1
|
Luo SW, Xiong NX, Luo ZY, Fan LF, Luo KK, Mao ZW, Liu SJ, Wu C, Hu FZ, Wang S, Wen M. A novel NK-lysin in hybrid crucian carp can exhibit cytotoxic activity in fish cells and confer protection against Aeromonas hydrophila infection in comparison with Carassius cuvieri and Carassius auratus red var. FISH & SHELLFISH IMMUNOLOGY 2021; 116:1-11. [PMID: 34174452 DOI: 10.1016/j.fsi.2021.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
NK-lysin, an effector of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), not only exhibits cytotoxic effect in fish cells, but also participates in the immune defense against pathogenic infection. In this study, ORF sequences of RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin were 369 bp. Tissue-specific analysis revealed that the highest expressions of RCC-NK-lysin and WCC-NK-lysin were observed in gill, while the peaked level of WR-NK-lysin mRNA was observed in spleen. A. hydrophila infection sharply increased RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin mRNA expression in liver, trunk kidney and spleen. In addition, elevated levels of NK-lysin mRNA were observed in cultured fin cell lines of red crucian carp (RCC), white crucian carp (WCC) and their hybrid offspring (WR) after Lipopolysaccharide (LPS) challenge. RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin exerted regulatory roles in inducing ROS generation, modulating mitochondrial membrane potential, decreasing fish cell viability and antagonizing survival signalings, respectively. RCC/WCC/WR-NK-lysin-overexpressing fish could up-regulate expressions of inflammatory cytokines and decrease bacterial loads in spleen. These results indicated that NK-lysin in hybrid fish contained close sequence similarity to those of its parents, possessing the capacities of cytotoxicity and immune defense against bacterial infection.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Zi-Ye Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Lan-Fen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Zhuang-Wen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha 410022, PR China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Fang-Zhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
2
|
Luo SW, Mao ZW, Luo ZY, Xiong NX, Luo KK, Liu SJ, Yan T, Ding YM, Zhao RR, Wu C, Hu FZ, Liu QF, Feng PH. Chimeric ferritin H in hybrid crucian carp exhibits a similar down-regulation in lipopolysaccharide-induced NF-κB inflammatory signal in comparison with Carassius cuvieri and Carassius auratus red var. Comp Biochem Physiol C Toxicol Pharmacol 2021; 241:108966. [PMID: 33383192 DOI: 10.1016/j.cbpc.2020.108966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022]
Abstract
Ferritin H can participate in the regulation of teleostean immunity. ORF sequences of RCC/WCC/WR-ferritin H were 609 bp, while WR-ferritin H gene possessed chimeric fragments or offspring-specific mutations. In order to elucidate regulation of immune-related signal transduction, three fibroblast-like cell lines derived from caudal fin of red crucian carp (RCC), white crucian carp (WCC) and their hybrid offspring (WR) were characterized and designated as RCCFCs, WCCFCs and WRFCs. A sharp increase of ferritin H mRNA was observed in RCCFCs, WCCFCs and WRFCs following lipopolysaccharide (LPS) challenge. Overexpression of RCC/WCC/WR-ferritin H can decrease MyD88-IRAK4 signal and antagonize NF-κB, TNFα promoter activity in RCCFCs, WCCFCs and WRFCs, respectively. These results indicated that ferritin H in hybrid offspring harbors highly-conserved domains with a close sequence similarity to those of its parents, playing a regulatory role in inflammatory signals.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Zhuang-Wen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha 410022, PR China
| | - Zi-Ye Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China.
