1
|
Miao LH, Remø SC, Espe M, Philip AJP, Hamre K, Fjelldal PG, Skjærven K, Holen E, Vikeså V, Sissener NH. Dietary plant oil supplemented with arachidonic acid and eicosapentaenoic acid affects the fatty acid composition and eicosanoid metabolism of Atlantic salmon (Salmo salar L.) during smoltification. FISH & SHELLFISH IMMUNOLOGY 2022; 123:194-206. [PMID: 35227881 DOI: 10.1016/j.fsi.2022.02.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
This study sought to investigate whether a "natural diet" (mimicking the fatty acid composition of freshwater aquatic insects eaten by salmon parr) during the freshwater (FW) life stage of pre-smolt Atlantic salmon (Salmo salar L.) affected red blood cells and gill fatty acid composition as well as eicosanoid metabolism in gill during smolting at different temperatures. Before being transferred to seawater (SW), salmon parr were fed with a modified (MO) diet containing vegetable oils (rapeseed, palm, and linseed oils) supplemented with eicosapentaenoic acid (EPA) and arachidonic acid (ARA) to completely replace the fish oil (FO). Fatty acid composition in red blood cells and gill tissues was determined before SW transfer and six weeks after. Additionally, the expression of genes associated with eicosanoid metabolism and Na+/K+-ATPase (NKA) activity in salmon gill was examined at different temperatures before SW transfer and 24 h after. The results showed the changes in fatty acid composition, including sum monounsaturated fatty acids (MUFAs), docosahexaenoic acid (DHA), ARA, EPA, and sum n-6 polyunsaturated fatty acids (n-6 PUFA) in both red blood cells and gill tissues at the FW stage were consistent with the fatty acid profiles of the supplied MO and FO fish diets; however sum EPA and DHA composition exhibited opposite trends to those of the FO diet. The proportion of ARA, EPA, and n-6 PUFA increased, whereas sum MUFAs and DHA decreased in the red blood cells and gill tissues of MO-fed fish compared to those fed with the FO diet at FW stage. Additionally, 5-lipoxygenase-activating protein (Flap) expression was downregulated in MO-fed fish prior to SW transfer. During the process of SW transfer at different temperatures, the MO diet remarkably suppressed NKAα1a expression in MO-fed fish both at 12 and 16 °C. The MO diet also upregulated phospholipase A2 group IV (PLA2g4) expression in gills at 8, 12, and 16 °C, but suppressed phospholipase A2 group VI (PLA2g6) expression in gills at 12 °C compared to FO-fed fish at 12 °C and MO-fed fish at 8 °C. The MO diet also upregulated Cyclooxygenase 2 (Cox-2) expression at 8 °C compared to FO-fed fish and increased Arachidonate 5-lipoxygenase (5-Lox) expression in MO-fed fish at 16 °C compared to both FO-fed fish at 16 °C and MO-fed fish at 8 °C. Our study also determined that both SW transfer water temperatures and diets during the FW period jointly influenced the mRNA expression of PLA2g4, PLA2g6, and Lpl, whereas 5-Lox was more sensitive to dietary changes. In conclusion, the MO diet affected the fatty acid composition in gill and in red blood cells. When transferred to SW, dietary ARA supplementation could promote the bioavailability for eicosanoid synthesis in gill mainly via PLA2g4 activation, and potentially inhibit the stress and inflammatory response caused by different water temperatures through dietary EPA supplementation.
Collapse
Affiliation(s)
- L H Miao
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Centre (FFRC), Chinese Academy of Fishery Sciences (CAFS), No. 9 East Shanshui Road, Wuxi Jiangsu, 214081, PR China; Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway.
| | - S C Remø
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - M Espe
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - A J P Philip
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - K Hamre
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - P G Fjelldal
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - K Skjærven
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - E Holen
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway
| | - V Vikeså
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway; Skretting ARC (Aquaculture Research Centre), Sjøhagen 3, 4016, Stavanger, Norway
| | - N H Sissener
- Institute of Marine Research (IMR), Postboks 1870 Nordnes, 5817, Bergen, Norway.
