1
|
Mushtaq Z, Kurcheti PP, Jeena K, Gireesh-Babu P. Short peptidoglycan recognition protein 5 modulates immune response to bacteria in Indian major carp, Cirrhinusmrigala. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105104. [PMID: 38040045 DOI: 10.1016/j.dci.2023.105104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) function in host antibacterial responses by recognizing bacterial peptidoglycan (PGN). In the present study, a short pgrp5 (named mpgrp5) was identified in Cirrhinus mrigala (mrigal). The full-length cDNA of the mpgrp5 gene was 1255 bp, containing an open reading frame of 746 bp encoding a protein of 248 amino acids. The predicted protein contained the typical Pgrp/amidase domain, conserved Zn2+, and PGN binding residues. The phylogenetic analysis revealed that the mpgrp5 is closely related to Pgrps reported in Labeo rohita, Cyrinus carpio, and Ctenopharyngodon idella. The ontogenetic expression of mpgrp5 was highest at 7 days post-hatching (dph) and its possible maternal transfer. mpgrp5 was constitutively expressed in all tissues examined, with the highest expression observed in the intestine. Furthermore, mpgrp5 was found upregulated in mrigal post-challenge in a time-dependent manner at 6hpi in the liver (3.16 folds, p < 0.05) and kidney (2.79 folds, p < 0.05) and at 12hpi in gill (1.90 folds, p < 0.01), skin (1.93 folds, p < 0.01), and intestine, (2.71 folds, p < 0.05) whereas at 24hpi in spleen (4.0 folds, p < 0.01). Our results suggest that mpgrp5 may play an important role in antibacterial immune response from early life stages in mrigal.
Collapse
Affiliation(s)
- Zahoor Mushtaq
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | | | - K Jeena
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - P Gireesh-Babu
- ICAR-National Research Centre on Meat, Hyderabad, 500092, India
| |
Collapse
|
2
|
Esteban MÁ. A review of soluble factors and receptors involved in fish skin immunity: The tip of the iceberg. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109311. [PMID: 38128682 DOI: 10.1016/j.fsi.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The immune system of fish possesses soluble factors, receptors, pathways and cells very similar to those of the other vertebrates' immune system. Throughout evolutionary history, the exocrine secretions of organisms have accumulated a large reservoir of soluble factors that serve to protect organisms from microbial pathogens that could disrupt mucosal barrier homeostasis. In parallel, a diverse set of recognition molecules have been discovered that alert the organism to the presence of pathogens. The known functions of both the soluble factors and receptors mentioned above encompass critical aspects of host defense, such as pathogen binding and neutralization, opsonization, or modulation of inflammation if present. The molecules and receptors cooperate and are able to initiate the most appropriate immune response in an attempt to eliminate pathogens before host infection can begin. Furthermore, these recognition molecules, working in coordination with soluble defence factors, collaboratively erect a robust and perfectly coordinated defence system with complementary specificity, activity and tissue distribution. This intricate network constitutes an immensely effective defence mechanism for fish. In this context, the present review focuses on some of the main soluble factors and recognition molecules studied in the last decade in the skin mucosa of teleost fish. However, knowledge of these molecules is still very limited in all teleosts. Therefore, further studies are suggested throughout the review that would help to better understand the functions in which the proteins studied are involved.
