1
|
Mensah DD, Morales-Lange B, Rocha SDC, Øverland M, Kathiresan P, Hooft JM, McLean Press C, Sørum H, Mydland LT. Paecilomyces variotii improves growth performance and modulates immunological biomarkers and gut microbiota in vaccinated Atlantic salmon pre-smolts. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110223. [PMID: 39988217 DOI: 10.1016/j.fsi.2025.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/24/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Functional feeds, as a prophylactic strategy, are a promising alternative to address stressful production-related activities (e.g., seawater transfer, delousing) and infectious diseases in salmon farming. To understand the effect of Paecilomyces variotii on short-term growth performance and health responses of vaccinated Atlantic salmon pre-smolts, a control diet (D1) and three experimental diets, where P. variotii replaced 5 % (D2), 10 % (D3) or 20 % (D4) of crude protein, were fed to fish for 28 days in freshwater. Fish fed diets containing P. variotii had a significant dose-dependent linear improvement in feed conversion ratio. Also, D4 group showed a gene expression related to signal truncation and gut homeostasis, while in head kidney (HK), P. variotii activated and controlled immune responses through c-type lectin receptor, downstream signalling molecules (myd88, tollip), cytokines (tnfα, il1β, ifnγ), and effector molecules (cath-2, c3, prx). Moreover, an upregulation of antigen presenting cell markers (mhcii, cd83) and T cell transcriptional factors (gata3, rorc, foxp3) was detected in HK, suggesting that P. variotii could coordinate the innate and adaptive mechanisms. Interestingly, D2 increased specific IgM against Vibrio anguillarum in vaccinated salmon. KEGG analysis revealed that D4 induced decreased abundance of proteins related to inflammatory pathways, e.g., like salmonella infection, apoptosis and necroptosis as well as innate and adaptive signalling pathways in the HK. On the contrary, D4 induced high abundance of proteins related to these inflammatory pathways in the skin mucus (Skm). In addition, complement proteins (i.e., C1q, C4, C7) and arginine metabolism were also in high abundance in the SKm. In relation to the gut microbiota, fish fed D2 and D3 showed low abundance of key lactic acid bacteria (e.g., Weisella, Leuconostoc, Lactobacillus) but high abundance Photobacterium and Ligilactobacillus compared with D1 in the gut. Overall, feed inclusion of P. variotii improved fish growth performance and modulated health response in Atlantic salmon pre-smolts.
Collapse
Affiliation(s)
- Dominic Duncan Mensah
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Byron Morales-Lange
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Sérgio Domingos Cardoso Rocha
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Purushothaman Kathiresan
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Jamie Marie Hooft
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Charles McLean Press
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Liv Torunn Mydland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway.
| |
Collapse
|
2
|
Miryala KR, Swain B. Advances and Challenges in Aeromonas hydrophila Vaccine Development: Immunological Insights and Future Perspectives. Vaccines (Basel) 2025; 13:202. [PMID: 40006748 PMCID: PMC11861604 DOI: 10.3390/vaccines13020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Aeromonas hydrophila presents a significant threat to global aquaculture due to its ability to infect freshwater and marine fish species, leading to substantial economic losses. Effective mitigation methods are essential to address these challenges. Vaccination has emerged as a promising strategy to reduce A. hydrophila infections; however, it faces several obstacles, including variability in immune responses, pathogen diversity, and environmental factors affecting vaccine efficacy. To enhance vaccine performance, researchers focus on adjuvants to boost immune responses and develop multivalent vaccines targeting multiple A. hydrophila strains. Tailoring vaccines to specific environmental conditions and optimizing vaccination schedules can further address the challenges posed by pathogen diversity and variable immune responses. This review provides an in-depth analysis of the immunological hurdles associated with A. hydrophila vaccine development. Current vaccine types-live attenuated, inactivated, subunit, recombinant, and DNA-exhibit diverse mechanisms for stimulating innate and adaptive immunity, with varying levels of success. Key focus areas include the potential of advanced adjuvants and nanoparticle delivery systems to overcome existing barriers. The review also highlights the importance of understanding host-pathogen interactions in guiding the development of more targeted and effective immune responses in fish. Complementary approaches, such as immunostimulants, probiotics, and plant-based extracts, are explored as adjuncts to vaccination in aquaculture health management. Despite notable progress, challenges remain in translating laboratory innovations into scalable, cost-effective solutions for aquaculture. Future directions emphasize the integration of advanced genomic and proteomic tools to identify novel antigen candidates and the need for industry-wide collaborations to standardize vaccine production and delivery. Addressing these challenges can unlock the potential of innovative vaccine technologies to safeguard fish health and promote sustainable aquaculture practices globally.
