1
|
Appel RJC, Siqueira KN, Konstantinidis I, Martins MIM, Joshi R, Pretto-Giordano LG, Vilas-Boas LA, Fernandes JMDO. Comparative transcriptome analysis reveals a serotype-specific immune response in Nile tilapia ( Oreochromis niloticus) infected with Streptococcus agalactiae. Front Immunol 2025; 15:1528721. [PMID: 39867881 PMCID: PMC11758187 DOI: 10.3389/fimmu.2024.1528721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Streptococcus agalactiae is a major causative agent of streptococcosis in Nile tilapia (Oreochromis niloticus) and understanding its etiology is important to ensure the sustainable development of global tilapia farming. Our research group recently observed contrasting disease patterns in animals infected with two different S. agalactiae serotypes (Ib and III). To better understand the basis for these divergent responses, we analyzed the brain transcriptome of Nile tilapia following bacterial exposure. Our findings revealed significant variation in the expression of genes involved in immune (e.g., CD209 antigen, granulin, C-X-C motif chemokine 10, prostacyclin synthase, and interleukins) and neuroendocrine (e.g., mmp13a, mmp9, brain aromatase, and pmch) pathways. The serotype Ib strain seems promptly recognized by the host, triggering a potent inflammatory response, whereas the serotype III strain elicited a less immediate response, resulting in more pronounced central nervous system (CNS) symptoms and behavioral effects. To the best of our knowledge, this is the first study to show serotype-specific immune responses to S. agalactiae in Nile tilapia. These findings are important for advancing disease management and control strategies in aquaculture. Identifying different immune reactions triggered by serotypes Ib and III may assist the development of more specific approaches for preventive measures, early detection, and effective treatment against streptococcosis.
Collapse
Affiliation(s)
- Renan José Casarotto Appel
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of General Biology, State University of Londrina, Londrina, Brazil
| | | | | | | | | | | | | | - Jorge Manuel de Oliveira Fernandes
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of Renewable Marine Resources, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| |
Collapse
|
2
|
Xiong W, Jiang GZ, He CF, Hua HK, Du MT, Huang WT, Xu HT, Zhou MT, Wang X, Guo HX, Wang AM, Sun SZ, Liu WB. Recombinant Bacillus subtilis expressing functional peptide and its effect on blunt snout bream (Megalobrama amblycephala) in two state of stress. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109980. [PMID: 39461393 DOI: 10.1016/j.fsi.2024.109980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
This study was conducted to investigate the effects of recombinant Bacillus subtilis CM66-P4' (secreting P4, which related to previous research in this laboratory) on the antioxidant capacity and immune function of blunt snout bream (Megalobrama amblycephala) through in vitro and in vivo experiment. The culture experiment was divided into 3 groups, including control group (CG, with no additional bacteria), original bacteria group (OBG, with 2 × 109 CFU/kg Bacillus subtilis CM66) and recombinant bacteria group (RBG, with 2 × 109 CFU/kg Bacillus subtilis CM66-P4'). After 8 weeks of feeding, a part of the fish were subjected to fishing stress, and the rest were subjected to starvation stress test. Blood samples were collected for the determination of immune and stress-related indexes. The hepatocytes were divided into control group (CG) and experiment group with P4 peptide (LTG and HTG). The cells were collected after starvation treatment and the expression of related genes was detected. The results showed as follows: compared with the CG group, the gene expressions of hepatocytic hsp60 and hsp70 in the LTG and HTG groups were significantly suppressed after 24 h starvation stress (P < 0.05). The content of MDA, the activities of AKP and ALT in OBG group were significantly changed after 30 days starvation (P < 0.05), while the indexes in RBG group had no significant change. The changes of plasma cortisol, malondialdehyde (MDA) and Immunoglobulin M (IgM) in CG and OBG groups were significantly changed at 4 h after fishing stress (P < 0.05), while the indexes in RBG group was not. In conclusion, this study confirmed that Bacillus subtilis CM66-P4' has great potential in preventing adverse effects of stress on aquatic livestock.