Collapse
Affiliation(s)
- María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
3
|
Liang B, Su J. Advances in aquatic animal RIG-I-like receptors. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100012. [DOI: 10.1016/j.fsirep.2021.100012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 01/12/2023] Open
|
4
|
Gao FY, Pang JC, Wang M, Lu MX, Liu ZG, Cao JM, Ke XL, Yi MM. Structurally diverse genes encode TLR13 in Nile tilapia: The two receptors can recognize Streptococcus 23S RNA and conduct signal transduction through MyD88. Mol Immunol 2021; 132:60-78. [PMID: 33545626 DOI: 10.1016/j.molimm.2021.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022]
Abstract
Toll-like receptors (TLRs) play a crucial role in the innate immune system, which is the first line of defence against pathogens and pathogenic products in fish. In the present study, we cloned the full-length cDNA and genome sequences of two TLR13 s (OnTLR13a, OnTLR13b) from Nile tilapia (Oreochromis niloticus). TLR family motifs, i.e., the leucine-rich repeat (LRR) domains and Toll/interleukin (IL)-1 receptor (TIR) domains, were conserved in the putative proteins OnTLR13a and OnTLR13b, with fifteen LRR domains and one TIR domain. Four exons and three introns were identified in the OnTLR13a genome sequence, and three exons and two introns were identified in the OnTLR13b genome sequence. In healthy Nile tilapia tissues, OnTLR13a and OnTLR13b were ubiquitously expressed in all 11 tested tissues/organs. The highest expression levels were observed in the spleen (OnTLR13a) and blood (OnTLR13b), and the lowest expression levels were observed in the liver (OnTLR13a) and stomach (OnTLR13b). The expression level of OnTLR13b at 5.5 days postfertilization (dpf) was significantly higher than that at the other 8 time points (2.5, 3.5, 4.5, 5, 6, 6.5, 7.5 and 8.5 dpf). Upon stimulation with an intraperitoneal injection of 200 μL (107 CFU/mL) Streptococcus agalactiae, the expression levels of OnTLR13a and OnTLR13b were significantly upregulated in the intestine and gill. After cotransfection with MyD88, OnTLR13a significantly increased MyD88-dependent NF-κB activation in 293 T cells. However, OnTLR13b significantly impaired MyD88-dependent NF-κB activation. In addition, TLR13a slightly increased MyD88-dependent AP-1 activation, and TLR13b significantly increased MyD88-dependent AP-1 activation. TLR13a significantly increased MyD88-dependent interferon-β (IFN-β) activation, and TLR13b had no effect on MyD88-dependent IFN-β activation. These findings suggest that although the deduced protein structure of OnTLR13 is evolutionarily conserved between OnTLR13 and other TLR members, its signal transduction function is markedly different. Co-immunoprecipitation (Co-IP) assays showed that both OnTLR13a and OnTLR13b could interact with OnMyD88. RNA pulldown assays showed that TLR13a and TLR13b could combine with the 23S rRNA of S. agalactiae. These results indicate that TLR13a and TLR13b play important roles in the innate immune response against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Feng-Ying Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, China
| | - Ji-Cai Pang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Miao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, China
| | - Mai-Xin Lu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, China.
| | - Zhi-Gang Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, China
| | - Jian-Meng Cao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, China
| | - Xiao-Li Ke
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, China
| | - Meng-Meng Yi
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, China
| |
Collapse
|
5
|
Cytosolic Sensors for Pathogenic Viral and Bacterial Nucleic Acids in Fish. Int J Mol Sci 2020; 21:ijms21197289. [PMID: 33023222 PMCID: PMC7582293 DOI: 10.3390/ijms21197289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recognition of the non-self signature of invading pathogens is a crucial step for the initiation of the innate immune mechanisms of the host. The host response to viral and bacterial infection involves sets of pattern recognition receptors (PRRs), which bind evolutionarily conserved pathogen structures, known as pathogen-associated molecular patterns (PAMPs). Recent advances in the identification of different types of PRRs in teleost fish revealed a number of cytosolic sensors for recognition of viral and bacterial nucleic acids. These are DExD/H-box RNA helicases including a group of well-characterized retinoic acid inducible gene I (RIG-I)-like receptors (RLRs) and non-RLR DExD/H-box RNA helicases (e.g., DDX1, DDX3, DHX9, DDX21, DHX36 and DDX41) both involved in recognition of viral RNAs. Another group of PRRs includes cytosolic DNA sensors (CDSs), such as cGAS and LSm14A involved in recognition of viral and intracellular bacterial dsDNAs. Moreover, dsRNA-sensing protein kinase R (PKR), which has a role in antiviral immune responses in higher vertebrates, has been identified in fish. Additionally, fish possess a novel PKR-like protein kinase containing Z-DNA binding domain, known as PKZ. Here, we review the current knowledge concerning cytosolic sensors for recognition of viral and bacterial nucleic acids in teleosts.