Collapse
Affiliation(s)
| | - Banikalyan Swain
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
3
|
Wise AL, LaFrentz BR, Kelly AM, Khoo LH, Xu T, Liles MR, Bruce TJ. A Review of Bacterial Co-Infections in Farmed Catfish: Components, Diagnostics, and Treatment Directions. Animals (Basel) 2021; 11:ani11113240. [PMID: 34827972 PMCID: PMC8614398 DOI: 10.3390/ani11113240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Catfish aquaculture is a prominent agricultural sector for foodfish production in the Southern United States. Catfish producers often experience high-level mortality events due to bacterial pathogens. In many instances, co-infections caused by multiple bacterial fish pathogens are isolated during diagnostic cases. These bacterial–bacterial interactions may alter the infection dynamics, and many of these mechanisms and interactions remain unclear. Furthermore, these co-infections may complicate disease management plans and treatment strategies. The current review provides an overview of the prevalent bacterial pathogens in catfish culture and previously reported instances of co-infections in catfish and other production fish species. Abstract Catfish production is a major aquaculture industry in the United States and is the largest sector of food fish production. As producers aim to optimize production yields, diseases caused by bacterial pathogens are responsible for high pond mortality rates and economic losses. The major bacterial pathogens responsible are Edwardsiella ictaluri, Aeromonas spp., and Flavobacterium columnare. Given the outdoor pond culture environments and ubiquitous nature of these aquatic pathogens, there have been many reports of co-infective bacterial infections within this aquaculture sector. Co-infections may be responsible for altering disease infection mechanics, increasing mortality rates, and creating difficulties for disease management plans. Furthermore, proper diagnoses of primary and secondary pathogens are essential in ensuring the correct treatment approaches for antimicrobials and chemical applications. A thorough understanding of the interactions and infectivity dynamics for these warm water bacterial pathogens will allow for the adoption of new prevention and control methods, particularly in vaccine development. This review aims to provide an overview of co-infective pathogens in catfish culture and present diagnostic case data from Mississippi and Alabama to define prevalence for these multiple-species infections better.
Collapse
Affiliation(s)
- Allison L. Wise
- School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, AL 36829, USA; (A.L.W.); (A.M.K.)
| | - Benjamin R. LaFrentz
- Aquatic Animal Health Research Unit, United States Department of Agriculture, Agricultural Research Service, Auburn, AL 36832, USA;
| | - Anita M. Kelly
- School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, AL 36829, USA; (A.L.W.); (A.M.K.)
| | - Lester H. Khoo
- Thad Cochran National Warmwater Aquaculture Center, Mississippi State University, Stoneville, MS 38776, USA;
| | - Tingbi Xu
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA; (T.X.); (M.R.L.)
| | - Mark R. Liles
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA; (T.X.); (M.R.L.)
| | - Timothy J. Bruce
- School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, AL 36829, USA; (A.L.W.); (A.M.K.)
- Correspondence:
| |
Collapse
|
4
|
Computational Investigations on the Binding Mode of Ligands for the Cannabinoid-Activated G Protein-Coupled Receptor GPR18. Biomolecules 2020; 10:biom10050686. [PMID: 32365486 PMCID: PMC7277601 DOI: 10.3390/biom10050686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
GPR18 is an orphan G protein-coupled receptor (GPCR) expressed in cells of the immune system. It is activated by the cannabinoid receptor (CB) agonist ∆9-tetrahydrocannabinol (THC). Several further lipids have been proposed to act as GPR18 agonists, but these results still require unambiguous confirmation. In the present study, we constructed a homology model of the human GPR18 based on an ensemble of three GPCR crystal structures to investigate the binding modes of the agonist THC and the recently reported antagonists which feature an imidazothiazinone core to which a (substituted) phenyl ring is connected via a lipophilic linker. Docking and molecular dynamics simulation studies were performed. As a result, a hydrophobic binding pocket is predicted to accommodate the imidazothiazinone core, while the terminal phenyl ring projects towards an aromatic pocket. Hydrophobic interaction of Cys251 with substituents on the phenyl ring could explain the high potency of the most potent derivatives. Molecular dynamics simulation studies suggest that the binding of imidazothiazinone antagonists stabilizes transmembrane regions TM1, TM6 and TM7 of the receptor through a salt bridge between Asp118 and Lys133. The agonist THC is presumed to bind differently to GPR18 than to the distantly related CB receptors. This study provides insights into the binding mode of GPR18 agonists and antagonists which will facilitate future drug design for this promising potential drug target.
