1
|
Wang CB, Yan X, Wang GH, Liu WQ, Wang Y, Hao DF, Liu HM, Zhang M. NKHs27, a sevenband grouper NK-Lysin peptide that possesses immunoregulatory and antimicrobial activity. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108715. [PMID: 37001746 DOI: 10.1016/j.fsi.2023.108715] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
As an effective and broad-spectrum antimicrobial peptide, NK-Lysin is attracted more and more attention at present. However, the functions and action mechanism of NK-Lysin peptides are still not comprehensive enough at present. In this study, a sevenband grouper (Hyporthodus septemfasciatus) NK-Lysin peptide, NKHs27, was identified and synthesized, and its biological functions were studied. The results indicated that NKHs27 shares 44.44%∼88.89% overall sequence identities with other teleost NK-Lysin peptides. The following antibacterial activity assay exhibited that NKHs27 was active against both Gram-negative and Gram-positive bacteria, including Staphylococcus aureus, Listonella anguillarum, Vibrio parahaemolyticus and Vibrio vulnificus. Additionally, NKHs27 showed a synergistic effect when it was combined with rifampicin or erythromycin. In the process of interaction with the L. anguillarum cells, NKHs27 changed the cell membrane permeability and retained its morphological integrity, then penetrated into the cytoplasm to act on genomic DNA or total RNA. Then, in vitro studies showed that NKHs27 could enhance the respiratory burst ability of macrophages and upregulate immune-related genes expression in it. Moreover, NKHs27 incubation improved the proliferation of peripheral blood leukocytes significantly. Finally, in vivo studies showed that administration of NKHs27 prior to bacterial infection significantly reduced pathogen dissemination and replication in tissues. In summary, these results provide new insights into the function of NK-Lysin peptides in teleost and support that NKHs27, as a novel broad-spectrum antibacterial peptide, has potential applications in aquaculture against pathogenic infections.
Collapse
Affiliation(s)
- Chang-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Xue Yan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wen-Qing Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yue Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Dong-Fang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hong-Mei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
2
|
Liu H, Wang G, Hao D, Wang C, Zhang M. Antimicrobial and Immunoregulatory Activities of TS40, a Derived Peptide of a TFPI-2 Homologue from Black Rockfish (Sebastes schlegelii). Mar Drugs 2022; 20:md20060353. [PMID: 35736157 PMCID: PMC9228364 DOI: 10.3390/md20060353] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
Tissue factor pathway inhibitor-2 (TFPI-2) is a Kunitz-type serine protease inhibitor. Previous reports have shown that TFPI-2 plays an important role in innate immunity, and the C-terminal region of TFPI-2 proved to be active against a broad-spectrum of microorganisms. In this study, the TFPI-2 homologue (SsTFPI-2) of black rockfish (Sebastods schegelii) was analyzed and characterized, and the biological functions of its C-terminal derived peptide TS40 (FVSRQSCMDVCAKGAKQHTSRGNVRRARRNRKNRITYLQA, corresponding to the amino acid sequence of 187-226) was investigated. The qRT-PCR (quantitative real-time reverse transcription-PCR) analysis showed that the expression of SsTFPI-2 was higher in the spleen and liver. The expression of SsTFPI-2 increased significantly under the stimulation of Listonella anguillarum. TS40 had a strong bactericidal effect on L. anguillarum and Staphylococcus aureus. Further studies found that TS40 can destroy the cell structure and enter the cytoplasm to interact with nucleic acids to exert its antibacterial activity. The in vivo study showed that TS40 treatment could significantly reduce the transmission of L. anguillarum and the viral evasion in fish. Finally, TS40 enhanced the respiratory burst ability, reactive oxygen species production and the expression of immune-related genes in macrophages, as well as promoted the proliferation of peripheral blood leukocytes. These results provide new insights into the role of teleost TFPI-2.
Collapse
Affiliation(s)
- Hongmei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (H.L.); (G.W.); (D.H.); (C.W.)
| | - Guanghua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (H.L.); (G.W.); (D.H.); (C.W.)
| | - Dongfang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (H.L.); (G.W.); (D.H.); (C.W.)
| | - Changbiao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (H.L.); (G.W.); (D.H.); (C.W.)