| | - Teng Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Yi-Min Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Ru-Rong Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Fang-Zhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Qing-Feng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Ping-Hui Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China; Section of Infection and Immunity, Herman Ostrow School of Dentistry of USC, Los Angeles 90089, USA
| |
Collapse
|
3
|
Luo SW, Wei W. Molecular characterization of complement 9 in Epinephelus coioides and differential expression analysis of classical complement genes following Vibrio alginolyticus challenge. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:837-845. [PMID: 32656652 DOI: 10.1007/s10646-020-02252-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Vibrio alginolyticus is posting an increasing threat to survival of grouper. Classical complement cascade can trigger initiation of immunity, while complement 9 (C9) is a major complement molecule involved in final step of membrane attack complex (MAC) formation. In this study, full-length EcC9 contained an ORF sequence of 1779 bp, encoding a polypeptide of 592 amino acids. A high-level expression of EcC9 mRNA was observed in liver. Following vibrio challenge, increased expression levels of EcC1q, EcBf/C2, EcC4, EcC6, EcC7 and EcC9 mRNA were detected in liver and kidney. These results implied that elevated expression level of classical complement pathway (CCP) and terminal complement components (TCCs) may assess toxicological effect of V. alginolyticus.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Wei Wei
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| |
Collapse
|
4
|
Luo SW, Luo ZY, Yan T, Luo KK, Feng PH, Liu SJ. Antibacterial and immunoregulatory activity of a novel hepcidin homologue in diploid hybrid fish (Carassius auratus cuvieri ♀ × Carassius auratus red var ♂). FISH & SHELLFISH IMMUNOLOGY 2020; 98:551-563. [PMID: 31981776 DOI: 10.1016/j.fsi.2020.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Hepcidin, a multifunctional hormone oligopeptide, not only exhibits a regulatory role in iron metabolism, but also participates in the regulation of teleostean immunity. In this study, ORF sequence of WR-hepcidin was 258 bp and encoded 85 amino acid residues. Tissue-specific analysis revealed that the highest expression of WR-hepcidin was observed in liver. Aeromonas hydrophila challenge can sharply increased WR-hepcidin mRNA expression in liver, trunk kidney and spleen. The purified WR-hepcidin fusion peptide can directly bind to A. hydrophila and Streptococcus agalactiae, reduce the relative bacterial activity, limit bacterial growth and attenuate their dissemination to tissues in vivo. In addition, the treatment of WR-hepcidin fusion protein can diminish the production of pro-inflammatory cytokines. These results indicated that WR-hepcidin can play a negative regulatory role in bacteria-stimulated pro-inflammatory cytokines production and MyD88-IRAK4 activation.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Zi-Ye Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Teng Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Ping-Hui Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China; Section of Infection and Immunity, Herman Ostrow School of Dentistry of USC, Los Angeles, 90089, USA
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| |
Collapse
|
5
|
Luo SW, Luo KK, Liu SJ. A novel LEAP-2 in diploid hybrid fish (Carassius auratus cuvieri ♀ × Carassius auratus red var. ♂) confers protection against bacteria-stimulated inflammatory response. Comp Biochem Physiol C Toxicol Pharmacol 2020; 228:108665. [PMID: 31707088 DOI: 10.1016/j.cbpc.2019.108665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
LEAP-2, a multifunctional peptide, not only exhibits a regulatory role in pathogenic infection, but also participates in the regulation of teleostean immunity. In this study, ORF sequence of WR-LEAP-2 was 240 bp and encoded 79 amino acid residues. Tissue-specific analysis revealed that the highest expression of WR-LEAP-2 was observed in liver. Aeromonas hydrophila challenge can sharply increase WR-LEAP-2 mRNA expression in liver, kidney and spleen. The purified WR-LEAP-2 peptide can directly bind to A. hydrophila and S. agalactiae, reduce the relative bacterial activity and limit bacterial growth in vitro. In addition, the treatment of WR-LEAP-2 can restrict bacterial dissemination in vivo and reduce production of pro-inflammatory cytokines. These results indicated that WR-LEAP-2 can confer protection against A. hydrophila- or S. agalactiae-stimulated MyD88-dependent pro-inflammatory cytokines activation.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
6
|
Luo SW, Luo KK, Liu SJ. ITLN in diploid hybrid fish (Carassius auratus cuvieri ♀ × Carassius auratus red var ♂) is involved in host defense against bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103520. [PMID: 31626818 DOI: 10.1016/j.dci.2019.103520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/15/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Hybrid genotypes in fish may be less susceptible to pathogenic infection. ITLN, a novel lectin, not only exhibits a regulatory role in pathogenic infection, but also participates in the regulation of teleostean immunity. In this study, ORF sequence of WR-ITLN was 945 bp and encoded 314 amino acid residues. Tissue-specific analysis revealed that the highest expression of WR-ITLN was observed in liver. Aeromonas hydrophila challenge can sharply increased WR-ITLN mRNA expression in liver, kidney and spleen. The purified WR-ITLN protein can directly bind to A. hydrophila and S. agalactiae, reduce their relative bacterial activity and limit bacterial growth in vitro in the presence of Ca2+. In addition, the treatment of WR-ITLN + Ca2+ can restrict bacterial dissemination in vivo and attenuate production of pro-inflammatory cytokines. These results indicated that WR-ITLN can confer protection against bacteria-stimulated MyD88-dependent pro-inflammatory cytokines activation in a Ca2+-dependent manner.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| |
