1
|
Lu K, Chen X, Zhang H, Zhu J, Zhao Y, Chen X, Zhang Y, Yao D. White spot syndrome virus IE1 protein blocks the integrin-FAK signaling to enhance viral infection in shrimp. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110073. [PMID: 39637952 DOI: 10.1016/j.fsi.2024.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
DNA viruses commonly utilize immediate-early proteins to manipulate cellular signaling pathways in order to facilitate their infection. Our previous research has suggested that IE1, an immediate-early protein encoded by the white spot syndrome virus (WSSV), may modulate the shrimp integrin-FAK signaling pathway. However, the specific molecular mechanism and role of IE1 in regulating this signaling pathway remain unclear. In this study, we demonstrated that IE1 competes for binding to the cytoplasmic tail of Penaeus vannamei integrin-α5, resulting in the inhibition of the integrin-α5-FAK interaction, thereby suppressing FAK activation and cell adhesion. Furthermore, we observed a significant increase in the expression of P. vannamei integrin-α5 and FAK following WSSV infection. Additionally, knockdown of integrin-α5 or FAK through RNA interference has been shown to reduce cell adhesion and enhance WSSV infection. In conclusion, our findings reveal that IE1 disrupts integrin-FAK signaling to inhibit cell adhesion, ultimately promoting WSSV infection in shrimp.
Collapse
Affiliation(s)
- Kaiyu Lu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China
| | - Xiyu Chen
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China
| | - Huimin Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China
| | - Jinghua Zhu
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
2
|
Wan J, Zhao X, Liu J, Chen K, Li C. Src kinase mediates coelomocytes phagocytosis via interacting with focal adhesion kinase in Vibrio splendidus challenged Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:411-420. [PMID: 35462003 DOI: 10.1016/j.fsi.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Immune cells have many efficient ways to participate in the host immunity, including phagocytosis, which is an important pathway to eliminate pathogens. Only β-integrin-mediated phagocytosis pathways have been confirmed in Apostichopus japonicus. The Src family kinases (SFKs), a class of non-receptor tyrosine kinases plays an important role in the regulation of phagocytic signals in invertebrates. However, the SFK-mediated phagocytic mechanism is largely unknown in A. japonicus. In this study, a novel SFK homologue (AjSrc) with a conservative SH3 domain, an SH2 domain, and a tyrosine kinase domain was identified from A. japonicus. Both gene and protein expression of AjSrc and phosphorylation levels increased under Vibrio splendidus challenged, reaching the highest level at 24 h. Knock-down of AjSrc could depress coelomocytes' phagocytosis by 25% compared to the control group. To better understand the mechanism of AjSrc-mediated phagocytosis, focal adhesion kinase (FAK) was identified by a Co-immunoprecipitation experiment to be verified as an interactive protein of AjSrc. The phagocytosis rates of coelomocytes were decreased by 33% and 37% in AjFAK and AjSrc + AjFAK interference groups compared with the control group, respectively. Furthermore, the phosphorylation level of AjFAK was increased and reached the maximum level at 24 h post V. splendidus infection, as the same as that of AjSrc. Our results suggested that AjSrc could mediate V. splendidus-induced coelomocytes' phagocytosis via interacting with AjFAK and co-phosphorylation. This study enriched the mechanism of phagocytosis in echinoderm and provided the new theoretical foundation for disease control of sea cucumber.
Collapse
Affiliation(s)
- Junjie Wan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Jiqing Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Kaiyu Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
3
|
Wei M, Zhang Y, Aweya JJ, Wang F, Li S, Lun J, Zhu C, Yao D. Litopenaeus vannamei Src64B restricts white spot syndrome virus replication by modulating apoptosis. FISH & SHELLFISH IMMUNOLOGY 2019; 93:313-321. [PMID: 31351111 DOI: 10.1016/j.fsi.2019.07.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
The Src family kinases (SFK) are involved in signaling transductions that regulate numerous biological activities including host-virus interaction. These features of SFK have been well explored in vertebrates, however, in shrimp, the invertebrate SFK family member Src64B, has not been characterized and therefore its role in shrimp-virus interaction remains unknown. In this study, two Litopenaeus vannamei Src64B isoforms (designated LvSrc64B1 and LvSrc64B2) were first cloned and their role in white spot syndrome virus (WSSV) infection was explored. Bioinformatics analysis revealed that LvSrc64B1 and LvSrc64B2 were similar to other Src64B family members, with high homology in primary and tertiary structures, and contained the conserved SFK functional domains, as well as the putative myristylation and phosphorylation sites. Tissue distribution analysis showed that both LvSrc64B isoforms were ubiquitously expressed, albeit distinctively in the tested tissues. In addition, transcript levels of LvSrc64B1 and LvSrc64B2 were significantly induced following WSSV challenge and had similar expression patterns. Furthermore, siRNA-mediated knockdown of LvSrc64B1 and LvSrc64B2 followed by WSSV infection resulted in increased expression of viral genes, enhanced viral DNA replication, and elevation of hemocytes apoptosis. Depletion of LvSrc64B1 and LvSrc64B2 also reduced shrimp survival upon WSSV infection. In conclusion, the current data strongly suggest that Src64B is a host factor that inhibits WSSV replication by modulating apoptosis in shrimp.
Collapse
Affiliation(s)
- Menghao Wei
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Fan Wang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Jingsheng Lun
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Chunhua Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Defu Yao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
4
|
Zhang J, Lei X, Wang D, Jiang Y, Zhan Y, Li M, Zhou Y, Qin Y, Liu J, Wang A, Yang Y, Wang N. Inhibition of Abl or Src tyrosine kinase decreased porcine circovirus type 2 production in PK15 cells. Res Vet Sci 2019; 124:1-9. [PMID: 30716585 DOI: 10.1016/j.rvsc.2019.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 12/12/2022]
Abstract
Porcine circovirus type 2 (PCV2) causes huge economic losses in the global swine industry and has a complex and poorly understood virus-host interaction mechanism. We reported that the C-terminal of the capsid protein of all PCV2 isolates shared a strictly conserved PXXP motif that may interact with SH3 domain-containing tyrosine kinases; however, its roles in PCV2 cell entry and replication remain unknown. In this study, we determined that mRNA levels of two SH3 domain-containing tyrosine kinases family (Abl and Src) had distinct profiles (wild-type and PXXP-mutated) during PCV2 infections of PK15 cells. Therefore, we hypothesized that activities of tyrosine kinases (Abl and Fyn) in PK15 cells may be hijacked by PCV2 via its PXXP motif of the Cap, to favor virus replication. Specific inhibitors PP2 of Lck/Fyn and STI-571 of Abl family kinases decreased viral production through suppression of DNA and Cap synthesis at the replication stage. However, based on indirect immunofluorescence assay (IFA), entry of PCV2 virus-like particles (VLPs) into PK15 cells was not altered. Elucidating mechanisms of PCV2-host interactions should provide new insights for development of new compounds to prevent or reduce PCV2 infections.
Collapse
Affiliation(s)
- Jiaxin Zhang
- The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xinnuo Lei
- The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Dongliang Wang
- The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yifan Jiang
- The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yang Zhan
- The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Meng Li
- The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yawen Zhou
- The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yiwen Qin
- The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Garden Middle Road, Haidian District, Beijing 100097, China
| | - Aibing Wang
- The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yi Yang
- The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Naidong Wang
- The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|