Collapse
|
5
|
Current State of Modern Biotechnological-Based Aeromonas hydrophila Vaccines for Aquaculture: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3768948. [PMID: 31467887 PMCID: PMC6699303 DOI: 10.1155/2019/3768948] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
This systematic review describes what “the cutting edge vaccines for Aeromonas hydrophila are”. The focus is on types of high tech biotechnological based vaccines, target gene or antigen in developing these vaccines, and challenge model fish species used in vaccines efficacy testing. Vaccines delivery methods, immune response, and their efficacy, adjuvant or carrier systems used, and the overall experimental setup or design of the vaccines under investigation are also described. The search for the original papers published between 2009 and 2018 was conducted in June of 2018, using the PubMed and Google scholar electronic database. Twenty-three (23/4386) studies were included in the final assembly using PRISMA guidelines (Protocol not registered). Recombinant protein vaccines were the highly experimented type of the modern biotechnological based vaccines identified in the selected studies (16/23; 70%). Outer membrane proteins (OMPs) of different β-barrels were shown to be a potential antigenic entity for A. hydrophila vaccines (57%). Intraperitoneal route with conventional carries or adjuvants was the highly applied delivery system while very few studies used herbal based vaccine adjuvants and nanomaterial as a vaccine carrier. Variation was observed in terms of protection levels in the selected studies. The experimental designs partly contributed to the observed variation. Therefore, recombinant vaccines that use new carrier system technologies and delivered through oral route in feeds would have been of great value for use in the prevention and control of A. hydrophila infections in fish. Despite the usefulness as academic tools to identify what is important in pathogenicity of the etiological agent to the host fish, these vaccines are only economically viable in very high-value animals. Therefore, if vaccination is a good option for A. hydrophila group, then simple autogenous vaccines based on accurate typing and evidence-based definition of the epidemiological unit for their use would be the most viable approach in terms of both efficacy and economic feasibility especially in low and middle-income countries (LMIC).
Collapse
|
6
|
Characterization of non-olfactory GPCRs in human sperm with a focus on GPR18. Sci Rep 2016; 6:32255. [PMID: 27572937 PMCID: PMC5004183 DOI: 10.1038/srep32255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/04/2016] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) transduce external chemical cues into intracellular signals and are involved in a plethora of physiological processes, but knowledge regarding the function of these receptors in spermatozoa is limited. In the present study, we performed RNA-Seq and analyzed the expression of the all GPCRs except olfactory receptors in human spermatozoa. We revealed the expression of up to 223 different GPCR transcripts in human spermatozoa (FPKM > 0.1) and identified GPR18, a newly described cannabinoid receptor, together with GPR137 and GPR135, as one of the three most highly expressed GPCRs. To date, the expression of GPR18 was completely unknown in human spermatozoa. We confirmed GPR18 expression using RT-PCR and immuncytochemistry experiments and localized the GPR18 protein in the midpiece of human spermatozoa. Stimulation of human spermatozoa with the GPR18 ligand N-arachidonoylglycine induced the phosphorylation of 12 protein kinases, some of them are for example known to be involved in the acrosome reaction. In line with this, N-arachidonoylglycine affected the cytoskeleton by changing levels of F-actin and inducing the acrosome reaction in human spermatozoa in a concentration-dependent manner. Our results indicate that GPR18 might be involved in physiological processes of human spermatozoa, suggesting GPR18 to be a potential player in sperm physiology.
Collapse
|
7
|
Calduch-Giner JA, Sitjà-Bobadilla A, Pérez-Sánchez J. Gene Expression Profiling Reveals Functional Specialization along the Intestinal Tract of a Carnivorous Teleostean Fish (Dicentrarchus labrax). Front Physiol 2016; 7:359. [PMID: 27610085 PMCID: PMC4997091 DOI: 10.3389/fphys.2016.00359] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/05/2016] [Indexed: 01/23/2023] Open
Abstract
High-quality sequencing reads from the intestine of European sea bass were assembled, annotated by similarity against protein reference databases and combined with nucleotide sequences from public and private databases. After redundancy filtering, 24,906 non-redundant annotated sequences encoding 15,367 different gene descriptions were obtained. These annotated sequences were used to design a custom, high-density oligo-microarray (8 × 15 K) for the transcriptomic profiling of anterior (AI), middle (MI), and posterior (PI) intestinal segments. Similar molecular signatures were found for AI and MI segments, which were combined in a single group (AI-MI) whereas the PI outstood separately, with more than 1900 differentially expressed genes with a fold-change cutoff of 2. Functional analysis revealed that molecular and cellular functions related to feed digestion and nutrient absorption and transport were over-represented in AI-MI segments. By contrast, the initiation and establishment of immune defense mechanisms became especially relevant in PI, although the microarray expression profiling validated by qPCR indicated that these functional changes are gradual from anterior to posterior intestinal segments. This functional divergence occurred in association with spatial transcriptional changes in nutrient transporters and the mucosal chemosensing system via G protein-coupled receptors. These findings contribute to identify key indicators of gut functions and to compare different fish feeding strategies and immune defense mechanisms acquired along the evolution of teleosts.
