1
|
Chu X, Chen J, Lin L, Yao J, Huang L, Gao M, Shen J, Pan X. Temporal Dynamics of Immune Response Signalling in Largemouth Bass (Micropterus salmoides) Infected With Largemouth Bass Virus. JOURNAL OF FISH DISEASES 2025; 48:e14086. [PMID: 39905850 DOI: 10.1111/jfd.14086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/12/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025]
Abstract
The largemouth bass virus (LMBV) significantly impacts Chinese largemouth bass aquaculture. The molecular mechanisms regulating LMBV virulence and the gene responses stimulated in the host during infection remain unclear. This study investigates the transcriptional dynamics and signalling pathways activated during the immune response to LMBV by analysing the transcriptome of head kidney tissues at 1, 4, 7, and 28 days post-infection (dpi) using RNA sequencing. Histopathological and viral load analyses indicated early tissue disruption, followed by extensive recovery by 28 dpi. Analysis of differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA), combined with Venn analysis of samples at 1, 4, and 7 dpi, identified significant and common genes. Early infection triggered robust innate immunity through activation of the RIG-I like receptor and cGAS-STING signalling pathways, which activated type I interferons (IFNs) and interferon-stimulated genes (ISGs). Later stages indicated activation of adaptive immune responses. Validation of randomly selected genes via RT-qPCR confirmed the RNA-seq results, showing consistent expression patterns. This comprehensive study offers new insights into the sustained innate and adaptive immune responses to LMBV.
Collapse
Affiliation(s)
- Xin Chu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| | - Jing Chen
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Lingyun Lin
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiayun Yao
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Lei Huang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Mingyue Gao
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
- College of Life Sciences, Huzhou University, Huzhou, China
| | - Jinyu Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Xiaoyi Pan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| |
Collapse
|
2
|
Li W, Feng Y, Teng Y, Montero AF, Zhou Y, Zhang X, Ao J, Chen X. P300/RNA polymerase II mediates induction of the teleost viral RNA sensor MDA5 through the interferon regulatory factor IRF11. J Biol Chem 2025; 301:108193. [PMID: 39826689 PMCID: PMC11849104 DOI: 10.1016/j.jbc.2025.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/02/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025] Open
Abstract
Melanoma differentiation-associated gene 5 (MDA5) initiates type I interferon (IFN) production by detecting cytosolic viral RNA. Mammalian MDA5 is an IFN-inducible gene and controlled by IFN regulatory factor 1 (IRF1). Teleost MDA5 also induces type I IFN production in response to viruses, yet its regulation remains largely unexplored. This study used the large yellow croaker Larimichthys crocea (Lc) as a model organism and revealed that a type I IFN (LcIFNi) triggers the expression of LcMDA5 through the JAK-STAT signaling pathway, which involves phosphorylation of LcIRF11. LcMDA5 was transcriptionally regulated by LcIRF11. Mechanistically, LcIRF11 interacts with the IFN-stimulated response element within the LcMDA5 promoter, via α3 helix and loop1, and loop2 and loop3 in its DNA binding domain. Overexpression of LcIRF11 recruits p300 and RNA polymerase II (Pol II) to the LcMDA5 promoter region. Pull-down analysis further confirmed the interaction of LcIRF11 with these two proteins. This recruitment was accompanied by increased levels of histone H3K27 acetylation (H3K27ac) and histone H3K4 trimethylation (H3K4me3), both of which are strongly associated with active transcription. Conversely, silencing LcIRF11 reduced p300 and Pol II recruitments and hindered the enrichment of H3K27ac/H3K4me3 modifications at the LcMDA5 promoter. Thus, here we present the first report of IRF11 orchestrating the activation of MDA5 transcription by binding to the IFN-stimulated response element of MDA5 promoter and forming a transcriptional complex with p300 and Pol II. Our results revealed an ancient regulatory mechanism of MDA5 in lower vertebrates, providing insights into its function and evolution.