Collapse
|
7
|
Zhang K, Liu X, Han M, Liu Y, Wang X, Yu H, Liu J, Zhang Q. Functional differentiation of three phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) in response to Vibrio anguillarum infection in turbot (Scophthalmus maximus). FISH & SHELLFISH IMMUNOLOGY 2019; 92:450-459. [PMID: 31207302 DOI: 10.1016/j.fsi.2019.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
PIK3CA has been extensively investigated from its molecular mechanism perspective and association with its mutations in different types of cancers. However, little has been reported regarding the pathological significance of PIK3CA expression in teleost. Here, in our present study, three PIK3CA genes termed SmPIK3CAa, SmPIK3CAb and SmPIK3CA-like were firstly identified in the genome of turbot S. maximus. Although these three genes located in different chromosomes, all of them share the same five domains. Phylogenetic and synteny analysis indicated that SmPIK3CAa, SmPIK3CAb and SmPIK3CA-like were three paralogs that may originate from duplication of the same ancestral PIK3CA gene. Subcellular localization analysis confirmed the cytoplasm distribution of these three paralogs. All three SmPIK3CA were ubiquitously expressed in examined tissues in turbot, with the higher expression levels in immune-related tissues such as blood, spleen, kidney, gills and intestines. Upon Vibrio anguillarum challenge, SmPIK3CAa and SmPIK3CA-like transcripts were significantly induced in spleen, intestine and blood despite of differential expression levels and responsive time points. Additionally, individuals in resistant group showed significantly higher expression level of both two genes than in the susceptible group. Moreover, four SNPs (102, 2530, 3027 and 3060) and one haplotype (Hap2) located in exon region of SmPIK3CA-like were identified and confirmed to be associated with V. anguillarum resistance in turbot by association analysis in different populations. Taken together, these results suggested that functional differentiation occurred in three SmPIK3CA paralogs with Vibrio anguillarum resistance and SmPIK3CAa and SmPIK3CA-like probable play potential roles in innate immune response to pathogenic invasions in turbot.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Miao Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Xuangang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
8
|
Luo SW, Wei W, Yang P, Lai CM, Liang QJ, Liu Y, Wang WN. Characterization of a CD59 in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2019; 89:486-497. [PMID: 30980917 DOI: 10.1016/j.fsi.2019.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
CD59, a multifunctional glycoprotein, not only plays a regulatory role in complement cascades, but also participates in modulation of teleostean immunity. In this study, full length sequence of EcCD59 was obtained, comprising a 5'UTR of 163 bp, an ORF of 354 bp and a 3'UTR of 559 bp. EcCD59 gene encoded a polypeptide of 117 amino acids. Tissue-specific analysis revealed that the highest expression of EcCD59 mRNA was observed in muscle. Vibrio alginolyticus challenge can significantly increase EcCD59 mRNA expression in liver, kidney and spleen. EcCD59 distribution was detected by a combined approach using GFP-overexpression, immunofluorescence and ELISA assay, indicating that EcCD59 may be predominantly aggregated in cellular membrane. Both EcCD59 and EcCD59delGPI can directly bind to V. alginolyticus and decrease the in vitro growth of V. alginolyticus. Additionally, vibrio injection experiment indicated that the binding of EcCD59 or EcCD59delGPI to V. alginolyticus can restrict its growth rate in vivo. In this study, we found that EcCD59 may be involved in immune defense against vibrio infection in a complement-independent manner.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Wei Wei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Ping Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Chu-Min Lai
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qing-Jian Liang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Wei-Na Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
9
|
Luo SW, Kang H, Xie RC, Wei W, Liang QJ, Liu Y, Wang WN. N-terminal domain of EcC1INH in Epinephelus coioides can antagonize the LPS-stimulated inflammatory response. FISH & SHELLFISH IMMUNOLOGY 2019; 84:8-19. [PMID: 30261298 DOI: 10.1016/j.fsi.2018.09.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
