age 6.3 years. Plasma HNP1-3 levels were higher with bacterial infections: 10,428 (5789-14,866) vs. 7352 (3762-10,672) pg/mL, p = 0.007. HNP1-3 were negatively correlated with age: r = -0.207, p = 0.029. Of the different categorical variables tested, only c-reactive protein (CRP) (≥42.3 mg/dL), neutrophil count (≥10.2), and age (odds ratio = 1.185, p = 0.013 and 95%CI = 1.037-1.354) had significant diagnostic capability for bacterial disease prediction. Conclusions: Due to its low diagnostic value in febrile patients, the HNP1-3 value is not currently recommended to support pathogen differentiation in children in an emergency setting. Further studies are needed to support its clinical use.
Collapse
Affiliation(s)
- Eiass Kassem
- Department of Pediatrics, Hillel Yaffe Medical Center, Affiliated with the Rappaport Faculty of Medicine, Technion Institute of Technology, Hadera 3810101, Israel; (E.K.); (M.S.); (L.M.)
| | - Maanit Shapira
- Laboratory Division, Hillel Yaffe Medical Center, Affiliated with the Rappaport Faculty of Medicine, Technion Institute of Technology, Hadera 3810101, Israel;
| | - Miral Sussan
- Department of Pediatrics, Hillel Yaffe Medical Center, Affiliated with the Rappaport Faculty of Medicine, Technion Institute of Technology, Hadera 3810101, Israel; (E.K.); (M.S.); (L.M.)
| | - Loay Mahamid
- Department of Pediatrics, Hillel Yaffe Medical Center, Affiliated with the Rappaport Faculty of Medicine, Technion Institute of Technology, Hadera 3810101, Israel; (E.K.); (M.S.); (L.M.)
| | - Naama Amsalem
- Department of Cardiology, Hillel Yaffe Medical Center, Affiliated with Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel;
| | - Rami Abu Fanne
- Department of Cardiology, Hillel Yaffe Medical Center, Affiliated with Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel;
| |
Collapse
|
4
|
Antimicrobial peptides from freshwater invertebrate species: potential for future applications. Mol Biol Rep 2022; 49:9797-9811. [PMID: 35716292 DOI: 10.1007/s11033-022-07483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Invertebrates are a significant source of antimicrobial peptides because they lack an adaptive immune system and must rely on their innate immunity to survive in a pathogen-infested environment. Various antimicrobial peptides that represent major components of invertebrate innate immunity have been described in a number of investigations over the last few decades. In freshwater invertebrates, antimicrobial peptides have been identified in arthropods, annelids, molluscs, crustaceans, and cnidarians. Freshwater invertebrate species contain antimicrobial peptides from the families astacidin, macin, defensin, and crustin, as well as other antimicrobial peptides that do not belong to these families. They show broad spectrum activities greatly directed against bacteria and to a less extent against fungi and viruses. This review focuses on antimicrobial peptides found in freshwater invertebrates, highlighting their features, structure-activity connections, antimicrobial processes, and possible applications in the food industry, animal husbandry, aquaculture, and medicine. The methods for their synthesis, purification, and characterization, as well as the obstacles and strategies for their development and application, are also discussed.
Collapse
|
5
|
Yu SS, Zhao ZH, Gong XF, Fan XL, Lin ZH, Chen J. Antimicrobial and immunomodulatory activity of beta-defensin from the Chinese spiny frog (Quasipaa spinosa). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104264. [PMID: 34551359 DOI: 10.1016/j.dci.2021.104264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
The β-defensins are important components of the vertebrate innate immune system. While mammalian β-defensins have wide-ranging antibacterial and immunomodulatory activities, those of amphibians remain largely uncharacterised. In this study, β-defensin cDNA was identified from the skin transcriptome of the Chinese spiny frog Quasipaa spinosa. This β-defensin (QS-BD) consists of a signal and a mature peptide. Sequence alignments with other amphibian β-defensins showed conservation of the functional mature peptide and that its closest relative is β-defensin from Zhangixalus puerensis. Synthetic QS-BD showed antibacterial activity against Vibrio vulnificus, Vibrio harveyi, Streptococcus iniae, and Aeromonas hydrophila. QS-BD showed bactericidal activity by destroying the cell membrane integrity, but did not hydrolyse genomic DNA. QS-BD treatment promoted respiratory bursts and upregulated the expression of interleukin-1β and tumour necrosis factor-α in the murine leukemic monocyte/macrophage cell line RAW264.7. This is the first demonstration of immunomodulatory activity by an amphibian β-defensin.