Collapse
Affiliation(s)
- Wenxing Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Feng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Teng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Alvaro Fernandez Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuanyuan Zhou
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangyang Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingqun Ao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
3
|
Liang B, Su J. Advances in aquatic animal RIG-I-like receptors. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100012. [DOI: 10.1016/j.fsirep.2021.100012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 01/12/2023] Open
|
4
|
Cytosolic Sensors for Pathogenic Viral and Bacterial Nucleic Acids in Fish. Int J Mol Sci 2020; 21:ijms21197289. [PMID: 33023222 PMCID: PMC7582293 DOI: 10.3390/ijms21197289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recognition of the non-self signature of invading pathogens is a crucial step for the initiation of the innate immune mechanisms of the host. The host response to viral and bacterial infection involves sets of pattern recognition receptors (PRRs), which bind evolutionarily conserved pathogen structures, known as pathogen-associated molecular patterns (PAMPs). Recent advances in the identification of different types of PRRs in teleost fish revealed a number of cytosolic sensors for recognition of viral and bacterial nucleic acids. These are DExD/H-box RNA helicases including a group of well-characterized retinoic acid inducible gene I (RIG-I)-like receptors (RLRs) and non-RLR DExD/H-box RNA helicases (e.g., DDX1, DDX3, DHX9, DDX21, DHX36 and DDX41) both involved in recognition of viral RNAs. Another group of PRRs includes cytosolic DNA sensors (CDSs), such as cGAS and LSm14A involved in recognition of viral and intracellular bacterial dsDNAs. Moreover, dsRNA-sensing protein kinase R (PKR), which has a role in antiviral immune responses in higher vertebrates, has been identified in fish. Additionally, fish possess a novel PKR-like protein kinase containing Z-DNA binding domain, known as PKZ. Here, we review the current knowledge concerning cytosolic sensors for recognition of viral and bacterial nucleic acids in teleosts.
Collapse
|
5
|
Dai J, Zhang L, Zhang P, Shu H, Mao A, Li Y. Ginsenoside Rg3 inhibits grass carp reovirus replication in grass carp ovarian epithelial cells. Microb Pathog 2020; 144:104174. [PMID: 32224212 DOI: 10.1016/j.micpath.2020.104174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/11/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022]
Abstract
Ginseng exhibits multiple medicinal properties, including the improvement of immune function and enhancing disease resistance. In this study, we investigated the inhibitory effects of ginsenoside Rg3 on grass carp reovirus (GCRV) infection of grass carp ovarian (CO) epithelial cells, in order to provide a baseline framework for future high-efficacy antiviral drug screening investigations. Ginsenoside Rg3 was added to GCRV-infected CO cells, and cells were cultured at 27 °C before cell proliferation was measured by MTT assays. Label-free real-time cellular analysis (RTCA) after 72 h of experimentation demonstrated that 100 μg/mL ginsenoside Rg3 treatment had the highest inhibitory effect on GCRV (among 1,10,100 μg/mL treatments). We then measured the capacity for cellular antioxidant ability. Cells treated with 1,10,100 μg/mL ginsenoside Rg3 exhibited increases in Total Antioxidant Capacity activity relative to controls, respectively. Furthermore, Antioxidant assay and reverse transcript quantitative polymerase chain reaction (RT-qPCR) showed that ginsenoside Rg3 were efficient to restrain the replication of GCRV in CO cells. Expression analysis of immune-related genes via RT-qPCR showed that treatment with ginsenoside Rg3 promoted expression of IRF-3 and IRF-7 increases, respectively. Moreover, expression of IFN-1 was induced, which then inhibition the expression of tumor necrosis factor-alpha (TNF-α). In conclusion, we demonstrated that ginsenoside Rg3 promotes CO cell proliferation, inhibits GCRV activity, promotes CO cell immune activities, and thereby enhances the resistance of CO to GCRV infection.