Complement 1 inhibitor (C1INH) serving as a multifunctional factor can participate in the regulation of complement cascades and attenuate the activation of various proteases. In this study, we obtained EcC1INH cDNA and the tissue-specific analysis indicate that the highest expression level of EcC1INH mRNA was detected in liver. Moreover, Vibrio alginolyticus challenge can significantly increase EcC1INH mRNA expression in liver and kidney. N-terminal domain of EcC1INH could decrease LPS binding activity to cell surface, while loss of positively charged residues (PCRs) Arg21, His22, Lys50, Arg61 in N-terminal domain of EcC1INH can significantly reduce its interaction with LPS. Furthermore, LPS injection experiment indicated that the binding of EcC1INH N-terminal domain to LPS can antagonize LPS-induced inflammatory signaling pathway and attenuate the production of proinflammatory cytokines in vivo, indicating that EcC1INH was involved in negative regulation of inflammatory response.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Huan Kang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Ren-Chong Xie
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Wei Wei
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qing-Jian Liang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuan Liu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Wei-Na Wang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
10
|
Xu K, Tang Z, Liu S, Liao Z, Xia H, Liu L, Wang Z, Qi P. Effects of low concentrations copper on antioxidant responses, DNA damage and genotoxicity in thick shell mussel Mytilus coruscus. FISH & SHELLFISH IMMUNOLOGY 2018; 82:77-83. [PMID: 30098444 DOI: 10.1016/j.fsi.2018.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
For the aim to study potential detrimental effects induced by Cu exposure at low, environmentally relevant concentrations, the in vivo activities at different levels of biological organisations of thick shell mussel Mytilus coruscus exposed to two levels of copper were assessed. Cu-induced stresses were evaluated through antioxidant responses, DNA damage and genotoxicity. The results revealed significant higher SOD and CAT activities, and MDA concentration in haemocytes of M. coruscus with Cu exposure at 8 μg/L, while only significant accumulation in CAT activity with Cu exposure at 2 μg/L and no significant changes with SOD activity and MDA concentration at this level of Cu exposure. Copper exposure induced DNA damage as induction of OTM value in a time- and concentration-dependent manner. In addition, copper exposure could significantly induced the expressions of MT-10, Hsp70, Hsp90 and C3. The present results deepen the mussels as a suitable model marine invertebrate species to study potential detrimental effects induced by possible toxicants, in combinations at different levels of biological organisations.
Collapse
Affiliation(s)
- Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, MOA, Marine Fisheries Research Institute of Zhejiang, Zhejiang, Zhoushan, 316021, China
| | - Zurong Tang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316004, China
| | - Shuobo Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316004, China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316004, China
| | - Hu Xia
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan University of Arts and Science, Hunan, Changde, 415000, China
| | - Lianwei Liu
- Key Laboratory of Sustainable Utilization of Technology Research, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, MOA, Marine Fisheries Research Institute of Zhejiang, Zhejiang, Zhoushan, 316021, China
| | - Zhongming Wang
- Key Laboratory of Sustainable Utilization of Technology Research, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, MOA, Marine Fisheries Research Institute of Zhejiang, Zhejiang, Zhoushan, 316021, China
| | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhejiang, Zhoushan, 316004, China.
| |
Collapse
|
11
|
Kong JR, Wei W, Liang QJ, Qiao XL, Kang H, Liu Y, Wang WN. Identifying the function of LvPI3K during the pathogenic infection of Litopenaeus vannamei by Vibrio alginolyticus. FISH & SHELLFISH IMMUNOLOGY 2018; 76:355-367. [PMID: 29544772 DOI: 10.1016/j.fsi.2018.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/05/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
It is well known that PI3K regulates various processes in mammalian cells by generating a secondary messenger that later activates AKT. However, its innate immune function in crustaceans remains unclear. We report the characterization of Litopenaeus vannamei PI3K (LvPI3K) for investigating how PI3K participates in the innate immunity of crustaceans. Full-length LvPI3K cDNA was 3357 bp long, with a 3222 bp open reading frame (ORF) that encodes a putative protein of 1292 amino acids. The PI3K catalytic domain (PI3Kc) of LvPI3K was found to be rather conserved when the PI3Ks from other species were analyzed. The LvPI3K protein was shown to be localized to the cytoplasm of Drosophila S2 cells, while LvPI3K mRNA was ubiquitously expressed in healthy L. vannamei, with the highest expression found in hemolymph. A dual luciferase reporter gene assay demonstrated that LvPI3K overexpression activated the promoter of antibacterial peptide LvPEN4 in a dose-dependent manner. However, the addition of PDTC, a specific inhibitor of NF-κB, suppressed the LvPI3K-induced LvPEN4 promoter activation. Moreover, Vibrio alginolyticus challenge induced a rapid up-regulation of LvPI3K expression. Further experiments showed that LvPI3K silencing in shrimp challenged with V. alginolyticus significantly increased Vibrio number, ROS production and DNA damage in the hemolymph, as well as significantly decreased total hemocyte count. The mRNA levels of certain molecules related to LvPI3K signaling, such as LvAKT and LvPEN4, also decreased following LvPI3K silencing. Taken together, these results suggest that LvPI3K regulates the downstream signal component LvPEN4 and functions in V. alginolyticus resistance.