Collapse
Affiliation(s)
- Wei Xiong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Chao-Fan He
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Hao-Kun Hua
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Mian-Ting Du
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Wan-Ting Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Hui-Ting Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Mei-Ting Zhou
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Ai-Min Wang
- Yancheng Inst Technol, Coll Econ, Key Lab Aquaculture & Ecol Coastal Pool Jiangsu P, Yancheng, PR China
| | - Shang-Zhi Sun
- Nanjing Omnipotent Peptide Biological Development Co., Ltd, PR China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China.
| |
Collapse
|
3
|
Bowhay CR, Hanington PC. Animal granulins: In the GRN scheme of things. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105115. [PMID: 38101714 DOI: 10.1016/j.dci.2023.105115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Granulins are conserved in nearly all metazoans, with an intriguing loss in insects. These pleiotropic peptides are involved in numerous physiological and pathological processes yet have been overwhelmingly examined in mammalian systems. While work in other animal models has been informative, a richer understanding of the proteins should be obtained by integrating knowledge from all available contexts. The main bodies of work described here include 1) the structure-function relationships of progranulin and its cleavage products, 2) the role of expanded granulin gene families and different isoforms in fish immunology, 3) the release of granulin peptides to promote host angiogenesis by parasitic worms, 4) a diversity of molluscan uses for granulins, including immune activation in intermediate hosts to trematodes, 5) knowledge gained on lysosomal functions from C. elegans and the stress-related activities of granulins. We provide an overview of functional reports across the Metazoa to inform much-needed future research.
Collapse
Affiliation(s)
- Christina R Bowhay
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Patrick C Hanington
- School of Public Health, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
4
|
A Type Ib Crustin from Deep-Sea Shrimp Possesses Antimicrobial and Immunomodulatory Activity. Int J Mol Sci 2022; 23:ijms23126444. [PMID: 35742887 PMCID: PMC9223358 DOI: 10.3390/ijms23126444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Crustins are small antimicrobial proteins produced by crustaceans. Of the many reported crustins, very few are from deep sea environments. Crustins are categorized into several types. Recently, the Type I crustin has been further classified into three subtypes, one of which is Type Ib, whose function is unknown. Here, we studied the function of a Type Ib crustin (designated Crus2) identified from a deep-sea crustacean. Crus2 has a whey acidic protein (WAP) domain and a long C-terminal region (named P58). Recombinant Crus2 bound to peptidoglycan (PGN), lipoteichoic acid (LTA), and lipopolysaccharide (LPS), and killed Gram-positive and Gram-negative bacteria by permeabilizing the bacterial cytomembrane. Consistently, Crus2 dramatically attenuated the inflammatory response induced by LPS and LTA. Disruption of the disulfide bonds in the WAP domain abolished the bactericidal ability of Crus2, but had no effect on the bacterial binding ability of Crus2. Deletion of the C-terminal P58 region moderately affected the antimicrobial activity of Crus2 against some bacteria. P58 as a synthesized peptide could bind bacteria and inhibit the bactericidal activity of Crus2. Taken together, these results revealed different roles played by the WAP domain and the P58 region in Type Ib crustin, and provided new insights into the antimicrobial and immunomodulatory functions of crustins.
Collapse
|
5
|
Development of Disease-Resistance-Associated Microsatellite DNA Markers for Selective Breeding of Tilapia (Oreochromis spp.) Farmed in Taiwan. Genes (Basel) 2021; 13:genes13010099. [PMID: 35052439 PMCID: PMC8774982 DOI: 10.3390/genes13010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
There are numerous means to improve the tilapia aquaculture industry, and one is to develop disease resistance through selective breeding using molecular markers. In this study, 11 disease-resistance-associated microsatellite markers including 3 markers linked to hamp2, 4 linked to hamp1, 1 linked to pgrn2, 2 linked to pgrn1, and 1 linked to piscidin 4 (TP4) genes were established for tilapia strains farmed in Taiwan after challenge with Streptococcus inae. The correlation analysis of genotypes and survival revealed a total of 55 genotypes related to survival by the chi-square and Z-test. Although fewer markers were found in B and N2 strains compared with A strain, they performed well in terms of disease resistance. It suggested that this may be due to the low potency of some genotypes and the combinatorial arrangement between them. Therefore, a predictive model was built by the genotypes of the parental generation and the mortality rate of different combinations was calculated. The results show the same trend of predicted mortality in the offspring of three new disease-resistant strains as in the challenge experiment. The present findings is a nonkilling method without requiring the selection by challenge with bacteria or viruses and might increase the possibility of utilization of selective breeding using SSR markers in farms.