Collapse
Affiliation(s)
- Jing Dai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; College of Life Scienc, Jilin Agricultural University, Changchun, 130118, China
| | - Linbo Zhang
- College of Life Scienc, Jilin Agricultural University, Changchun, 130118, China
| | - Peijun Zhang
- Health Monitoring and Inspection Center of Jilin Province, 130062, China
| | - Hong Shu
- Tuberculosis Infection Hospital in Changchun, Jilin, 130113, China
| | - Anting Mao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yuehong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
6
|
Wu XM, Zhang J, Li PW, Hu YW, Cao L, Ouyang S, Bi YH, Nie P, Chang MX. NOD1 Promotes Antiviral Signaling by Binding Viral RNA and Regulating the Interaction of MDA5 and MAVS. THE JOURNAL OF IMMUNOLOGY 2020; 204:2216-2231. [PMID: 32169843 DOI: 10.4049/jimmunol.1900667] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022]
Abstract
Nucleotide oligomerization domain-like receptors (NLRs) and RIG-I-like receptors (RLRs) detect diverse pathogen-associated molecular patterns to activate the innate immune response. The role of mammalian NLR NOD1 in sensing bacteria is well established. Although several studies suggest NOD1 also plays a role in sensing viruses, the mechanisms behind this are still largely unknown. In this study, we report on the synergism and antagonism between NOD1 and MDA5 isoforms in teleost. In zebrafish, the overexpression of NOD1 enhances the antiviral response and mRNA abundances of key antiviral genes involved in RLR-mediated signaling, whereas the loss of NOD1 has the opposite effect. Notably, spring viremia of carp virus-infected NOD1-/- zebrafish exhibit reduced survival compared with wild-type counterparts. Mechanistically, NOD1 targets MDA5 isoforms and TRAF3 to modulate the formation of MDA5-MAVS and TRAF3-MAVS complexes. The cumulative effects of NOD1 and MDA5a (MDA5 normal form) were observed for the binding with poly(I:C) and the formation of the MDA5a-MAVS complex, which led to increased transcription of type I IFNs and ISGs. However, the antagonism between NOD1 and MDA5b (MDA5 truncated form) was clearly observed during proteasomal degradation of NOD1 by MDA5b. In humans, the interactions between NOD1-MDA5 and NOD1-TRAF3 were confirmed. Furthermore, the roles that NOD1 plays in enhancing the binding of MDA5 to MAVS and poly(I:C) are also evolutionarily conserved across species. Taken together, our findings suggest that mutual regulation between NOD1 and MDA5 isoforms may play a crucial role in the innate immune response and that NOD1 acts as a positive regulator of MDA5/MAVS normal form-mediated immune signaling in vertebrates.
Collapse
Affiliation(s)
- Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China
| | - Peng Wei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Songying Ouyang
- Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.,Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yong Hong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing 10049, China.,Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, Hubei Province, China; and
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China; .,University of Chinese Academy of Sciences, Beijing 10049, China.,Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, Hubei Province, China; and.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
7
|
Li Y, Jin S, Zhao X, Luo H, Li R, Li D, Xiao T. Sequence and expression analysis of the cytoplasmic pattern recognition receptor melanoma differentiation-associated gene 5 from the barbel chub Squaliobarbus curriculus. FISH & SHELLFISH IMMUNOLOGY 2019; 94:485-496. [PMID: 31494278 DOI: 10.1016/j.fsi.2019.08.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/25/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
MDA5 is a cytoplasmic viral double-stranded RNA recognition receptor that plays a pivotal role in the aquatic animal innate immune system. To decipher the role of MDA5 of Squaliobarbus curriculus (ScMDA5) in the immune response, full-length cDNA of ScMDA5 was cloned using the RACE technology, mRNA and protein expression levels of ScMDA5 signalling pathway members in response to stimulation were detected and effects of overexpression of ScMDA5 on the immune response were investigated. ScMDA5 comprises 3597 bp and is composed of an open reading frame (2958 nucleotides long) that translates into a putative peptide of 985 amino acid residues. ScMDA5 possesses two N-terminal caspase-recruiting domains, DEAD-like helicases superfamily, helicase superfamily C-terminal and RIG-I_C-RD domains, and differences in these domains among species were mainly observed with respect to their length and location. ScMDA5 was closely clustered with those of Carassius auratus, Ctenopharyngodon idellus and Mylopharyngodon piceus. ScMDA5 transcripts were most abundant in the spleen and the lowest in the liver. Expression levels of ScMDA5 in healthy tissues were significantly correlated with those of ScIRF3, ScIRF7 and ScIFN. Besides, mRNA expression levels of ScIRF3 were significantly correlated with those of ScIRF7 (0.956, P < 0.01). Expression level changes, including downregulation, upregulation and initial upregulation followed by downregulation, were found in ScMDA5 signalling pathway molecules in tissues after grass carp reovirus infection. Protein levels of ScMDA5 were the highest in the liver and the lowest in the spleen in detected healthy tissues. Overexpression of ScMDA5 led to significantly enhanced CiIRF7 and CiMx transcription in grass carp ovary cells (P < 0.05). The results of this study helped to clarify the role of ScMDA5 in the immune reaction against grass carp reovirus and provided fundamental information for fish breeding to achieve strong resistance to infection.