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (H.L.); (G.W.); (D.H.); (C.W.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266109, China
- Correspondence: ; Tel.: +86-532-8608-0762
| |
Collapse
|
3
|
Hao DF, Wang GH, Li NQ, Liu HM, Wang CB, Liu WQ, Yan X, Zhang M. Antimicrobial and immunoregulatory activities of the derived peptide of a natural killer lysin from black rockfish (Sebastes schlegelii). FISH & SHELLFISH IMMUNOLOGY 2022; 123:369-380. [PMID: 35318137 DOI: 10.1016/j.fsi.2022.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/26/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Natural killer lysin (NK-lysin) is a small molecule antimicrobial peptide secreted by natural killer cells and T lymphocytes. In this study, we characterized a cDNA sequence encoding an NK-lysin homologue (SsNKL1) from black rockfish, Sebastes schlegelii. The open reading frame (ORF) of SsNKL1 encodes a putative protein of 149 amino acids and shares 44%-87% overall sequence identities with other teleost NK-lysins. SsNKL1 possesses conserved NK-lysin family features, including a signal sequence and a surfactant-associated protein B (SapB) domain, sequence analysis revealed that SsNKL1 is most closely related to false kelpfish (Sebastiscus marmoratus) NK-lysin (with 87% sequence identity). SsNKL1 transcripts were detected in all the tested tissues, with the highest level in the kidney, followed by the spleen and gills. Upon Listonella anguillarum infection, the mRNA expression of SsNKL1 in the black rockfish was significantly up-regulated in the liver and kidney. The derived peptide SsNKLP27 from SsNKL1 was synthesized, and its biological function was studied. SsNKLP27 showed direct antibacterial activity against Gram-negative and Gram-positive bacteria, including Staphylococcus aureus, Bacillus subtilis, L. anguillarum, Vibrio parahaemolyticus, Vibrio alginolyticus and Vibrio vulnificus. SsNKLP27 treatment facilitated the bactericidal process of erythromycin by enhancing the permeability of the outer membrane. In the process of interaction with the target bacterial cells, SsNKLP27 changed the permeability and retained the morphological integrity of the cell membrane, then penetrated into the cytoplasm, and induced the degradation of genomic DNA and total RNA. In vivo studies showed that administration of SsNKLP27 before bacterial and viral infection significantly reduced the transmission and replication of pathogens in tissues. In vitro analysis showed that SsNKLP27 could enhance the respiratory burst ability and regulate the expression of some immune-related genes of macrophages. In summary, these results provided new insights into the function of NK-lysins in teleost fish and support that SsNKLP27 is a new broad-spectrum antimicrobial peptide that has a potential application prospect in aquaculture against pathogenic infection.
Collapse
Affiliation(s)
- Dong-Fang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Ning-Qiu Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, PR China
| | - Hong-Mei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chang-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wen-Qing Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Xue Yan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
4
|
Gu QQ, Wang GH, Li NQ, Hao DF, Liu HM, Wang CB, Hu YH, Zhang M. Evaluation of the efficacy of a novel Vibrio vulnificus vaccine based on antibacterial peptide inactivation in turbot, Scophthalmus maximus. FISH & SHELLFISH IMMUNOLOGY 2021; 118:197-204. [PMID: 34509628 DOI: 10.1016/j.fsi.2021.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Tongue sole tissue factor pathway inhibitor 2 (TFPI-2) C-terminus derived peptide, TC38, has previously been shown to kill Vibrio vulnificus cells without lysing the cell membrane; thus, the remaining bacterial shell has potential application as an inactivated vaccine. Therefore, this study aimed to evaluate the immune response induced by the novel V. vulnificus vaccine. The protective potential of TC38-killed V. vulnificus cells (TKC) was examined in a turbot model. Fish were intramuscularly vaccinated with TKC or FKC (formalin-killed V. vulnificus cells) and challenged with a lethal-dose of V. vulnificus. The results showed that compared with FKC, TKC was effective in protecting fish against V. vulnificus infection, with relative percent of survival (RPS) rates of 53.29% and 63.64%, respectively. The immunological analysis revealed that compared with the FKC and control groups, the TKC group exhibited: 1) significantly higher respiratory burst ability and bactericidal activity of macrophages at 7 d post-vaccination; 2) increased alkaline phosphatase, acid phosphatase, lysozyme, and total superoxide dismutase levels post-vaccination; 3) higher serum agglutinating antibody titer with corresponding higher serum bactericidal ability, and a more potent serum agglutination effect, as well as an increased IgM expression level; 4) higher expression of immune relevant genes, which were involved in both innate and adaptive immunity. Taken together, this is the first study to develop a novel V. vulnificus inactivated vaccine based on AMP inactivation, and TKC is an effective vaccine against V. vulnificus infection for aquaculture.