| |
Collapse
|
2
|
Araujo P, Espe M, Lucena E, Yang Y, Holen E. Differential production of prostaglandins and prostacyclins by liver and head kidney cells from Atlantic salmon challenged with arachidonic and eicosapentaenoic acids. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100015. [DOI: 10.1016/j.fsirep.2021.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022] Open
|
3
|
Katan T, Xue X, Caballero-Solares A, Taylor RG, Rise ML, Parrish CC. Influence of Dietary Long-Chain Polyunsaturated Fatty Acids and ω6 to ω3 Ratios on Head Kidney Lipid Composition and Expression of Fatty Acid and Eicosanoid Metabolism Genes in Atlantic Salmon ( Salmo salar). Front Mol Biosci 2020; 7:602587. [PMID: 33381522 PMCID: PMC7767880 DOI: 10.3389/fmolb.2020.602587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
The interaction of dietary eicosapentaenoic acid and docosahexaenoic acid (EPA+DHA) levels with omega-6 to omega-3 ratios (ω6:ω3), and their impact on head kidney lipid metabolism in farmed fish, are not fully elucidated. We investigated the influence of five plant-based diets (12-week exposure) with varying EPA+DHA levels (0.3, 1.0, or 1.4%) and ω6:ω3 (high ω6, high ω3, or balanced) on tissue lipid composition, and transcript expression of genes involved in fatty acid and eicosanoid metabolism in Atlantic salmon head kidney. Tissue fatty acid composition was reflective of the diet with respect to C18 PUFA and MUFA levels (% of total FA), and ω6:ω3 (0.5–1.5). Fish fed 0.3% EPA+DHA with high ω6 (0.3% EPA+DHA↑ω6) had the highest increase in proportions (1.7–2.3-fold) and in concentrations (1.4-1.8-fold) of arachidonic acid (ARA). EPA showed the greatest decrease in proportion and in concentration (by ~½) in the 0.3% EPA+DHA↑ω6 fed fish compared to the other treatments. However, no differences were observed in EPA proportions among salmon fed the high ω3 (0.3 and 1.0% EPA+DHA) and balanced (1.4% EPA+DHA) diets, and DHA proportions were similar among all treatments. Further, the transcript expression of elovl5a was lowest in the 0.3% EPA+DHA↑ω6 fed fish, and correlated positively with 20:3ω3, 20:4ω3 and EPA:ARA in the head kidney. This indicates that high dietary 18:3ω3 promoted the synthesis of ω3 LC-PUFA. Dietary EPA+DHA levels had a positive impact on elovl5a, fadsd5 and srebp1 expression, and these transcripts positively correlated with tissue ΣMUFA. This supported the hypothesis that LC-PUFA synthesis is positively influenced by tissue MUFA levels in Atlantic salmon. The expression of pparaa was higher in the 0.3% EPA+DHA↑ω6 compared to the 0.3% EPA+DHA↑ω3 fed fish. Finally, significant correlations between head kidney fatty acid composition and the expression of eicosanoid synthesis-related transcripts (i.e., 5loxa, 5loxb, cox1, cox2, ptges2, ptges3, and pgds) illustrated the constitutive relationships among fatty acids and eicosanoid metabolism in salmon.
Collapse
Affiliation(s)
- Tomer Katan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
4
|
Stenberg OK, Holen E, Piemontese L, Liland NS, Lock EJ, Espe M, Belghit I. Effect of dietary replacement of fish meal with insect meal on in vitro bacterial and viral induced gene response in Atlantic salmon (Salmo salar) head kidney leukocytes. FISH & SHELLFISH IMMUNOLOGY 2019; 91:223-232. [PMID: 31121289 DOI: 10.1016/j.fsi.2019.05.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/02/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
With the fast growth of today's aquaculture industry, the demand for aquafeeds is expanding dramatically. Insects, which are part of the natural diet of salmonids, could represent a sustainable ingredient for aquaculture feed. The aim of the current study was to test how a partial or total replacement of dietary fishmeal with insect meal affect gene responses involved in inflammation, the eicosanoid pathway and stress response in Atlantic salmon (Salmo salar L.) in isolated head kidney leukocytes after exposure to bacterial or viral mimic. Insect meal (IM) was produced from black soldier fly (BSF, Hermetia illucens) larvae. Seawater Atlantic salmon were fed three different diets for 8 weeks; a control diet (IM0, protein from fishmeal and plant based ingredients (25:75) and lipid from fish oil and vegetable oil (33:66); and two insect-meal containing diets, IM66 and IM100, where 66 and 100% of the fishmeal protein was replaced with IM, respectively. Leukocytes