Collapse
Affiliation(s)
- Yaoguo Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China
| | - Shengzhen Jin
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Xin Zhao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Hong Luo
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Rui Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Dongfang Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China.
| |
Collapse
|
8
|
Gao FY, Lu MX, Wang M, Liu ZG, Ke XL, Zhang DF, Cao JM. Molecular characterization and function analysis of three RIG-I-like receptor signaling pathway genes (MDA5, LGP2 and MAVS) in Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2018; 82:101-114. [PMID: 30099139 DOI: 10.1016/j.fsi.2018.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/26/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
The recognition of microbial pathogens, which is mediated by pattern recognition receptors (PRRs), is critical to the initiation of innate immune responses. In the present study, we isolated the full-length cDNA and genomic DNA sequences of the MDA5, LGP2 and MAVS genes in Nile tilapia, termed OnMDA5, OnLGP2 and OnMAVS. The OnMDA5 gene encodes 974 amino acids and contains two caspase-associated recruitment domains (CARDs), a DExDc domain (DExD/H box-containing domain), a HELICc (helicase superfamily C-terminal) domain and a C-terminal regulatory domain (RD). The OnLGP2 gene encodes 679 amino acids and contains a DExDc, a HELICc and an RD. The OnMAVS gene encodes 556 amino acids and contains a CARD, a proline-rich domain, a transmembrane helix domain and a putative TRAF2-binding motif (269PVQDT273). Phylogenetic analyses showed that all three genes from Nile tilapia were clustered together with their counterparts from other teleost fishes. Real-time PCR analyses showed that all three genes were constitutively expressed in all examined tissues in Nile tilapia. OnMDA5 presented the highest expression level in the blood and the lowest expression level in the liver, while OnMAVS presented the highest expression level in the kidney. The highest expression level of OnLGP2 was detected in the liver. An examination of the expression patterns of these RIG-I-like receptors (RLRs) during embryonic development showed that the highest expression levels of OnMDA5 occurred at 2 days postfertilization (dpf), and the expression significantly decreased from 3 to 8 dpf. The expression levels of OnLGP2 significantly increased from 4 to 8 dpf. The expression levels of OnMAVS mRNA were stable from 2 to 8 dpf. Upon stimulation by intraperitoneal injection of Streptococcus agalactiae, the expression levels of OnMDA5 were first downregulated and then upregulated in the blood, gill and spleen. In the intestine and kidney, the expression of OnMDA5 was first upregulated, then downregulated, and then upregulated again. The expression of OnLGP2 was upregulated in the kidney and intestine, and the expression of OnMAVS was upregulated in the spleen. Overexpression of OnMAVS increased NF-κB activation in 293 T cells (p < 0.05), and after cotransfection with OnMDA5, the OnMAVS-dependent NF-κB activation was slightly increased (p > 0.05), after cotransfection with OnLGP2, the OnMAVS-dependent NF-κB activation was significantly decreased (p < 0.05). These findings suggest that, although the deduced protein structure of OnMDA5 is evolutionarily conserved with the structures of other RLR members, its signal transduction function is markedly different. The results also suggest that OnLGP2 has a negative regulatory effect on the OnMAVS gene. OnMDA5 and OnMAVS were uniformly distributed throughout the cytoplasm in 293 T cells, whereas OnLGP2 was distributed throughout the cytoplasm and nucleus. These results are helpful for clarifying the innate immune response against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Feng-Ying Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China; College of Fisheries and Life Science, Shanghai Ocean University Shanghai, 201306, PR China
| | - Mai-Xin Lu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China.