Collapse
|
6
|
Mohanty A, Sadangi S, Paichha M, Samanta M. Molecular characterization and expressional quantification of lgp2, a modulatory co-receptor of RLR-signalling pathway in the Indian major carp Labeo rohita following pathogenic challenges and PAMP stimulations. JOURNAL OF FISH BIOLOGY 2020; 96:1399-1410. [PMID: 32133636 DOI: 10.1111/jfb.14308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/28/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Lgp2 (laboratory of genetics and physiology 2) is a cytosolic viral sensor of the RLR (retinoic acid-inducible gene 1 like receptor) family member without the caspase recruitment domain, having both inhibitory and stimulatory roles in RLR-signalling pathway. In India, Labeo rohita (rohu) is one of the leading and economically favoured freshwater fish species. Several immunological sentry proteins have been reported in this fish species, but no information is available on the RLR members. This study was aimed at cloning and characterization of full-length lgp2-cDNA (complementary DNA) in rohu and investigation of its expressional modulations following various pathogen-associated molecular pattern stimulations and bacterial infections. The full-length lgp2-cDNA sequence obtained through rapid amplification of cDNA ends-PCR consisted of 2299 nucleotides with an open reading frame of 2034 bp encoding 677 amino acids. In rohu-Lgp2, four conserved domains - a DEAD/DEAH box helicase domain, Pfam type-III restriction enzyme domain, helicase superfamily c-terminal domain and RIG-I C-terminal regulatory domain - have been detected. Within these domains, several important functional motifs, such as ATP-binding site, ATPase motif, RNA unwinding motif and RNA-binding sites, have also been identified. In healthy rohu, lgp2 gene was abundantly expressed in gill, liver, kidney, spleen and blood. In response to both in vitro and in vivo treatments using double-stranded RNA (poly I:C), lgp2 gene expression was significantly (P < 0.05) upregulated in all tested tissues and also in the LRG (Labeo rohita gill) cells. lgp2 gene expression significantly (P < 0.05) increased on stimulation of LRG cells using γ-d-glutamyl-meso-diaminopimelic acid and muramyl dipeptide. In vivo treatment using lipopolysaccharide and Aeromonas hydrophila-derived RNA resulted in both up- and down-regulation of lgp2 gene expression. Upon gram-positive and gram-negative bacterial infections, the expression of the lgp2 gene increased at different times in almost all the tested tissues. These integrated observations in rohu suggest that Lgp2 is an antiviral and antibacterial cytosolic receptor. SIGNIFICANCE STATEMENT: Lgp2, a cytosolic viral sensor of retinoic acid-inducible gene 1 like receptor family member, has been cloned in Labeo rohita. The complete sequence of rohu lgp2-complementary DNA consisted of 2299 nucleotides with an open reading frame of 2034 bp encoding 677 amino acids. It consisted of a DExDc, RES-III, HELICc, Pfam RIG-I_C-RD, ATP-binding site, ATPase motif, RNA unwinding motif and RNA-binding site. Upon bacterial infection, double-stranded RNA and various pathogen-associated molecular pattern stimulations, lgp2 gene expression significantly increased, indicating its role as an antiviral and antibacterial cytosolic receptor.
Collapse
Affiliation(s)
- Arpita Mohanty
- Immunology Laboratory, Fish Health Management Division, Indian Council of Agricultural Research -Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Sushmita Sadangi
- Immunology Laboratory, Fish Health Management Division, Indian Council of Agricultural Research -Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Mahismita Paichha
- Immunology Laboratory, Fish Health Management Division, Indian Council of Agricultural Research -Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| | - Mrinal Samanta
- Immunology Laboratory, Fish Health Management Division, Indian Council of Agricultural Research -Central Institute of Freshwater Aquaculture, Bhubaneswar, India
| |
Collapse
|
7
|
Krishnan R, Kurcheti PP, Mushtaq Z, K J, Naik T V. Interferon-regulatory factors, IRF3 and IRF7 in Asian seabass, Lates calcarifer: Characterization, ontogeny and transcriptional modulation upon challenge with nervous necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2019; 89:468-476. [PMID: 30940578 DOI: 10.1016/j.fsi.2019.03.073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Interferon regulatory factor (IRF) 3 and IRF7 are key regulators of type I interferon (IFN) gene expression for the antiviral immune response. In the present study, interferon regulatory factor 3 and 7 from Asian seabass, namely AsIRF3 and AsIRF7 were cloned and characterized. The full-length cDNA sequence of IRF3 and IRF7 consisted of 2965 and 2343 bp respectively. AsIRF3 and AsIRF7 were true orthologes of vertebrate IRF3/7 and showed similar domain organization, with an N-terminal DBD which consisted five tryptophan residues in IRF3 and four in IRF7, a C-terminal IRF3 domain and a serine rich region. Both IRF3 and 7 constitutively expressed during the ontogenesis and in all tissues of healthy fish. The expression of both genes was up-regulated following NNV challenge with obvious transcript abundance in brain heart and kidney. Ectopic expression of AsIRF3 and AsIRF7 displayed activation of ISRE/NF-κB promoters and modulation of interferon, ISGs and pro-inflammatory cytokine gene expression. These observations indicated that IRF3 and IRF7 play an important role in Asian seabass's antiviral defense and the RIG-IRF-IFN axis is conserved in the species.