were isolated from the head kidney of fish (n = 6) from each of the three dietary groups. Isolated leukocytes were seeded into culture wells and added either a bacterial mimic (lipopolysaccharide, LPS) or a viral mimic (polyinosinic acid: polycytidylic acid, poly I: C) to induce an inflammatory response. Controls (Ctl) without LPS and poly I: C were included. The transcription of interleukins IL-1β, IL-8, IL-10 and TNF-α were elevated in LPS treated leukocytes isolated from salmon fed the three dietary groups (IM0, IM66 and IM100). The inflammatory-related gene expression in head kidney cells were, however, not affected by the pre-fed substitution of fish meal with IM in the diet of salmon. Gene transcriptions of PTGDS and PTGES were neither affected by LPS, poly I: C or the experimental diets fed prior to cell isolation, while salmon fed with IM showed a lower expression of LOX5. The gene expression of TLR22 and C/EBP-β were down-regulated by the LPS treatment in the cells isolated from salmon fed insect-based diets (IM66 and IM100) compared to fish fed the IM0. Similarly, the leukocytes challenged with LPS and isolated from fish fed with IM66 and IM100 down-regulated the expression of Mn-SOD, GPx1, HSP27 and HSP70 compared to salmon fed IM0. In general, these results suggested that replacement of fishmeal with IM in the diets of Atlantic salmon had no effect on the transcription of pro-inflammatory genes in the head kidney cells. There was, however, an effect of dietary IM on the transcription of antioxidant and stress related genes in the leukocytes.
Collapse
Affiliation(s)
| | - Elisabeth Holen
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway
| | - Luisa Piemontese
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway; Department of Agriculture, Food, Environment and Forestry, University of Florence, Via delle Cascine 5, 50144, Firenze, Italy
| | - Nina S Liland
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway
| | - Erik-Jan Lock
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway
| | - Marit Espe
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway
| | - Ikram Belghit
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway.
| |
Collapse
|
5
|
Katan T, Caballero-Solares A, Taylor RG, Rise ML, Parrish CC. Effect of plant-based diets with varying ratios of ω6 to ω3 fatty acids on growth performance, tissue composition, fatty acid biosynthesis and lipid-related gene expression in Atlantic salmon (Salmo salar). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:290-304. [PMID: 31003197 DOI: 10.1016/j.cbd.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 01/02/2023]
Abstract
Little is known about how variation in omega-6 to omega-3 (ω6:ω3) fatty acid (FA) ratios affects lipid metabolism and eicosanoid synthesis in salmon, and the potential underlying molecular mechanisms. The current study examined the impact of five plant-based diets (12-week exposure) with varying ω6:ω3 (0.3-2.7) on the growth, tissue lipid composition (muscle and liver), and hepatic transcript expression of lipid metabolism and eicosanoid synthesis-related genes in Atlantic salmon. Growth performance and organ indices were not affected by dietary ω6:ω3. The liver and muscle FA composition was highly reflective of the diet (ω6:ω3 of 0.2-0.8 and 0.3-1.9, respectively) and suggested elongation and desaturation of the ω3 and ω6 precursors 18:3ω3 and 18:2ω6. Furthermore, proportions of ω6 and ω3 PUFA in both tissues showed significant positive correlations with dietary inclusion (% of diet) of soy and linseed oils, respectively. Compound-specific stable isotope analysis (CSIA) further demonstrated that liver long-chain polyunsaturated fatty acid (LC-PUFA) synthesis (specifically 20:5ω3 and 20:4ω6) was largely driven by dietary 18:3ω3 and 18:2ω6, even when 20:5ω3 and 22:6ω3 were supplied at levels above minimum requirements. In addition, significant positive and negative correlations were identified between the transcript expression of LC-PUFA synthesis-related genes and liver ω6 and ω3 LC-PUFA, respectively, further supporting FA biosynthesis. Liver ω3 LC-PUFA also correlated negatively with the eicosanoid synthesis-related transcripts pgds and cox1. This is the first study to use CSIA, hepatic transcriptome, and tissue lipid composition analyses concurrently to demonstrate the impact of plant-based diets with varying ω6:ω3 on farmed Atlantic salmon.