| | - Miao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| | - Zhi-Gang Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| | - Xiao-Li Ke
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| | - De-Feng Zhang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| | - Jian-Meng Cao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| |
Collapse
|
9
|
Paria A, Makesh M, Chaudhari A, Purushothaman CS, Rajendran KV. Molecular characterisation, ontogeny and expression analysis of melanoma differentiation-associated factor 5 (MDA5) from Asian seabass, Lates calcarifer. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:71-82. [PMID: 28919361 DOI: 10.1016/j.dci.2017.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
MDA5 is the pivotal member of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and is reported to play a crucial role in type I IFN-mediated responses against pathogen-associated molecular patterns (PAMPs), especially nucleic acids. In this study, we have identified and cloned the full-length cDNA sequence of MDA5, which comprises 3398 nucleotides and encodes for a putative protein of 978 AA length, in Asian seabass, Lates calcarifer. From the putative amino acid sequence of AsMDA5, four different conserved domains could be predicted: two N-terminal CARD domains, a DExDc domain, a HELICc domain and a C-terminal RIG-1_C-RD domain. The mRNA transcript of AsMDA5 could be detected in all the 11 tissues tested in healthy animals with the highest expression in heart followed by gill and skin. The ontogenetic expression profile showed constitutive expression in developmental stages starting from unfertilized eggs, which implies the possibility of maternally acquired immunity of RLRs in offspring. The viral analogue poly I:C could modulate the AsMDA5 expression both in vivo and in vitro. In all the tissues, AsMDA5 expression was found to be highly regulated following injection with poly I:C with the highest expression observed in kidney. The expression level of AsMDA5 was found to be modulated at different time-points following challenge with Gram-negative bacterium, Vibrio alginolyticus, and Gram-positive bacterium, Staphylococcus aureus. Similarly, noticeable change in AsMDA5 expression was detected in SISK cell line induced with either LPS or PGN. The observations made in this study suggest that in euryhaline marine teleosts like Asian seabass, MDA5 gene serves as one of the pivotal receptor for the detection of viral and bacterial PAMP, and might play an important antimicrobial role during early embryonic development.
Collapse
Affiliation(s)
- Anutosh Paria
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai -400 061, India
| | - M Makesh
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai -400 061, India
| | - Aparna Chaudhari
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai -400 061, India
| | - C S Purushothaman
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai -400 061, India
| | - K V Rajendran
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai -400 061, India.
| |
Collapse
|
10
|
Zhu R, Liu XX, Lv X, Li SY, Li YD, Yu XJ, Wang XG. Deciphering transcriptome profile of the yellow catfish (Pelteobagrus fulvidraco) in response to Edwardsiella ictaluri. FISH & SHELLFISH IMMUNOLOGY 2017; 70:593-608. [PMID: 28866276 DOI: 10.1016/j.fsi.2017.08.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/17/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Edwardsiella ictaluri is one of the most important pathogens posing a serious threat for yellow catfish (Pelteobagrus fulvidraco), a highly valuable fish species of increasing commercial interest in China. Here, a transcriptomic strategy was undertaken to investigate the yellow catfish gene expression profile against infection by the bacterial pathogen E. ictaluri. Comparison of the transcriptome profiles between the infected and uninfected samples showed that a massive gene expression change occurred in yellow catfish following bacterial exposure. A total of 5527 differentially expressed genes (DEGs) were detected, of which 2265 showed up-regulation and 3262 down-regulation. Gene set enrichment analysis revealed the presence of canonical pathways directly linked to innate and adaptive immune response, such as pattern recognition receptor (PRR) signaling pathways, complement and coagulation cascades, as well as T-cell receptor (TCR) and B-cell receptor (BCR) signaling pathways. Additionally, 47,526 putative EST-liked simple sequence repeats (SSRs) markers were retrieved for use in genetic studies. This study establishes the first molecular clues to understand the potential mechanisms of yellow catfish resistance to E. ictaluri, thus enabling future efforts on disease control programs in this valuable aquaculture species.