Collapse
|
6
|
Li S, Jiang C, Chen H, Zhang L, Ke L, Chen X, Lin C. Pre-injection of Zebrafish ( Danio rerio) tnfb Polyclonal Antibody Decreases the Mortality of Vibrio vulnificus Infected Zebrafish. Front Vet Sci 2021; 8:741242. [PMID: 34869718 PMCID: PMC8637402 DOI: 10.3389/fvets.2021.741242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022] Open
Abstract
Tumor necrosis factor (TNF) plays an important role in an inflammatory cytokine storm. Over-secretion of TNF by the host in response to infection aggravates the disease. TNF expression level is positively correlated with the mortality caused by some bacterial infections. Therefore, using TNF antibody may alleviate the inflammation to resist bacterial infections. The function of fish TNF-b antibody in bacterial infection is still unclear. In this study, infection models of Vibrio vulnificus FJ03-X2 strain with high pathogenicity and strong virulence were established in zebrafish (Danio rerio) fibroblast cell line (ZF4 cells) and zebrafish. Zebrafish tnfb (Zetnf-b) gene was cloned and expressed by Escherichia coli BL21 (DE3), and Zetnf-b polyclonal antibody was prepared. Pre-injection of Zetnf-b polyclonal antibody and AG-126 before infecting with V. vulnificus could increase the survival rate of zebrafish by 36.6 and 46.7%, respectively. Pre-injection of Zetnf-b polyclonal antibody could effectively decrease the mortality of zebrafish infected by V. vulnificus. Thus, TNF polyclonal antibody therapy could be considered as an effective strategy to control V. vulnificus in fish.
Collapse
Affiliation(s)
- Suyi Li
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Cong Jiang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Sciences and Engineering, Fuzhou University, Fuzhou, China
| | - Hua Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Lijuan Zhang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Ling Ke
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xu Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Chentao Lin
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Fujian Normal University, Fuzhou, China.,Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| |
Collapse
|
7
|
Tu PY, Huang SJ, Rajanbabu V, Wu JL, Chen JY. Comparative transcriptome analysis reveals ectopic delta-5 and delta-6 desaturases enhance protective gene expression upon Vibrio vulnificus challenge in Tilapia (Oreochromis niloticus). BMC Genomics 2021; 22:200. [PMID: 33752587 PMCID: PMC7983300 DOI: 10.1186/s12864-021-07521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
Background Tilapia (Oreochromis niloticus) cultures are frequently infected by Vibrio vulnificus, causing major economic losses to production units. Previously, tilapia expressing recombinant delta-5 desaturase and delta-6 desaturase (D56) were found to be resistant to V. vulnificus infection. In this report, we profile the D56-mediated molecular changes underlying this resistance in tilapia. A comparative transcriptome analysis was performed on V. vulnificus-infected wild-type and D56-transgenic tilapia using Illumina’s sequencing-by-synthesis approach. Gene enrichment analysis on differentially expressed unigenes was performed, and the expression patterns were validated by real-time PCR. Results Comparative transcriptome analysis was performed on RNA-sequence profiles obtained from wild-type and D56-transgenic tilapia at 0, 6 and 24 h post-infection with V. vulnificaus. GO and KEGG gene enrichment analyses showed that D56 regulates several pathways and genes, including fatty acid (FA) metabolism associated, and inflammatory and immune response. Expression of selected FA metabolism-associated, inflammatory and immune responsive genes was validated by qPCR. The inflammatory and immune responsive genes that are modulated by FA-associated D56 likely contribute to the enhanced resistance against V. vulnificus infection in Tilapia. Conclusions Transcriptome profiling and filtering for two-fold change variation showed that 3795 genes were upregulated and 1839 genes were downregulated in D56-transgenic tilapia. These genes were grouped into pathways, such as FA metabolism, FA elongation, FA biosynthesis, biosynthesis of unsaturated FA, FA degradation, inflammation, immune response, and chemokines. FA-associated genes and immune-related genes were modulated by D56 at 6 h and 24 h post infection with V. vulnificus. The expression patterns of FA-related genes, inflammatory genes, antimicrobial peptide genes and immune responsive genes at 0, 3, 6, 12, 24 and 48 h post-infection suggests these genes are involved in the enhanced resistance of D56 transgenic tilapia to V. vulnificus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07521-5.