Collapse
Affiliation(s)
- Tomer Katan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's A1C 5S7, NL. Canada.
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's A1C 5S7, NL. Canada
| | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's A1C 5S7, NL. Canada
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's A1C 5S7, NL. Canada.
| |
Collapse
|
6
|
Cornet V, Ouaach A, Mandiki SNM, Flamion E, Ferain A, Van Larebeke M, Lemaire B, Reyes López FE, Tort L, Larondelle Y, Kestemont P. Environmentally-realistic concentration of cadmium combined with polyunsaturated fatty acids enriched diets modulated non-specific immunity in rainbow trout. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 196:104-116. [PMID: 29407798 DOI: 10.1016/j.aquatox.2018.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
Nutrition is crucial to grow healthy fish particularly in a context of pollution, overcrowding and pathogen risks. Nowadays, the search for food components able to improve fish health is increasingly developing. Here, the influence of four dietary polyunsaturated fatty acids (PUFAs) that are alpha-linolenic acid (ALA, 18:3n-3), linoleic acid (LA, 18:2n-6), eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) on the sensitivity of rainbow trout (Oncorhynchus mykiss) juveniles to environmentally realistic cadmium (Cd, 0.3 μg/L) concentration was investigated. Fish diets were designed to ensure the specific abundance of one of these individual PUFAs, and were given for a 4-week pre-conditioning period followed by a 6-week Cd exposure period. Focus was put on growth performance and immune responses following a short (24 h) and a long-term (6 weeks) Cd exposure. For each experimental condition, some fish were submitted to a bacterial challenge (24 h) with Aeromonas salmonicida achromogenes at the end of Cd conditioning period. DHA-enriched diet improved growth performances as compared to LA-enriched diet, but also increased ROS production (after short-term exposure to Cd) that could lead to a higher inflammation status, and some immunity-related genes (at short and long-term exposure). We notably highlighted the fact that even a low, environmentally-realistic concentration, Cd can strongly impact the immune system of rainbow trout, and that specific dietary PUFA enrichment strategies can improve growth performance (DHA-enriched diet), provide protection against oxidative stress (ALA- and EPA-enriched diet) and stimulate non-specific immunity.
Collapse
Affiliation(s)
- Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), 5000 Namur, Belgium.
| | - Abderrahim Ouaach
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), 5000 Namur, Belgium
| | - S N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), 5000 Namur, Belgium
| | - Enora Flamion
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), 5000 Namur, Belgium
| | - Aline Ferain
- Institute of Life Sciences, Université Catholique de Louvain (UCL), 1348 Louvain-la-Neuve, Belgium
| | - Mélusine Van Larebeke
- Institute of Life Sciences, Université Catholique de Louvain (UCL), 1348 Louvain-la-Neuve, Belgium
| | - Benjamin Lemaire
- Institute of Life Sciences, Université Catholique de Louvain (UCL), 1348 Louvain-la-Neuve, Belgium
| | - Felipe E Reyes López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Yvan Larondelle
- Institute of Life Sciences, Université Catholique de Louvain (UCL), 1348 Louvain-la-Neuve, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), 5000 Namur, Belgium
| |
Collapse
|
7
|
Holen E, Olsvik PA. β-naphthoflavone interferes with cyp1c1, cox2 and IL-8 gene transcription and leukotriene B4 secretion in Atlantic cod (Gadus morhua) head kidney cells during inflammation. FISH & SHELLFISH IMMUNOLOGY 2016; 54:128-134. [PMID: 27041667 DOI: 10.1016/j.fsi.2016.03.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
The objective of this study was to evaluate how β-naphthoflavone interacts with lipopolysaccharide (LPS) and polyinosinic acid: polycytidylic acid (poly I: C) induced innate immune parameters as well as phase I and phase II detoxification enzymes in head kidney cells isolated from Atlantic cod. β-naphthoflavone is a pure agonist of aryl hydrocarbon receptor (AhR) while LPS and poly I: C are not. β-naphthoflavone was added to head kidney leukocytes alone or together with LPS or poly I: C and the responses were evaluated in terms of protein and gene expression. The results showed that β-naphthoflavone (25 nM), with and without LPS, significantly induced cytochrome P450 (cyp1c) transcription in cod head kidney cells. β-naphthoflavone (100 nM) in the presence of the virus mimic, poly I: C, also increased cyp1c1transcription. LPS induced cyp1c1, cyclooxygenase 2 (cox2), interleukin 1β (IL-1β), interleukin 6 (IL-6) and interleukin 8 (IL-8) transcription, genes that were not affected by the tested β-naphthoflavone concentrations alone. However, β-naphthoflavone (25 and 50 nM) strengthened LPS induced cox2 and IL-8 transcription. Cod head kidney cells exposed to β-naphthoflavone concentrations ranging from 25 to 100 nM, with and without LPS or poly I: C, expressed AhR protein. LPS or β-naphthoflavone (5-50 nM) significantly induced leukotriene B4 (LTB4) secretion compared to control. In conclusion, this study suggests that β-naphthoflavone could interfere with LPS induced immune cell signaling in cod head kidney cells.