Collapse
Affiliation(s)
- Shui-Sheng Yu
- College of Ecology, Lishui University, Lishui, 323000, China; Ecological Forestry Development Center of Suichang County, Lishui, 323000, China
| | - Zeng-Hui Zhao
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Xiao-Fei Gong
- College of Ecology, Lishui University, Lishui, 323000, China; Ecological Forestry Development Center of Suichang County, Lishui, 323000, China
| | - Xiao-Li Fan
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Zhi-Hua Lin
- College of Ecology, Lishui University, Lishui, 323000, China.
| | - Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China.
| |
Collapse
|
6
|
Liu H, Guo S, He Y, Shi Q, Yang M, You X. Toll protein family structure, evolution and response of the whiteleg shrimp (Litopenaeus vannamei) to exogenous iridescent virus. JOURNAL OF FISH DISEASES 2021; 44:1131-1145. [PMID: 33835515 DOI: 10.1111/jfd.13374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 01/26/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Whiteleg shrimp is a widely cultured crustacean, but frequent disease outbreaks have decreased production and caused significant losses. Toll-like receptors (TLRs) comprise a large innate immune family that is involved in the innate immune response. However, understanding of their regulatory mechanism is limited. In this study, PacBio sequencing and Illumina sequencing were applied to the gill and hepatopancreas tissues of whiteleg shrimp and an integrated transcript gene set was established. The upregulation of Toll1, Toll2 and Toll3 transcripts in the hepatopancreas tissue of whiteleg shrimp after iridescent virus infection implies that these proteins are involved in the immune response to the virus; simultaneously, the TRAF6 and relish transcripts in the Toll pathway were also upregulated, implying that the Toll pathway was activated. We predicted the three-dimensional structure of the five Toll proteins in whiteleg shrimp and humans and constructed a phylogenetic tree of the Toll protein family. In addition, there was a large discrepancy of Toll1 between invertebrates and vertebrates, presumably because of the loss of Toll1 protein sequence during the evolution process from invertebrates to vertebrates. Our research will improve the cognition of Toll protein family in invertebrates in terms of evolution, structure and function and provide theoretical guidance for researchers in this field.
Collapse
Affiliation(s)
- Hongtao Liu
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Shengtao Guo
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Yugui He
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Mingqiu Yang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
7
|
Sousa H, Hinzmann M. Review: Antibacterial components of the Bivalve's immune system and the potential of freshwater bivalves as a source of new antibacterial compounds. FISH & SHELLFISH IMMUNOLOGY 2020; 98:971-980. [PMID: 31676427 DOI: 10.1016/j.fsi.2019.10.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Antibacterial research is reaching new heights due to the increasing demand for the discovery of new substances capable of inhibiting bacteria, especially to respond to the appearance of more and more multi-resistant strains. Bivalves show enormous potential for the finding of new antibacterial compounds, although for that to be further explored, more research needs to be made regarding the immune system of these organisms. Beyond their primary cellular component responsible for bacterial recognition and destruction, the haemocytes, bivalves have various other antibacterial units dissolved in the haemolymph that intervene in the defense against bacterial infections, from the recognition factors that detect different bacteria to the effector molecules carrying destructive properties. Moreover, to better comprehend the immune system, it is important to understand the different survival strategies that bacteria possess in order to stay alive from the host's defenses. This work reviews the current literature regarding the components that intervene in a bacterial infection, as well as discussing the enormous potential that freshwater bivalves have in the discovery of new antibacterial compounds.
Collapse
Affiliation(s)
- Henrique Sousa
- ICBAS - Abel Salazar Institute of Biomedical Sciences, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Mariana Hinzmann
- ICBAS - Abel Salazar Institute of Biomedical Sciences, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
8
|
Contreras G, Shirdel I, Braun MS, Wink M. Defensins: Transcriptional regulation and function beyond antimicrobial activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103556. [PMID: 31747541 DOI: 10.1016/j.dci.2019.103556] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/20/2023]
Abstract
Defensins are one the largest group of antimicrobial peptides and are part of the innate defence. Defensins are produced by animals, plants and fungi. In animals and plants, defensins can be constitutively or differentially expressed both locally or systemically which confer defence before and a stronger response after infection. Immune signalling pathways regulate the gene expression of defensins. These pathways include cellular receptors, which recognise pathogen-associated molecular patterns and are found both in plants and animals. After recognition, signalling pathways and, subsequently, transcriptional factors are activated. There is an increasing number of novel functions in defensins, such as immunomodulators and immune cell attractors. Identification of defensin triggers could help us to elucidate other new functions. The present article reviews the different elicitors of defensins with a main focus on human, fish and marine invertebrate defensins.