Collapse
Affiliation(s)
- Qin-Qin Gu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; School of Weihai Ocean Vocational College, Weihai, Shandong Province, 264300, China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Ning-Qiu Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Dong-Fang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hong-Mei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chang-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yong-Hua Hu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
5
|
Initial purification of antimicrobial fermentation metabolites from Paecilomyces cicadae and its antimicrobial mechanism. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Gu QQ, He SW, Liu LH, Wang GH, Hao DF, Liu HM, Wang CB, Li C, Zhang M, Li NQ. A teleost bactericidal permeability-increasing protein-derived peptide that possesses a broad antibacterial spectrum and inhibits bacterial infection as well as human colon cancer cells growth. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103995. [PMID: 33412232 DOI: 10.1016/j.dci.2021.103995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
The bactericidal permeability-increasing protein (BPI) is a multifunctional cationic protein produced by neutrophils with antibacterial, antitumor, and LPS-neutralizing properties. In teleost, a number of BPIs have been reported, but their functions are very limited. In this study, an N-terminal peptide, BO18 (with 18 amino acids), derived from rock bream (Oplegnathus fasciatus) BPI, was synthesized and investigated for its antibacterial spectrum, action mechanism, immunoregulatory property as well as the inhibition effects on bacterial invasion and human colon cancer cells growth. The results showed that BO18 was active against Gram-positive bacteria Bscillus subiilis, Micrococcus luteus, and Staphylococcus aureus, as well as Gram-negative bacteria Vibrio alginolyticus, Vibrio litoralis, Vibrio parahaemolyticus and Vibrio vulnificus. BO18 treatment facilitated the bactericidal process of erythromycin and rifampicin by enhancing the permeability of the outer membrane. During its interaction with V. alginolyticus, BO18 exerted its antibacterial activity by destroying cell membrane integrity, penetrating into the cytoplasm and binding to genomic DNA and total RNA. In vitro analysis indicated BO18 could enhance the respiratory burst ability and regulate the expression of immune related genes of macrophages. In vivo detection showed the administration of fish with BO18 before bacterial infection significantly reduced pathogen dissemination and replication in tissues. In addition, BO18 exerted a cytotoxic effect on the growth of human colon cancer cells HT-29. Together, these results add new insights into the function of teleost BPIs, and support that BO18 is a novel and broad-spectrum antibacterial peptide with potential to apply in fighting pathogenic infection in aquaculture.
Collapse
Affiliation(s)
- Qin-Qin Gu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Shu-Wen He
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Li-Hui Liu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, 510380, PR China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Dong-Fang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hong-Mei Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chang-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China.
| | - Ning-Qiu Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, 510380, PR China.
