1
|
Huang Y, Hong Y, Yin H, Yan G, Huang Q, Li Z, Huang Z. Imidacloprid induces locomotion impairment of the freshwater crayfish, Procambarus clarkii via neurotoxicity and oxidative stress in digestive system. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105913. [PMID: 34304056 DOI: 10.1016/j.aquatox.2021.105913] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Imidacloprid (IMI) is used in integrated farming like the rice-crayfish co-culture system to prevent water weevil. However, the toxic effect of IMI on the freshwater crayfish Procambarus clarkii is unknown. In the current study, the effects of IMI on the locomotion, antioxidative status, digestion and intestinal microbiota of P. clarkii were investigated. The results showed that IMI caused locomotion impairment with reduced crawl velocity, and attenuated their dark preference, aggressiveness and reversal ability. Inhibited AChE in muscle and hepatopancreas indicates the neurotoxicity of IMI which may directly lead their locomotion dysfunction. The increase of antioxidative enzymes activity and MDA level were found after 25 μg/L and 250 μg/L exposure. Significant up-regulation of several antioxidative and immune-related genes, including CZ-SOD, CAT, GPx, GST, AFL, proPO, HSP27 and HSP70 confirmed that oxidative stress was induced in all treatments when exposed to IMI. In addition, there was significant increase of LDH, indicating the different energy allocation during the exposure. Meanwhile, results from DNA damage analysis showed elevated OTM value and 8-OHdG level in hepatopancretic cells. On the other hand, decreases of alpha-amylase, lipase and increase of trypsin in hepatopancreas was observed at 25 and 250 μg/L. In addition, significant changes of composition of intestinal microbiota at both phylum and genus levels were observed according to the 16S rRNA sequencing results. Increase of pathogenic genera and decrease of beneficial bacterial communities revealed the disequilibrium of intestinal flora of crayfish. In summary, results in the present study suggest that IMI at environmentally realistic concentration could induce AChE inhibition and oxidative stress, conjointly leading the locomotion impairment in crayfish. IMI also affected the digestive functions by enzymes inhibition and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China.
| | - Hongmei Yin
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Guangwen Yan
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China; Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| | - Qiang Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Zhiqiang Li
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Zhiqiu Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| |
Collapse
|
2
|
Jiao T, Yang TT, Wang D, Gao ZQ, Wang JL, Tang BP, Liu QN, Zhang DZ, Dai LS. Characterization and expression analysis of immune-related genes in the red swamp crayfish, Procambarus clarkii in response to lipopolysaccharide challenge. FISH & SHELLFISH IMMUNOLOGY 2019; 95:140-150. [PMID: 31629063 DOI: 10.1016/j.fsi.2019.09.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
To learn more about red swamp crayfish related genes in response to bacterial infections, we investigated immune-related genes induced by lipopolysaccharide (LPS) in the hepatopancreas using high-throughput sequencing method. In present the study, a total of 55,107 unigenes were identified, with an average length of 678 bp. A total of 2215 differentially expressed genes (DEGs) were found, including 669 up-regulated genes and 1546 down-regulated genes. The result of Gene ontology (GO) analysis revealed that 3017 DEGs were enriched in 19 biological process subcategories, 17 cellular component subcategories and 15 molecular function subcategories. The top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed that "ribosome" was the most abundant group, which had 34 DEGs. KEGG enrichment analysis identified several immune response pathways. Real-time quantitative reverse transcription-PCR (qRT-PCR) results exhibited that several immune responsive genes were greatly up-regulated following LPS stimulation as observed in the results of high-throughput sequencing. Overall, this study provides new insight into the immune defense mechanisms of P. clarkii against LPS infection.
Collapse
Affiliation(s)
- Ting Jiao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Ting-Ting Yang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, PR China
| | - Dong Wang
- Instrumental Analysis Center, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Zhen-Qiu Gao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; School of Pharmacy, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Jia-Lian Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China; Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, PR China.
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, 224007, PR China.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
3
|
Mehta AS, Luz-Madrigal A, Li JL, Tsonis PA, Singh A. Comparative transcriptomic analysis and structure prediction of novel Newt proteins. PLoS One 2019; 14:e0220416. [PMID: 31419228 PMCID: PMC6697330 DOI: 10.1371/journal.pone.0220416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 01/25/2023] Open
Abstract
Notophthalmus viridescens (Red-spotted Newt) possess amazing capabilities to regenerate their organs and other tissues. Previously, using a de novo assembly of the newt transcriptome combined with proteomic validation, our group identified a novel family of five protein members expressed in adult tissues during regeneration in Notophthalmus viridescens. The presence of a putative signal peptide suggests that all these proteins are secretory in nature. Here we employed iterative threading assembly refinement (I-TASSER) server to generate three-dimensional structure of these novel Newt proteins and predicted their function. Our data suggests that these proteins could act as ion transporters, and be involved in redox reaction(s). Due to absence of transgenic approaches in N. viridescens, and conservation of genetic machinery across species, we generated transgenic Drosophila melanogaster to misexpress these genes. Expression of 2775 transcripts were compared between these five newly identified Newt genes. We found that genes involved in the developmental process, cell cycle, apoptosis, and immune response are among those that are highly enriched. To validate the RNA Seq. data, expression of six highly regulated genes were verified using real time Quantitative Polymerase Chain Reaction (RT-qPCR). These graded gene expression patterns provide insight into the function of novel protein family identified in Newt, and layout a map for future studies in the field.
Collapse
Affiliation(s)
- Abijeet Singh Mehta
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Agustin Luz-Madrigal
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Jian-Liang Li
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida, United States of America
| | - Panagiotis A Tsonis
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, Ohio, United States of America
- The Integrative Science and Engineering Center, University of Dayton, Dayton, Ohio, United States of America
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, Indiana, United States of America
| |
Collapse
|