Collapse
Affiliation(s)
- Jing-Rong Kong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Wei Wei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Qing-Jian Liang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Xue-Li Qiao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Huan Kang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| | - Wei-Na Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
12
|
Cheng CH, Guo ZX, Luo SW, Wang AL. Effects of high temperature on biochemical parameters, oxidative stress, DNA damage and apoptosis of pufferfish (Takifugu obscurus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:190-198. [PMID: 29276954 DOI: 10.1016/j.ecoenv.2017.12.045] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
Water temperature is an important environmental factor that affects physiology and biochemical activities of fish. In this study, we investigated of high temperature on biochemical parameters, oxidative stress, DNA damage and apoptosis of pufferfish. Thermal stress could significantly increase the levels of AST, ALT, LDH, GLU and TG, whereas the levels of ALP and TP decrease significantly. In addition, thermal stress also decreased total blood cell count, inhibited cell viability, and subsequently lead to DNA damage and apoptosis. The mRNA levels of p53, caspase-9 and caspase-3 were up-regulated under thermal stress. These results suggested that caspase-dependent and p53 signaling pathways could play important roles in thermal stress-induced apoptosis in fish. Furthermore, the gene expression of SOD, CAT, HSP90 and C3 were induced by thermal stress. This study provides new insights into the mechanism whereby thermal stress affects physiological responses and apoptosis in pufferfish.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China.
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Sheng-Wei Luo
- Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - An-Li Wang
- Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
13
|
Luo SW, Kang H, Kong JR, Xie RC, Liu Y, Wang WN, Xie FX, Wang C, Sun ZM. Molecular cloning, characterization and expression analysis of (B-cell lymphoma-2) Bcl-2 in the orange-spotted grouper (Epinephelus coioides). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:150-162. [PMID: 28606801 DOI: 10.1016/j.dci.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
Bcl-2 is a pro-survival member of Bcl-2 like superfamily, playing an important role in regulating the apoptotic process. In this study, the full-length Bcl-2 (EcBcl-2) was obtained, consisting of a 5'UTR of 290 bp, an ORF of 699 bp and a 3'UTR of 920 bp. EcBcl-2 gene encoded a polypeptide of 232 amino acids with an estimated molecular mass of 26.12 KDa and a predicted isoelectric point (pI) of 6.93. The deduced amino acid sequence analysis showed that EcBcl-2 consisted of the conserved residues and characteristic domains known to the critical functionality for Bcl-2. qRT-PCR analysis revealed that EcBcl-2 transcript was expressed in all the examined tissues, while the strongest expression level was observed in liver, followed by the expression in blood, gill, kidney, spleen, heart, intestine and muscle. The groupers challenged with V. alginolyticus showed a significant increase of EcBcl-2 mRNA in immune tissues. In addition, western blotting analysis confirmed that the up-regulation of EcBcl-2 protein expression was detected in liver. Subcellular localization analysis revealed that EcBcl-2 was localized in both nucleus and cytoplasm. Overexpression of EcBcl-2 can inhibit the LPS-induced apoptosis and activate the transcription activity of NF-κB and AP-1, while the deletion of BH1, BH2, BH3 or BH4 domain from EcBcl-2 can impede the signaling transduction. These results indicate that EcBcl-2 may play a regulatory role in the apoptotic process.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China; Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Huan Kang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Jing-Rong Kong
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Ren-Chong Xie
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Yuan Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| | - Wei-Na Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China.
| | - Fu-Xing Xie
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, PR China
| | - Cong Wang
- Hebei Wisdom Technology Development Co., Ltd., PR China
| | - Zuo-Ming Sun
- Hebei Wisdom Technology Development Co., Ltd., PR China; Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|