| |
Collapse
|
7
|
Su YL, Wang GH, Wang JJ, Xie B, Gu QQ, Hao DF, Liu HM, Zhang M. TC26, a teleost TFPI-1 derived antibacterial peptide that induces degradation of bacterial nucleic acids and inhibits bacterial infection in vivo. FISH & SHELLFISH IMMUNOLOGY 2020; 98:508-514. [PMID: 32004613 DOI: 10.1016/j.fsi.2020.01.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
At present, several reports have indicated that the C-terminal peptides of tissue factor pathway inhibitor 1 (TFPI-1) were active antibacterial peptides. However, the functions of TFPI-1 C-terminal peptides in teleost are still very limited. In this study, a C-terminal peptide, TC26 (with 26 amino acids), derived from common carp (Cyprinus carpio) TFPI-1, was synthesized and investigated for its antibacterial spectrum, action mechanism, as well as the in vivo effects on bacterial invasion. Our results showed that TC26 was active against Gram-positive bacteria Micrococcus luteus and Staphylococcus aureus, as well as Gram-negative bacterium Vibrio vulnificus. TC26 treatment facilitated the bactericidal process of erythromycin by enhancing the out-membrane permeability of V. vulnificus. During the bactericidal process, TC26 killed the target bacterial cells Vibrio vulnificus, by destroying cell membrane integrity, penetrating into the cytoplasm and inducing degradation of genomic DNA and total RNA. In vivo study showed that administration of turbot with TC26 before bacterial infection significantly reduced pathogen dissemination and replication in tissues. These results indicated that TC26 is a novel and active antibacterial peptide and may play a vital role in fighting pathogenic infection in aquaculture.
Collapse
Affiliation(s)
- Yan-Li Su
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guang-Hua Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing-Jing Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bing Xie
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qin-Qin Gu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dong-Fang Hao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hong-Mei Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
8
|
Pan Y, Zheng LB, Mao Y, Wang J, Lin LS, Su YQ, Li Y. The antibacterial activity and mechanism analysis of piscidin 5 like from Larimichthys crocea. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:43-49. [PMID: 30359623 DOI: 10.1016/j.dci.2018.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/21/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
Chemical drugs, such as antibiotics, were still important materials to prevent and cure diseases of aquatic organisms. However, antibiotics abuse do not only make the effects little, but also cause other bad problems, such as bacterial resistance and drug residues. Therefore, seeking the effective substitutes of antibiotics was an approach needed to be explored. Antibacterial peptides (AMPs) attracted more and more attention in the recent years. The parasitism and secondary bacterial invasion caused by ectroparasite Cryptocaryon irritans was a disaster to almost all host fish, including Larimichthys crocea. Reports indicated many AMPs played a key role in the whole parasitic infection cycle. Piscidin 5 like was a member of piscidin family. In the study, the antibacterial activity and mechanisms of piscidin 5 like from L.coreca (Lc-P5L) were detected. Liquid growth inhibition results showed recombinant Lc-P5L (rLc-P5L) had broad antibacterial spectrum and strong bactericidal activity. The bactericidal activity functioned in dose- and time-dependent manners. SEM (scanning electron microscope) observed the relatively detailed bactericidal process, rLc-P5L treatment resulted in a mass of bacteria piling together, appearing plenty of strange filaments and covering on the bacteria. Besides, S.aureus overgrowed plenty of granules, formed holes on the membrane of a few cells, and contents poured out from the holes. At the same time, antibacterial mechanisms were explored. After direct incubation with bacteria, western blot detected the apparently positive signal of rLc-P5L on bacteria; secondly, the incubation first with LPS (lipopolysaccharide) or LTA (lipoteichoic acid) significantly affect the binding of rLc-P5L to bacteria again, which indicated rLc-P5L could bind to bacteria through interaction with some PAMPs (pathogen-associated molecular patterns). In addition, rLc-P5L could interact with bacterial genome DNA by dose- and time-dependent means. In summary, rLc-P5L binded to bacteria surface through targeting to some PAMPs to damage membrane, and entered into cells to interact with genome DNA to disturb normal metabolism when it reached to some certain time and concentration thresholds, which were likely to be its pathway to exert antibacterial activity.
Collapse
Affiliation(s)
- Ying Pan
- State Key Laboratory of Marine Environmental Science, Xiamen University, 361005, China
| | - Li-Bing Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, 361005, China.