Collapse
Affiliation(s)
- Rong Zhu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xiao-Xiao Liu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xue Lv
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shun-Yi Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Ya-Dong Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xue-Jing Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xing-Guo Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Faculty of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| |
Collapse
|
11
|
Rao Y, Wan Q, Yang C, Su J. Grass Carp Laboratory of Genetics and Physiology 2 Serves As a Negative Regulator in Retinoic Acid-Inducible Gene I- and Melanoma Differentiation-Associated Gene 5-Mediated Antiviral Signaling in Resting State and Early Stage of Grass Carp Reovirus Infection. Front Immunol 2017; 8:352. [PMID: 28396670 PMCID: PMC5366347 DOI: 10.3389/fimmu.2017.00352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/13/2017] [Indexed: 12/22/2022] Open
Abstract
Laboratory of genetics and physiology 2 (LGP2) is a key component of RIG-I-like receptors (RLRs). However, the lack of the caspase recruitment domains (CARDs) results in its controversial functional performance as a negative or positive regulator in antiviral responses. Especially, no sufficient evidence uncovers the functional mechanisms of LGP2 in RLR signaling pathways in teleost. Here, negative regulation mechanism of LGP2 in certain situations in retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5)-mediated antiviral responses was identified in Ctenopharyngodon idella kidney cells. LGP2 overexpression inhibits synthesis and phosphorylation of interferon regulatory factor 3/7 (IRF3/7), and mRNA levels and promoter activities of IFNs and NF-κBs in resting state and early phase of grass carp reovirus (GCRV) infection. Knockdown of LGP2 obtains opposite effects. Luciferase report assay indicates that LGP2 works at the upstream of RIG-I and MDA5. LGP2 binds to RIG-I and MDA5 with diverse domain preference and which is independent of GCRV infection. Furthermore, LGP2 restrains K63-linked ubiquitination of RIG-I and MDA5 in various degrees. These differences result in disparate repressive mechanisms of LGP2 to RIG-I- and MDA5-mediated signal activations of IFN-β promoter stimulator 1 and mediator of IRF3 activation. Interestingly, LGP2 also inhibits K48-linked RIG-I and MDA5 ubiquitination to suppress proteins degradation, which guarantees the basal protein levels for subsequently rapid signal activation. All these results reveal a mechanism that LGP2 functions as a suppressor in RLR signaling pathways to maintain cellular homeostasis in resting state and early phase during GCRV infection.
Collapse
Affiliation(s)
- Youliang Rao
- College of Fisheries, Huazhong Agricultural University , Wuhan , China
| | - Quanyuan Wan
- College of Fisheries, Huazhong Agricultural University , Wuhan , China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , China
| | - Jianguo Su
- College of Fisheries, Huazhong Agricultural University , Wuhan , China
| |
Collapse
|
12
|
Wan Q, Yang C, Rao Y, Liao Z, Su J. MDA5 Induces a Stronger Interferon Response than RIG-I to GCRV Infection through a Mechanism Involving the Phosphorylation and Dimerization of IRF3 and IRF7 in CIK Cells. Front Immunol 2017; 8:189. [PMID: 28286505 PMCID: PMC5323377 DOI: 10.3389/fimmu.2017.00189] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/09/2017] [Indexed: 12/22/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are critical cytosolic sensors that trigger the production of interferons (IFNs). Though their recognition functions are well identified, their unique roles in the downstream signal transduction remain to be elucidated. Herein, we