Collapse
Affiliation(s)
- Rahul Krishnan
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India; Present Address: Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Pani Prasad Kurcheti
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India.
| | - Zahoor Mushtaq
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Jeena K
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Vismai Naik T
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India
| |
Collapse
|
8
|
Gao FY, Lu MX, Wang M, Liu ZG, Ke XL, Zhang DF, Cao JM. Molecular characterization and function analysis of three RIG-I-like receptor signaling pathway genes (MDA5, LGP2 and MAVS) in Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2018; 82:101-114. [PMID: 30099139 DOI: 10.1016/j.fsi.2018.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/26/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
The recognition of microbial pathogens, which is mediated by pattern recognition receptors (PRRs), is critical to the initiation of innate immune responses. In the present study, we isolated the full-length cDNA and genomic DNA sequences of the MDA5, LGP2 and MAVS genes in Nile tilapia, termed OnMDA5, OnLGP2 and OnMAVS. The OnMDA5 gene encodes 974 amino acids and contains two caspase-associated recruitment domains (CARDs), a DExDc domain (DExD/H box-containing domain), a HELICc (helicase superfamily C-terminal) domain and a C-terminal regulatory domain (RD). The OnLGP2 gene encodes 679 amino acids and contains a DExDc, a HELICc and an RD. The OnMAVS gene encodes 556 amino acids and contains a CARD, a proline-rich domain, a transmembrane helix domain and a putative TRAF2-binding motif (269PVQDT273). Phylogenetic analyses showed that all three genes from Nile tilapia were clustered together with their counterparts from other teleost fishes. Real-time PCR analyses showed that all three genes were constitutively expressed in all examined tissues in Nile tilapia. OnMDA5 presented the highest expression level in the blood and the lowest expression level in the liver, while OnMAVS presented the highest expression level in the kidney. The highest expression level of OnLGP2 was detected in the liver. An examination of the expression patterns of these RIG-I-like receptors (RLRs) during embryonic development showed that the highest expression levels of OnMDA5 occurred at 2 days postfertilization (dpf), and the expression significantly decreased from 3 to 8 dpf. The expression levels of OnLGP2 significantly increased from 4 to 8 dpf. The expression levels of OnMAVS mRNA were stable from 2 to 8 dpf. Upon stimulation by intraperitoneal injection of Streptococcus agalactiae, the expression levels of OnMDA5 were first downregulated and then upregulated in the blood, gill and spleen. In the intestine and kidney, the expression of OnMDA5 was first upregulated, then downregulated, and then upregulated again. The expression of OnLGP2 was upregulated in the kidney and intestine, and the expression of OnMAVS was upregulated in the spleen. Overexpression of OnMAVS increased NF-κB activation in 293 T cells (p < 0.05), and after cotransfection with OnMDA5, the OnMAVS-dependent NF-κB activation was slightly increased (p > 0.05), after cotransfection with OnLGP2, the OnMAVS-dependent NF-κB activation was significantly decreased (p < 0.05). These findings suggest that, although the deduced protein structure of OnMDA5 is evolutionarily conserved with the structures of other RLR members, its signal transduction function is markedly different. The results also suggest that OnLGP2 has a negative regulatory effect on the OnMAVS gene. OnMDA5 and OnMAVS were uniformly distributed throughout the cytoplasm in 293 T cells, whereas OnLGP2 was distributed throughout the cytoplasm and nucleus. These results are helpful for clarifying the innate immune response against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Feng-Ying Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China; College of Fisheries and Life Science, Shanghai Ocean University Shanghai, 201306, PR China
| | - Mai-Xin Lu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China.