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, Xiamen University, 361005, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, 361005, China
| | - Long-Shan Lin
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
| | - Yong-Quan Su
- State Key Laboratory of Marine Environmental Science, Xiamen University, 361005, China
| | - Yuan Li
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China.
| |
Collapse
|
9
|
He SW, Wang JJ, Du X, Yue B, Wang GH, Zhou S, Xie B, Zhang M. A teleost TFPI-2 peptide that possesses a broad antibacterial spectrum and immune-stimulatory properties. FISH & SHELLFISH IMMUNOLOGY 2018; 82:469-475. [PMID: 30149134 DOI: 10.1016/j.fsi.2018.08.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 05/06/2023]
Abstract
Tissue factor pathway inhibitor 2 (TFPI-2) is an analogue of TFPI-1 and a potent endogenous inhibitor of tissue factor (TF)-mediated blood coagulation. Previous reports have shown that several peptides derived from human and vertebrates TFPI-2 possess antibacterial activity against diverse bacteria. In this study, a C-terminal peptide, TO24 (with 24 amino acids), derived from red drum (Sciaenops ocellatus) TFPI-2, was synthesized and investigated for its antimicrobial spectrum, action mode, as well as the immune-stimulatory property. Our results indicated that TO24 was active against Gram-positive bacteria Micrococcus luteus and Staphylococcus aureus; Gram-negative bacteria Vibrio litoralis, Vibrio ichthyoenteri, Vibrio vulnificus and Vibrio scophthalmi, as well as fish megalocytivirus, infectious spleen and kidney necrosis virus (ISKNV). During its interaction with V. vulnificus, TO24 exerted its antibacterial activity by destroying cell membrane integrity, penetrating the cytoplasm and inducing degradation of genomic DNA and total RNA. In addition, TO24 had no hemolytic activity against red drum blood cells. In vitro, TO24 enhanced bactericidal activity of red drum macrophages. In vivo, administration of red drum with TO24 before bacterial infection significantly reduced pathogen dissemination and replication in tissues. These results indicate that TO24 is a broad-spectrum antimicrobial peptide with immune-stimulatory properties and it has the potential to be used as an antimicrobial agent in aquaculture.
Collapse
Affiliation(s)
- Shu-Wen He
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing-Jing Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xue Du
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bin Yue
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guang-Hua Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bing Xie
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
10
|
Rebl A, Goldammer T. Under control: The innate immunity of fish from the inhibitors' perspective. FISH & SHELLFISH IMMUNOLOGY 2018; 77:328-349. [PMID: 29631025 DOI: 10.1016/j.fsi.2018.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The innate immune response involves a concerted network of induced gene products, preformed immune effectors, biochemical signalling cascades and specialised cells. However, the multifaceted activation of these defensive measures can derail or overshoot and, if left unchecked, overwhelm the host. A plenty of regulatory devices therefore mediate the fragile equilibrium between pathogen defence and pathophysiological manifestations. Over the past decade in particular, an almost complete set of teleostean sequences orthologous to mammalian immunoregulatory factors has been identified in various fish species, which prove the remarkable conservation of innate immune-control concepts among vertebrates. This review will present the current knowledge on more than 50 teleostean regulatory factors (plus additional fish-specific paralogs) that are of paramount importance for controlling the clotting cascade, the complement system, pattern-recognition pathways and cytokine-signalling networks. A special focus lies on those immunoregulatory features that have emerged as potential biomarker genes in transcriptome-wide research studies. Moreover, we report on the latest progress in elucidating control elements that act directly with immune-gene-encoding nucleic acids, such as transcription factors, hormone receptors and micro- and long noncoding RNAs. Investigations into the function of teleostean inhibitory factors are still mainly based on gene-expression profiling or overexpression studies. However, in support of structural and in-vitro analyses, evidence from in-vivo trials is also available and revealed many biochemical details on piscine immune regulation. The presence of multiple gene copies in fish adds a degree of complexity, as it is so far hardly understood if they might play distinct roles during inflammation. The present review addresses this and other open questions that should be tackled by fish immunologists in future.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany.
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany
| |
Collapse
|