report the differential effect between grass carp (Ctenopharyngodon idella) MDA5 (CiMDA5) and CiRIG-I on the production of various IFNs upon grass carp reovirus (GCRV) infection in C. idella kidney (CIK) cell line. In CIK cells, grass carp IFN1 (CiIFN1) and CiIFN3 are relatively highly expressed while CiIFN2 and CiIFN4 are relatively slightly expressed. Following GCRV infection, CiMDA5 induces a more extensive type I IFN response than CiRIG-I. Further investigation reveals that both CiMDA5 and CiRIG-I facilitate the expression and total phosphorylation levels of grass carp IFN regulatory factor (IRF) 3 (CiIRF3) and CiIRF7 upon GCRV infection or poly(I:C) stimulation. However, the difference is that CiRIG-I decreases the threonine phosphorylation level of CiIRF7. As a consequence, CiMDA5 enhances the heterodimerization of CiIRF3 and CiIRF7 and homodimerization of CiIRF7, whereas CiRIG-I facilitates the heterodimerization but attenuates homodimerization of CiIRF7. Moreover, the present study suggests that CiIRF3 and CiIRF7 heterodimers and CiIRF7 homodimers are able to induce more extensive IFN-I responses than CiIRF3 homodimers under GCRV infection. Additionally, CiMDA5 induces a stronger type II IFN (IFN-II) response against GCRV infection than CiRIG-I. Collectively, these results demonstrate that CiMDA5 plays a more potent role than CiRIG-I in IFN response to GCRV infection through differentially regulating the phosphorylation and dimerization of CiIRF3 and CiIRF7.
Collapse
Affiliation(s)
- Quanyuan Wan
- College of Fisheries, Huazhong Agricultural University , Wuhan , China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , China
| | - Youliang Rao
- College of Fisheries, Huazhong Agricultural University , Wuhan , China
| | - Zhiwei Liao
- College of Fisheries, Huazhong Agricultural University , Wuhan , China
| | - Jianguo Su
- College of Fisheries, Huazhong Agricultural University , Wuhan , China
| |
Collapse
|
13
|
Jia P, Jia K, Chen L, Le Y, Jin Y, Zhang J, Zhu L, Zhang L, Yi M. Identification and characterization of the melanoma differentiation - associated gene 5 in sea perch, Lateolabrax japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:161-8. [PMID: 27039216 DOI: 10.1016/j.dci.2016.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 05/07/2023]
Abstract
The RIG-I-like receptors family is a group of cytosolic RNA helicase proteins that can recognize viral RNA via binding to pathogen associated molecular pattern motifs within RNA ligands. A novel vertebrate RLR counterpart named LjMDA5 was firstly identified from the marine fish sea perch Lateolabrax japonicus in this study. The full-length cDNA of LjMDA5 is 3750 bp and encodes a polypeptide of 988 amino acids, containing two N-terminal tandem caspase activation and recruitment domains, a DExH (Asp-Glu-X-His) box domain, an HELICc domain, and a C-terminal domain RIG-I. Phylogenetic analysis showed that LjMDA5 shared the closest genetic relationship with the MDA5 of Larimichthys crocea. Quantitative RT-PCR analysis showed that LjMDA5 was ubiquitously expressed and up-regulated significantly in all selected tissues in vivo post NNV infection. Time course analysis showed that LjMDA5 transcripts significantly increased in spleen and kidney. We found LjMDA5 could be regulated in the sea perch LJB and LJF cell lines after lipopolysaccharide, polyinosinic-polycytidylic acid treatment and NNV challenge. RNA interference experiment indicated that silencing of LjMDA5 significantly increased RGNNV replication and virus production in NNV infected LJF cells. Our results revealed that MDA5 was essential for host defense against NNV, which provided new insights into the function of RLR signaling pathway during NNV infection in fish.