Collapse
Affiliation(s)
- Elisabeth Holen
- National Institute of Nutrition and Seafood Research (NIFES), P. B. 2029 Nordnes, 5817, Bergen, Norway.
| | - Pål A Olsvik
- National Institute of Nutrition and Seafood Research (NIFES), P. B. 2029 Nordnes, 5817, Bergen, Norway
| |
Collapse
|
8
|
Holen E, He J, Araujo P, Seliussen J, Espe M. Hydrolyzed fish proteins modulates both inflammatory and antioxidant gene expression as well as protein expression in a co culture model of liver and head kidney cells isolated from Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2016; 54:22-29. [PMID: 27060506 DOI: 10.1016/j.fsi.2016.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/09/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
Hydrolyzed fish proteins (H-pro) contain high concentrations of free amino acids and low molecular peptides that potentially may benefit fish health. The following study aimed to test whether the water-soluble phase of H-pro could attenuate lipopolysaccharide (LPS) provoked inflammation in liver cells and head kidney cells isolated from Atlantic salmon. Cells were grown as mono cultures or co cultures to assess possible crosstalk between immune cells and metabolic cells during treatments. Cells were added media with or without H-pro for 2 days before LPS exposure and harvested 24 h post LPS exposure. Respective cells without H-pro and LPS were used as controls. H-pro alone could affect expression of proteins directly as H-pro increased catalase protein expression in head kidney- and liver cells, regardless of culturing methods and LPS treatment. Leukotriene B4 (LTB4) production was also increased by H-pro in head kidney cells co cultured with liver cells. H-pro increased LPS induced interleukin 1β (IL-1β) transcription in liver cells co cultured with head kidney cells. All cultures of head kidney cells showed a significant increase in IL-1β transcription when treated with H-pro + LPS. H-pro decreased caspase-3 transcription in liver cells cultured co cultured with head kidney cells. Peroxisome proliferator activated receptor α (PPAR α) was upregulated, regardless of treatment, in liver cells co cultured with head kidney cells clearly showing that culturing method alone affected gene transcription. H-pro alone and together with LPS as an inflammation inducer, affect both antioxidant and inflammatory responses.
Collapse
Affiliation(s)
- Elisabeth Holen
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029, Nordnes, N-5817, Norway.
| | - Juyun He
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029, Nordnes, N-5817, Norway
| | - Pedro Araujo
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029, Nordnes, N-5817, Norway
| | | | - Marit Espe
- National Institute of Nutrition and Seafood Research (NIFES), P.B. 2029, Nordnes, N-5817, Norway
| |
Collapse
|
9
|
Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature. PLoS One 2015; 10:e0143622. [PMID: 26599513 PMCID: PMC4658193 DOI: 10.1371/journal.pone.0143622] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/06/2015] [Indexed: 01/17/2023] Open
Abstract
Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad-time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature recorded a significantly increased feed intake, these results clearly suggested that at high, sub-optimal water temperature, fish metabolism attempted to increment its overall ARA status -the most bioactive LC-PUFA participating in the inflammatory response- by modulating the metabolic fate of dietary ARA (expressed as % of net intake), reducing its β-oxidation and favouring synthesis and deposition. This correlates also with results from other recent studies showing that both immune- and stress- responses in fish are up regulated in fish held at high temperatures. This is a novel and fundamental information that warrants industry and scientific attention, in consideration of the imminent increase in water temperatures, continuous expansion of aquaculture operations, resources utilisation in aquafeed and much needed seasonal/adaptive nutritional strategies.
Collapse
|