| | - Miao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| | - Zhi-Gang Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| | - Xiao-Li Ke
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| | - De-Feng Zhang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| | - Jian-Meng Cao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| |
Collapse
|
9
|
Paria A, Makesh M, Chaudhari A, Purushothaman CS, Rajendran KV. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) in Asian seabass, Lates calcarifer: Cloning, ontogeny and expression analysis following bacterial infection or ligand stimulation. FISH & SHELLFISH IMMUNOLOGY 2018; 79:153-162. [PMID: 29723664 DOI: 10.1016/j.fsi.2018.04.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
NOD1 (Nucleotide-binding oligomerization domain-containing protein 1) is one of the most prominent intracellular Nod-like receptors (NLRs), responsible for detecting different microbial components and products arising from tissue injury. Here, we have identified and cloned NOD1 transcript in the Asian seabass, Lates calcarifer (AsNOD1), which consists of 3749 nucleotides and encodes for a predicted putative protein of 900 AA. The AsNOD1 possesses the typical structure of NLR family, consisting of N-terminal CARD domain, centrally located NACHT domain and C-terminal LRRs. The AsNOD1 showed ubiquitous tissue expression in 11 different tissues of healthy animals tested with high levels of expression in hindgut and gill. From the ontogenetic expression profile of AsNOD1, it is quite evident that this gene might follow a maternally-transferred trend in euryhaline teleosts, as it is highly abundant in embryonic developmental stages. The constitutive immunomodulation of AsNOD1 in terms of expression level was clearly evident in the different tissues of Asian seabass-injected either with Vibrio alginolyticus or poly I:C. However, injection with Staphylococcus aureus did not elicit similar immunomodulation except for the up-regulation noticed at few time-points in some tissues. SISK-cell line induced with different ligands such as poly I:C, LPS and PGN also showed up-regulation of AsNOD1 in certain time-points in vitro. Based on the results obtained in the present study, it can be inferred that the AsNOD1 might play an immunoregulatory role upon exposure to different bacterial as well as viral PAMPs and also might be an important component of innate immune element during embryonic and larval development in the euryhaline teleost Asian seabass.
Collapse
Affiliation(s)
- Anutosh Paria
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai, 400 061, India
| | - M Makesh
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai, 400 061, India
| | - Aparna Chaudhari
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai, 400 061, India
| | - C S Purushothaman
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai, 400 061, India
| | - K V Rajendran
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai, 400 061, India.
| |
Collapse
|
10
|
Paria A, Makesh M, Chaudhari A, Purushothaman CS, Rajendran KV. Toll-like receptor (TLR) 22, a non-mammalian TLR in Asian seabass, Lates calcarifer: Characterisation, ontogeny and inductive expression upon exposure with bacteria and ligands. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:180-186. [PMID: 29203332 DOI: 10.1016/j.dci.2017.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
Toll-like receptor (TLR) 22 is a non-mammalian TLR found mostly in teleosts and characterized initially as a cell surface surveillance receptor for detecting extracellular long dsRNA. In the current study, the full-length cDNA sequence consisting of 3312 nucleotides encoding for 960 amino acids in Asian seabass (Lates calcarifer) TLR22 (AsTLR22) was identified. From the putative protein sequence, signature TLR domains such as 18 LRR domains, two transmembrane domains, a single LRR_CT domain and an intracellular TIR domain could be predicted. Phylogenetic analysis showed that AsTLR22 is clustered with other teleost TLR22 and is distinctly different from the other TLR groups. The transcript of AsTLR22 was ubiquitously expressed in all the tissues tested of healthy juveniles with the highest expression in gill followed by hindgut, spleen and skin. The AsTLR22 mRNA transcript was also detected in all the developmental stages as early as unfertilized eggs with higher expression in later stages such as neurula and early embryo. The dsRNA viral analogue, poly (I:C) and Gram-negative bacterium, Vibrio alginolyticus, were found to modulate the AsTLR22 expression in different tissues with the highest expression in kidney and liver. Gram-positive bacterium, Staphylococcus aureus, was also found to regulate the AsTLR22 expression at certain time-points with the highest expression in gill. Similarly, noticeable change in AsTLR22 expression was detected in SISK cell line induced with different ligands such as poly (I:C), LPS and PGN. The findings indicate that AsTLR22 responds in transcript level towards bacteria-borne PAMPs and extracellular dsRNA in the euryhaline teleost Asian seabass. Further, this might act as an important pathogen surveillance receptor during early developmental stages.