Collapse
Affiliation(s)
- Peng Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Kuntong Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Limin Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Yao Le
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Yilin Jin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Limei Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Huang Y, Yu Y, Yang Y, Yang M, Zhou L, Huang X, Qin Q. Antiviral function of grouper MDA5 against iridovirus and nodavirus. FISH & SHELLFISH IMMUNOLOGY 2016; 54:188-196. [PMID: 27050314 DOI: 10.1016/j.fsi.2016.04.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/26/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Melanoma differentiation-associated gene 5 (MDA5) is a critical member of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family which can recognize viral RNA and enhances antiviral response in host cells. In this study, a MDA5 homolog from orange spotted grouper (Epinephelus coioides) (EcMDA5) was cloned, and its roles on grouper virus infection were characterized. The full-length EcMDA5 cDNA encoded a polypeptide of 982 amino acids with 74% identity with MDA5 homolog from rock bream (Oplegnathus fasciatus). Amino acid alignment analysis indicated that EcMDA5 contained three functional domains: two caspase activation and recruitment domain (CARDs), a DEAD box helicase-like (DExDc) domain, a helicase superfamily C-terminal domain (HELICc), and a C-terminal regulatory domain (RD). Upon challenge with Singapore grouper iridovirus (SGIV) or polyinosin-polycytidylic acid (poly I:C), the transcript of EcMDA5 was significantly up-regulated especially at the early stage post-injection. Under fluorescence microscopy, we observed that EcMDA5 mostly localized in the cytoplasm of grouper spleen (GS) cells. Interestingly, during virus infection, the distribution pattern of EcMDA5 was significantly altered in SGIV infected cells, but not in red spotted grouper nervous necrosis virus (RGNNV) infected cells, suggested that EcMDA5 might interact with viral proteins during SGIV infection. The ectopic expression of EcMDA5 in vitro obviously delayed virus infection induced cytopathic effect (CPE) progression and significantly inhibited viral gene transcription of RGNNV and SGIV. Moreover, overexpression of EcMDA5 not only significantly increased interferon (IFN) and IFN-stimulated response element (ISRE) promoter activities in a dose dependent manner, but also enhanced the expression of IRF3, IRF7 and TRAF6. In addition, the transcription level of the proinflammatory factors, including TNF-α, IL-6 and IL-8 were differently altered by EcMDA5 overexpression during SGIV or RGNNV infection, suggesting that the regulation on proinflammatory cytokines by EcMDA5 were also important for RGNNV infection. Together, our results demonstrated for the first time that the inhibitory effect of fish MDA5 on iridovirus replication might be mainly through the regulation of proinflammatory cytokines.
Collapse
Affiliation(s)
- Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yepin Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Min Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Linli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Zhu YY, Xing WX, Shan SJ, Zhang SQ, Li YQ, Li T, An L, Yang GW. Characterization and immune response expression of the Rig-I-like receptor mda5 in common carp Cyprinus carpio. JOURNAL OF FISH BIOLOGY 2016; 88:2188-202. [PMID: 27108774 DOI: 10.1111/jfb.12981] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 03/03/2016] [Indexed: 05/05/2023]
Abstract
In this study, the full-length complementary (c)DNA of common carp Cyprinus carpio melanoma differentiation-associated gene 5 (mda5) was cloned. The complete open reading frame of C. carpio mda5 contained 2982 bp and encodes 993 amino acids. The deduced amino acids contained six functional domains: two caspase activation and recruitment domains (CARD), a conserved restriction domain of bacterial type III restriction enzyme (ResIII), a DExD/H box-containing domain (DEXDc), a helicase super family C-terminal domain (HELICc) and a C-terminal regulatory domain (RD). The mda5 gene was expressed in all tested tissues, with high levels in the gills and spleen, while lower expressed in gonad and blood. The copy numbers of mda5 were increased in the liver, spleen, head kidney and the mucosal-associated immune tissues such as the foregut, hindgut, gills and skin after stimulation with polyinosinic polycytidylic [poly(I:C)] and Aeromonas hydrophila. The myxovirus resistance gene (mx) messenger (m)RNA levels in the spleen, head kidney, foregut and gills were significantly up-regulated after poly(I:C) injection. When injected with poly(I:C), mda5 and mx transcripts were also significantly induced in vitro. These results implied that mda5 might be involved in both antiviral and antibacterial innate immune processes in C. carpio. © 2016 The Authors. Journal of Fish Biology © 2016 The Fisheries Society of the British Isles.
Collapse
Affiliation(s)
- Y Y Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - W X Xing
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - S J Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - S Q Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Y Q Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - T Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - L An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - G W Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| |
Collapse
|