Collapse
Affiliation(s)
- Pin-Yang Tu
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan, 262, Taiwan
| | - Shin-Jie Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Venugopal Rajanbabu
- Department of Plant Breeding 7 Genetics, Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirapalli, Tamil Nadu, 620027, India
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd., Jiaushi, Ilan, 262, Taiwan. .,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
8
|
Improved Stability and Activity of a Marine Peptide-N6NH2 against Edwardsiella tarda and Its Preliminary Application in Fish. Mar Drugs 2020; 18:md18120650. [PMID: 33348729 PMCID: PMC7766155 DOI: 10.3390/md18120650] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/28/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Edwardsiella tarda can cause fatal gastro-/extraintestinal diseases in fish and humans. Overuse of antibiotics has led to antibiotic resistance and contamination in the environment, which highlights the need to find new antimicrobial agents. In this study, the marine peptide-N6 was amidated at its C-terminus to generate N6NH2. The antibacterial activity of N6 and N6NH2 against E. tarda was evaluated in vitro and in vivo; their stability, toxicity and mode of action were also determined. Minimal inhibitory concentrations (MICs) of N6 and N6NH2 against E. tarda were 1.29–3.2 μM. Both N6 and N6NH2 killed bacteria by destroying the cell membrane of E. tarda and binding to lipopolysaccharide (LPS) and genomic DNA. In contrast with N6, N6NH2 improved the stability toward trypsin, reduced hemolysis (by 0.19% at a concentration of 256 μg/mL) and enhanced the ability to penetrate the bacterial outer and inner membrane. In the model of fish peritonitis caused by E. tarda, superior to norfloxacin, N6NH2 improved the survival rate of fish, reduced the bacterial load on the organs, alleviated the organ injury and regulated the immunity of the liver and kidney. These data suggest that the marine peptide N6NH2 may be a candidate for novel antimicrobial agents against E. tarda infections.
Collapse
|
9
|
Su BC, Chen JY. Epinecidin-1: An orange-spotted grouper antimicrobial peptide that modulates Staphylococcus aureus lipoteichoic acid-induced inflammation in macrophage cells. FISH & SHELLFISH IMMUNOLOGY 2020; 99:362-367. [PMID: 32084537 DOI: 10.1016/j.fsi.2020.02.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/30/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Orange-spotted grouper (Epinephelus coioides) is among the most economically important of all fish species farmed in Asia. This species expresses an antimicrobial peptide called epinecidin-1 (EPI), which is considered to be a host defense factor due to its strong bacterial killing activity. Antimicrobial peptides usually possess both bacterial killing and immunomodulatory activity, however, the modulatory activity of EPI on Gram-positive bacterial lipoteichoic acids (LTA)-induced inflammation has not been previously reported. In this study, we found that EPI effectively suppressed LTA-induced production of proinflammatory factors in macrophages. Mechanistically, EPI attenuated LTA-induced inflammation by inhibiting Toll-like receptor (TLR) 2 internalization and subsequent downstream signaling (reactive oxygen species, Akt, p38 and Nuclear factor κB). However, protein abundance of TLR2 was not altered by EPI or LTA. Taken together, our findings reveal for the first time that EPI possesses inhibitory activity toward LTA-induced inflammation in macrophages.
Collapse
Affiliation(s)
- Bor-Chyuan Su
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
10
|
Wu SH, Chou HY, Liu PC, Wu JL, Gong HY. Granulin peptide GRN-41 of Mozambique tilapia is a novel antimicrobial peptide against Vibrio species. Biochem Biophys Res Commun 2019; 515:706-711. [PMID: 31182280 DOI: 10.1016/j.bbrc.2019.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Abstract
In our previous study, the novel GRN-41 peptide generated from alternative splicing of the Mozambique tilapia PGRN1 gene was identified to be a potent peptide that protected against V. vulnificus in the transgenic zebrafish model by modulating innate immune-related genes. In this study, the anti-bacterial activities of synthetic Mozambique tilapia GRN-41 peptide (OmGRN-41) against various bacterial pathogens were investigated. The results showed that OmGRN-41 had bactericidal activity against Vibrio species, including V. vulnificus, V. alginolyticus, and V. harveyi, but exhibited bacteriostatic activity against V. parahaemolyticus. OmGRN-41 maintained bactericidal activity (64 μM) against V. vulnificus at pH 2 to pH 10 or after heat treatment for 1 h at high temperatures between 40 °C and 100 °C. TEM observations revealed that the outer membrane of V. vulnificus was disrupted by OmGRN-41, leading to morphological rupture and loss of cytoplasmic contents. Additionally, little hemolytic activity against tilapia and sheep erythrocytes was detected after treatment with 128 μM OmGRN-41. OmGRN-41 can effectively enhance the survival of Nile tilapia infected by V. vulnificus. Our results suggest that the OmGRN-41 is a novel antimicrobial peptide possessing bactericidal activity, especially against Vibrio species. These results indicate that OmGRN-41 can be applied in human Vibriosis treatment and has the potential to defend against Vibrio spp. infection in critical aquaculture organisms.
Collapse
Affiliation(s)
- Sheng-Han Wu
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Hsin-Yiu Chou
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Ping-Chung Liu
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Jen-Leih Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hong-Yi Gong
- Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|