Collapse
Affiliation(s)
- Gabriela Contreras
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | - Iman Shirdel
- Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
9
|
Affiliation(s)
- Diane L. Waller
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603 USA
| | - W. Gregory Cope
- Department of Applied Ecology, North Carolina State University, Raleigh NC 27695-7617 USA
| |
Collapse
|
10
|
Zhang R, Wang M, Xia N, Yu S, Chen Y, Wang N. Cloning and analysis of gene expression of interleukin-17 homolog in triangle-shell pearl mussel, Hyriopsis cumingii, during pearl sac formation. FISH & SHELLFISH IMMUNOLOGY 2016; 52:151-156. [PMID: 26994668 DOI: 10.1016/j.fsi.2016.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/10/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
Successful allograft of mantle tissues in certain bivalve mollusks can form pearl sacs secreting nacre for pearl production. Little was known, however, about the immune consequences in response to the tissue transplantation. In the present study, interleukin (IL)-17, one of the key regulatory genes of alloimmunity, was cloned from the triangle-shell pearl mussel (HcIL-17) Hyriopsis cumingii by high-throughput sequencing of the mantle transcriptome. The sequence of HcIL-17 contains an open reading frame of 567 bp encoding a putative protein of 188 amino acid residues. Analysis of sequence characteristics, multiple sequence alignment and phylogenetic analysis indicated HcIL-17 was a novel member in the mollusk IL-17 family. Expression of the HcIL-17 gene in donor mantle tissues and in hemocytes of recipient mussel was up-regulated dramatically within 7 days in response to the mantle tissue allograft for pearl aquaculture, suggesting remarkable proinflammatory responses during pearl sac formation in triangle-shell pearl mussels. Analysis of the time-course expression of HcIL-17 gene revealed the induction of HcIL-17 was time-dependent, reflecting the different periods of alloimmune events in triangle-shell mussels. The results of this study provide essential background information for further investigation of mollusk alloimmunity.
Collapse
Affiliation(s)
- Rui Zhang
- School of Medicine, Jiangsu University, Zhenjiang City, 212013, China
| | - Meng Wang
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Ni Xia
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China
| | - Shuang Yu
- School of Medicine, Jiangsu University, Zhenjiang City, 212013, China
| | - Yi Chen
- School of Medicine, Jiangsu University, Zhenjiang City, 212013, China
| | - Ning Wang
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, China.
| |
Collapse
|
11
|
Patnaik BB, Wang TH, Kang SW, Hwang HJ, Park SY, Park EB, Chung JM, Song DK, Kim C, Kim S, Lee JS, Han YS, Park HS, Lee YS. Sequencing, De Novo Assembly, and Annotation of the Transcriptome of the Endangered Freshwater Pearl Bivalve, Cristaria plicata, Provides Novel Insights into Functional Genes and Marker Discovery. PLoS One 2016; 11:e0148622. [PMID: 26872384 PMCID: PMC4752248 DOI: 10.1371/journal.pone.0148622] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/20/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The freshwater mussel Cristaria plicata (Bivalvia: Eulamellibranchia: Unionidae), is an economically important species in molluscan aquaculture due to its use in pearl farming. The species have been listed as endangered in South Korea due to the loss of natural habitats caused by anthropogenic activities. The decreasing population and a lack of genomic information on the species is concerning for environmentalists and conservationists. In this study, we conducted a de novo transcriptome sequencing and annotation analysis of C. plicata using Illumina HiSeq 2500 next-generation sequencing (NGS) technology, the Trinity assembler, and bioinformatics databases to prepare a sustainable resource for the identification of candidate genes involved in immunity, defense, and reproduction. RESULTS The C. plicata transcriptome analysis included a total of 286,152,584 raw reads and 281,322,837 clean reads. The de novo assembly identified a total of 453,931 contigs and 374,794 non-redundant unigenes with average lengths of 731.2 and 737.1 bp, respectively. Furthermore, 100% coverage of C. plicata mitochondrial genes within two unigenes supported the quality of the assembler. In total, 84,274 unigenes showed homology to entries in at least one database, and 23,246 unigenes were allocated to one or more Gene Ontology (GO) terms. The most prominent GO biological process, cellular component, and molecular function categories (level 2) were cellular process, membrane, and binding, respectively. A total of 4,776 unigenes were mapped to 123 biological pathways in the KEGG database. Based on the GO terms and KEGG annotation, the unigenes were suggested to be involved in immunity, stress responses, sex-determination, and reproduction. A total of 17,251 cDNA simple sequence repeats (cSSRs) were identified from 61,141 unigenes (size of >1 kb) with the most abundant being dinucleotide repeats. CONCLUSIONS This dataset represents the first transcriptome analysis of the endangered mollusc, C. plicata. The transcriptome provides a comprehensive sequence resource for the conservation of genetic information in this species and enrichment of the genetic database. The development of molecular markers will assist in the genetic improvement of C. plicata.