Collapse
Affiliation(s)
- Josep A Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Spain
| |
Collapse
|
8
|
Chiang N, Dalli J, Colas RA, Serhan CN. Identification of resolvin D2 receptor mediating resolution of infections and organ protection. ACTA ACUST UNITED AC 2015. [PMID: 26195725 PMCID: PMC4516788 DOI: 10.1084/jem.20150225] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chiang et al. identify GPR18 as a novel receptor for resolvin D2, and show that activation of this receptor in human and mouse phagocytes stimulates phagocytic clearance during bacterial infections and promotes organ protection Endogenous mechanisms that orchestrate resolution of acute inflammation are essential in host defense and the return to homeostasis. Resolvin (Rv)D2 is a potent immunoresolvent biosynthesized during active resolution that stereoselectively stimulates resolution of acute inflammation. Here, using an unbiased G protein–coupled receptor-β-arrestin–based screening and functional sensing systems, we identified a receptor for RvD2, namely GPR18, that is expressed on human leukocytes, including polymorphonuclear neutrophils (PMN), monocytes, and macrophages (MΦ). In human MΦ, RvD2-stimulated intracellular cyclic AMP was dependent on GPR18. RvD2-stimulated phagocytosis of Escherichia coli and apoptotic PMN (efferocytosis) were enhanced with GPR18 overexpression and significantly reduced by shRNA knockdown. Specific binding of RvD2 to recombinant GPR18 was confirmed using a synthetic 3H-labeled-RvD2. Scatchard analysis gave a Kd of ∼10 nM consistent with RvD2 bioactive concentration range. In both E. coli and Staphylococcus aureus infections, RvD2 limited PMN infiltration, enhanced phagocyte clearance of bacteria, and accelerated resolution. These actions were lost in GPR18-deficient mice. During PMN-mediated second organ injury, RvD2’s protective actions were also significantly diminished in GPR18-deficient mice. Together, these results provide evidence for a novel RvD2–GPR18 resolution axis that stimulates human and mouse phagocyte functions to control bacterial infections and promote organ protection.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
9
|
Console-Bram L, Brailoiu E, Brailoiu GC, Sharir H, Abood ME. Activation of GPR18 by cannabinoid compounds: a tale of biased agonism. Br J Pharmacol 2015; 171:3908-17. [PMID: 24762058 DOI: 10.1111/bph.12746] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 04/03/2014] [Accepted: 04/18/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE GPR18 is a candidate cannabinoid receptor, but its classification as such is controversial. The rationale of the study presented herein was to consider the effects of N-arachidonoyl glycine (NAGly) and cannabinoids via differential G-protein coupled pathways, in addition to β-arrestin signalling. Cellular localization of GPR18 receptors was also examined. EXPERIMENTAL APPROACH Calcium mobilization and ERK1/2 phosphorylation were quantified in a cell line stably expressing GPR18 (HEK293/GPR18 cells). In addition, using the DiscoveRx PathHunter CHO-K1 GPR18 β-arrestin cell line, recruitment of β-arrestin was quantified. KEY RESULTS Concentration-dependent increases in intracellular calcium and ERK1/2 phosphorylation were observed in the presence of NAGly, abnormal cannabidiol (AbnCBD), O-1602, O-1918 and Δ(9)-tetrahydrocannabinol (Δ(9)-THC) in HEK293/GPR18 cells. The initial rise in intracellular calcium in the presence of NAGly, O1918 and THC was blocked by either Gα(q) or Gα(i/o) inhibition. The ERK1/2 phosphorylation was inhibited by Pertussis toxin and N-arachidonoyl-L-serine (NARAS). Recruitment of β-arrestin in the PathHunter CHO-K1 GPR18 cell line revealed a differential pattern of GPR18 activation; of all the ligands tested, only Δ(9)-THC produced a concentration-dependent response. The localization of GPR18 receptors within the HEK293/GPR18 cells is both intracellular, and on the plasma membrane. CONCLUSIONS AND IMPLICATIONS These findings suggest that GPR18 activation involves several signal transduction pathways indicative of biased agonism, thereby providing a plausible explanation for the apparent discrepancies in GPR18 activation found in the literature. Additionally, the results presented herein provide further evidence for GPR18 as a candidate cannabinoid receptor.
Collapse
Affiliation(s)
- Linda Console-Bram
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|