Collapse
Affiliation(s)
- Anutosh Paria
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai, 400 061, India
| | - M Makesh
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai, 400 061, India
| | - Aparna Chaudhari
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai, 400 061, India
| | - C S Purushothaman
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai, 400 061, India
| | - K V Rajendran
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai, 400 061, India.
| |
Collapse
|
11
|
Krishnan R, Girish Babu P, Jeena K, Tripathi G, Pani Prasad K. Molecular characterization, ontogeny and expression profiling of mitochondrial antiviral signaling adapter, MAVS from Asian seabass Lates calcarifer, Bloch (1790). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:175-185. [PMID: 29100916 DOI: 10.1016/j.dci.2017.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Mitochondrial antiviral signaling protein (MAVS), an innate immune signaling adapter coordinates the signals received from two independent cytosolic pathogen recognition receptors (RIG-1 and MDA5) to induce antiviral genes. In the present study the MAVS gene of Lates calcarifer (LcMAVS) was cloned and characterized. The complete cDNA sequence of LcMAVS was 3160 bp and encodes a poly peptide of 577 amino acids. Structural analysis of LcMAVS revealed an N-terminal CARD-like domain, central proline-rich domain and a C-terminal transmembrane domain. Phylogenetic analysis indicated that LcMAVS exhibited the closest relationship to P. olivaceous MAVS. LcMAVS was ubiquitously expressed in all tested tissues of healthy fish viz., brain, gill, heart, liver, spleen, kidney and intestine, with highest transcript level in spleen. The mRNA transcript level of LcMAVS in different developmental stages showed constitutive expression in all the stages tested suggesting the maternal transfer of the gene. Significant up regulation in MAVS expression was observed post nervous necrosis virus (NNV) challenge in vivo in all the selected tissues. Further, time course analysis showed that LcMAVS transcripts significantly increased in the brain and spleen tissues after NNV infection. These findings provide useful information for further elucidating the function of LcMAVS in antiviral innate immune response against NNV in Asian seabass.
Collapse
Affiliation(s)
- Rahul Krishnan
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - P Girish Babu
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - K Jeena
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - Gayathri Tripathi
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - Kurcheti Pani Prasad
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India.
| |
Collapse
|
12
|
Paria A, Makesh M, Chaudhari A, Purushothaman CS, Rajendran KV. Molecular characterisation, ontogeny and expression analysis of melanoma differentiation-associated factor 5 (MDA5) from Asian seabass, Lates calcarifer. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:71-82. [PMID: 28919361 DOI: 10.1016/j.dci.2017.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
MDA5 is the pivotal member of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and is reported to play a crucial role in type I IFN-mediated responses against pathogen-associated molecular patterns (PAMPs), especially nucleic acids. In this study, we have identified and cloned the full-length cDNA sequence of MDA5, which comprises 3398 nucleotides and encodes for a putative protein of 978 AA length, in Asian seabass, Lates calcarifer. From the putative amino acid sequence of AsMDA5, four different conserved domains could be predicted: two N-terminal CARD domains, a DExDc domain, a HELICc domain and a C-terminal RIG-1_C-RD domain. The mRNA transcript of AsMDA5 could be detected in all the 11 tissues tested in healthy animals with the highest expression in heart followed by gill and skin. The ontogenetic expression profile showed constitutive expression in developmental stages starting from unfertilized eggs, which implies the possibility of maternally acquired immunity of RLRs in offspring. The viral analogue poly I:C could modulate the AsMDA5 expression both in vivo and in vitro. In all the tissues, AsMDA5 expression was found to be highly regulated following injection with poly I:C with the highest expression observed in kidney. The expression level of AsMDA5 was found to be modulated at different time-points following challenge with Gram-negative bacterium, Vibrio alginolyticus, and Gram-positive bacterium, Staphylococcus aureus. Similarly, noticeable change in AsMDA5 expression was detected in SISK cell line induced with either LPS or PGN. The observations made in this study suggest that in euryhaline marine teleosts like Asian seabass, MDA5 gene serves as one of the pivotal receptor for the detection of viral and bacterial PAMP, and might play an important antimicrobial role during early embryonic development.
Collapse
Affiliation(s)
- Anutosh Paria
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai -400 061, India
| | - M Makesh
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai -400 061, India
| | - Aparna Chaudhari
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai -400 061, India
| | - C S Purushothaman
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai -400 061, India
| | - K V Rajendran
- ICAR-Central Institute of Fisheries Education (CIFE), Off-Yari Road, Versova, Mumbai -400 061, India.
| |
Collapse
|