Collapse
Affiliation(s)
- Bharat Bhusan Patnaik
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 336-745, Republic of Korea
- Trident School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Bhubaneswar- 751024, Odisha, India
| | - Tae Hun Wang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 336-745, Republic of Korea
| | - Se Won Kang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 336-745, Republic of Korea
| | - Hee-Ju Hwang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 336-745, Republic of Korea
| | - So Young Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 336-745, Republic of Korea
| | - Eun Bi Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 336-745, Republic of Korea
| | - Jong Min Chung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 336-745, Republic of Korea
| | - Dae Kwon Song
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 336-745, Republic of Korea
| | - Changmu Kim
- National Institute of Biological Resources, Incheon, 404-170, Republic of Korea
| | - Soonok Kim
- National Institute of Biological Resources, Incheon, 404-170, Republic of Korea
| | - Jun Sang Lee
- Institute of Environmental Research, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 200-701, Republic of Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 300 Yongbong-Dong, Buk-gu, Gwangju, 500-757, Republic of Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD., 621-6 Banseok-dong, Yuseong-gu, Daejeon, 305-150, Republic of Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 336-745, Republic of Korea
- * E-mail:
| |
Collapse
|
12
|
Shen W, Chen Y, Yao H, Du C, Luan N, Yan X. A novel defensin-like antimicrobial peptide from the skin secretions of the tree frog, Theloderma kwangsiensis. Gene 2016; 576:136-40. [DOI: 10.1016/j.gene.2015.09.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/17/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
|
13
|
Wang Q, Zhang L, Yang D, Yu Q, Li F, Cong M, Ji C, Wu H, Zhao J. Molecular diversity and evolution of defensins in the manila clam Ruditapes philippinarum. FISH & SHELLFISH IMMUNOLOGY 2015; 47:302-312. [PMID: 26363232 DOI: 10.1016/j.fsi.2015.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 06/05/2023]
Abstract
Four types of defensins were identified in Manila clam and designated as Rpdef1, Rpdef2, Rpdef3 and Rpdef4, which encoded a polypeptide of 49, 46, 45 and 42 amino acids, respectively. Sequence alignments indicated that Rpdef1 shared 46.9% identity with Rpdef2, 40.8% with Rpdef3, and 34.7% with Rpdef4. Analysis of transcript polymorphism showed that Rpdef3 accounted for about 60% frequency of Rpdefs occurrence in clams from three geographic origins (Dalian, Qingdao and Hangzhou). By quantitative real-time RT-PCR (qRT-PCR) analysis, the transcripts of Rpdefs were mainly detected in hemocytes and they responded sensitively to bacterial challenge in hemocytes. Evolutionary analysis indicated that all Rpdefs were under positive selection with positively selected basic amino acid residues detected in the C-terminal regions, which perhaps have a functional relevance by modifying the charge distribution of Rpdefs. The results also showed some lineages with dN/dS > 1, suggesting positive selection pressures existed in some lineages of phylogeny tree constructed by mollusk defensins. Overall, our results suggest that Rpdefs perhaps played important roles in host defense and positive selection is the major driving force in generating high diversity of defensins in the Manila clam.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Linbao Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qian Yu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Ming Cong
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Chenglong Ji
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Huifeng Wu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, CAS, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
14
|
The invertebrate midintestinal gland ("hepatopancreas") is an evolutionary forerunner in the integration of immunity and metabolism. Cell Tissue Res 2014; 358:685-95. [PMID: 25174684 DOI: 10.1007/s00441-014-1985-7] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
The immune system has an impact on the metabolic performance in vertebrates, thus the metabolic effects of immune cells are receiving intense attention today in the biomedical field. However, the evolutionary origin of the immunity-metabolism interaction is still uncertain. In this review, I show that mollusks and crustaceans integrate immune functions to a metabolic organ, the midintestinal gland ("hepatopancreas"). In these animals, the epithelial cells of the midintestinal gland are major sources of immune molecules, such as lectins, hemocyanin, ferritin, antibacterial and antiviral proteins, proteolytic enzymes and nitric oxide. There is crosstalk between midintestinal gland cells and phagocytes, which aids the initiation of the immune response and the clearance of pathogens. The midintestinal gland is thereby an integrated organ of immunity and metabolism. It is likely that immunity was the primary function of the midintestinal gland cells and that their role in the intermediate metabolism has evolved during the course of their further specialization.
Collapse
|
15
|
Toubiana M, Rosani U, Giambelluca S, Cammarata M, Gerdol M, Pallavicini A, Venier P, Roch P. Toll signal transduction pathway in bivalves: complete cds of intermediate elements and related gene transcription levels in hemocytes of immune stimulated Mytilus galloprovincialis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:300-312. [PMID: 24709052 DOI: 10.1016/j.dci.2014.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 06/03/2023]
Abstract
Based on protein domain structure and organization deduced from mRNA contigs, 15 transcripts of the Toll signaling pathway have been identified in the bivalve, Mytilus galloprovincialis. Identical searches performed on publicly available Mytilus edulis ESTs revealed 11 transcripts, whereas searches performed in genomic and new transcriptome sequences of the Pacific oyster, Crassostrea gigas, identified 21 Toll-related transcripts. The remarkable molecular diversity of TRAF and IKK coding sequences of C. gigas, suggests that the sequence data inferred from Mytilus cDNAs may not be exhaustive. Most of the Toll pathway genes were constitutively and ubiquitously expressed in M. galloprovincialis, although at different levels, and clearly induced after in vivo injection with bacteria. Such over-transcription was more rapid and intense with Gram-negative than with Gram-positive bacteria. Injection of a fungus modulated the transcription of few Toll pathway genes, with the induction levels of TLR/MyD88 complex being always less intense. Purified LPS and β-glucans had marginal effect whereas peptidoglycans were ineffective. At the moment, we found no evidence of an IMD transcript in bivalves. In conclusion, mussels possess a complete Toll pathway which can be triggered either by Gram-positive or Gram-negative bacteria.
Collapse
Affiliation(s)
- Mylène Toubiana
- Ecologie des Systèmes Marins Côtiers (EcoSym), CNRS-Université de Montpellier 2-IRD, cc 093, place E. Bataillon, 34095 Montpellier, France
| | - Umberto Rosani
- Department of Biology, University of Padua, Via U. Bassi, 58/B, 35121 Padua, Italy
| | - Sonia Giambelluca
- Department of Biological, Chemical and Pharmaceutical Science and Technology, University of Palermo, Via Archirafi 18, 90123 Palermo, Italy
| | - Matteo Cammarata
- Department of Biological, Chemical and Pharmaceutical Science and Technology, University of Palermo, Via Archirafi 18, 90123 Palermo, Italy
| | - Marco Gerdol
- Laboratory of Genetics, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Alberto Pallavicini
- Laboratory of Genetics, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Paola Venier
- Department of Biology, University of Padua, Via U. Bassi, 58/B, 35121 Padua, Italy.
| | - Philippe Roch
- Ecologie des Systèmes Marins Côtiers (EcoSym), CNRS-Université de Montpellier 2-IRD, cc 093, place E. Bataillon, 34095 Montpellier, France.
| |
Collapse
|
16
|
Silva PM, Gonçalves S, Santos NC. Defensins: antifungal lessons from eukaryotes. Front Microbiol 2014; 5:97. [PMID: 24688483 PMCID: PMC3960590 DOI: 10.3389/fmicb.2014.00097] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/21/2014] [Indexed: 01/07/2023] Open
Abstract
Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed.
Collapse
Affiliation(s)
- Patrícia M Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|